Supporting Information

Heterogeneous Seeds Boosting the Self-Lithiophilic Host with Dual-Phase

Lithium Storage for Stable Lithium-Metal Anode

Zhicui Song ^{a,c}, Jing Xue ^b, Chaohui Wei ^c, Donghuang Wang ^c, Yingchun Ding ^d, Aijun Zhou ^{a,c},

Jingze Li^{a,c*}

a School of Materials and Energy, University of Electronic Science and Technology of China,

Chengdu 611731, China

b School of Mathematics and Physics, Weinan Normal University, Weinan 714099, China

c Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou),

University of Electronic Science and Technology of China, Huzhou 313001, China

d College of Material and Chemical Engineering, Yibin University, Yibin 644000, China

Corresponding author E-mail: lijingze@uestc.edu.cn (J. Z. Li)

1. Experimental

1.1 Materials and electrodes preparation

Carbon fiber (CF) and polyvinylidene fluoride (PVDF) were mixed in a N-methyl-2-pyrrolidine (NMP) solution with a mass ratio of 9:1. After thoroughly stirred, the asformed homogeneous slurry was coated onto Cu foil and then placed in a vacuum oven at 80 °C overnight. Subsequently, the CF electrode was obtained by directly punching the film into circular pieces with a diameter of 12 mm. For the fabrication of CF@Pt electrode, an ion sputtering instrument (ETD, 2000C) was employed at 8 mA for 220 s to ensure a uniform Pt covering on the surface of the CF film.

LiFePO₄ (LFP) cathode was also fabricated by a slurry-casted method for full cells testing. Specially, 80 wt% LFP powders, 10 wt% PVDF binder, and 10 wt% Super-P were thoroughly dispersed in NMP solution. Subsequently, Al foil was served as the current collector and the as-obtained slurry was coated. Finally, the LFP cathode was obtained after NMP solvent drying out. The areal loading of the as-fabricated LFP cathode is about 10.5 mg cm⁻².

1.2 Electrochemical property characterizations

In this contribution, CR2032-type coin cells were assembled in a glove box filled with Ar to evaluate the electrochemical properties of the as-fabricated electrodes. The electrolyte is 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 2 wt% LiNO₃ additives in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) (v/v = 1:1), while the Celgard 2325 membrane is regarded as the separator. The assembled coin cells were monitored in a Neware battery testing system with a galvanostatic mode. For the Coulombic efficiency test, the half cells were assembled by using the CF@Pt (or Cu foil, or CF) film as the working electrode, and a Li foil served as the counter electrode. A fixed amount of Li was deposited onto the working electrode and then stripped to a cut-off voltage of 1.0 V for each cycle. Specially, the working electrode was activated between 0.01 and 1.0 V vs. Li/Li⁺ (5 cycles) at 0.5 mA cm⁻² to stabilize the SEI film. The corresponding Coulombic efficiency was calculated by the percentage of the dissolution capacity divided by the deposition capacity. The symmetrical cells were respectively tested at a constant current density of 0.5 and 1.0 mA cm⁻² with a fixed cut-off capacity of 1.0 mAh cm⁻². It should be stated that the electrodes used in symmetrical cells were firstly pre-deposited with 2.5 mAh cm⁻² of Li. The LFP-based full cells were assessed in the voltage range of 2.5-4.2 V versus Li⁺/Li. The Tafel plot measurements were conducted on an electrochemical workstation (CHI660C, Shanghai, Chenhua) with a scan rate of 0.5 mV s⁻¹.

1.3 Material characterizations

The morphologies, microstructures and element distributions of the as-fabricated samples or the cycled electrodes were visualized at 15 kV by field emission scanning electron microscopy (FE-SEM, Hitachi, S3400N) of which is equipped with energy-dispersive X-ray spectroscopy (EDS). Specially, all the Li containing samples were prepared in an Ar-filled glove-box and loaded into a sealed transfer vessel for the followed SEM characterization. The electrodes obtained from the disassembled cells were rinsed with DME solvent and fully dried in the glove-box.

2. Figures and Captions

Figure S1. SEM images of (a, b) bare Cu foil and (c, d) Pt-coated bare Cu foil (Cu@Pt).

Figure S2. The high magnification SEM images of (e) CF and (f) CF@Pt.

Figure S3. EDS spectrum of the CF@Pt and the corresponding element ratio.

Figure S4. Top-views and cross-sectional SEM images of the Cu foil eletrode after plating (a-d) 1

mAh cm⁻², (e-h) 2 mAh cm⁻² and (i-l) 3 mAh cm⁻² at 0.5 mA cm⁻².

Figure S5. Top-views and cross-sectional SEM images of the CF eletrode after plating (a-d) 1 mAh

cm⁻², (e-h) 2 mAh cm⁻² and (i-l) 3 mAh cm⁻² at 0.5 mA cm⁻².

Figure S6. Top-view and cross-sectional SEM images of the Cu@Pt electrode after plating (a-c) 1

mAh cm⁻², (d-f) 2 mAh cm⁻² and (g-i) 3 mAh cm⁻² at 0.5 mA cm⁻².

Figure S7. Plots of the nucleation overpotential of Li plating on the bare Cu foil, Cu@Pt, CF and CF@Pt electrodes at 0.5 mA cm⁻² during the 1st plating/stripping process. The inset shows the enlarged plots of the nucleation overpotential.

Figure S8. XRD patterns of (a) the charged CF electrode (charging with 1 mAh cm⁻² of Li capacity) and (b) the pristine CF electrode.

Figure S9. Comparison of Coulombic efficiency of the CF@Pt, CF, and Cu foil electrodes at 1 mA

 cm^{-2} with a fixed capacity of 2 mAh cm^{-2} .

3. Electrochemical Performance Comparison

T 11 C1	T1 / 1 / 1	C	•	.1	. 1	1 1
Tohlo NI	Hlectrochemical	nertormance	comparison	among recent	v renorted	host materials
I abit SI.	Licculoritinita	periormanee	companson	among recent	y reported	most materials.
		1	1	0	J 1	

Host	Current	Capacity	Cycle life	Average CE	Ref.
	(mA cm ⁻²)	(mAh cm ⁻²)		value	
Gradient-pore-size	0.5	1	320 cycles	~98%	S 1
carbon skeleton (GPCS)					
Co-N-CNT-CF	0.5	1	200 cycles	98.4 %	S2
TiN/CNT scaffold	0.5	0.5	350 cycles	97.6%	S3
3-D carbon materials	1	1	70 cycles	>97%	S4
(CMs)					
Amide-functionalized	1	1	300 cycles	$\sim 97.8\%$	S5
carbon nanotube					
skeleton (A _f -CNT)					
Carbon fibers modified	1	1	140 cycles	93.7 %	S 6
with ZnO					
(CFs@GZnO)					
GO-Zn/Cu	0.5	0.5	130 cycles	98%	S 7
	1	2	110 cycles	96%	
Urchin-like Ag@CuO	0.5	1	550 cycles	98.86%	S 8
rGO-Ag-S-CNT host	0.5	2	200 cycles	98.1%	S9
	1	2	90 cycles	97.9%	
SnS ₂ nanosheet/carbon	1	1	400 cycles	~98%	S10
foam (SnS ₂ NSA@CF)	3	1	280 cycles	98%	
Ni ₂ P/interconnected	1	1	250 cycles	98.4%	S11
stacked hollow carbon	3	1	226 cycles	98.1%	

spheres (Ni ₂ P@ISHCP)					
CF@Pt	0.5	1	800 cycles	98.73%	This
	1	1	700 cycles	98.62%	work
	2	1	380 cycles	98.01%	
	1	2	500 cycles	98.62%	

 Table S2. Electrochemical performance comparison among recently reported host materials.

Host	Current	Capacity	Overpotential	Cycle time	Ref.
	(mA cm ⁻²)	(mAh cm ⁻²)	(mV)	(h)	
CFs@GZnO	1	1	24	400	S6
GO-Zn/Cu	1	1	20	620	S7
MXene@Au	1	1	~15	650	S12
N, O co-doped	1	1	28.8	560	S13
carbon					
nanosphere					
Porous CoP	1	1	/	350	S14
derived					
framework					
MnO@biomass-	1	1	/	500	S15
derived carbon					
nanofiber host					
Li _{4.4} Sn/SG	0.5	1	18	1000	S16
	1	1	34	600	
Silver-coated N-	1	1	/	300	S17
doped onion-like					
carbon spheres					
(Ag@NCS)					
ZnO@C-	2	1	28	320	S18

MWCNTs					
Carbon	1	1	39	630	S19
nanofibers with					
bidirectional					
gradient					
modification					
CF@Pt	0.5	1	13	1100	This
	1	1	19	770	work

Supplementary References:

- S1. H. Liu, J. Di, P. Wang, R. Gao, H. Tian, P. Ren, Q. Yuan, W. Huang, R. Liu, Q. Liu and M.
 Feng, A novel design of 3D carbon host for stable lithium metal anode, *Carbon Energy*, 2022, 4, 654-664.
- S2. T. Lyu, F. Luo, Z. Wang, F. Jiang, S. Geng, Y. Zhuang, X. Lin, J. Chen, D. Wang, L. Bu, L. Tao, L. Liang and Z. Zheng, Bifunctional lithiophilic carbon fibers with hierarchical structure for high-energy lithium metal batteries, *Chemical Engineering Journal*, 2023, 466, 143357.
- S3. K. Yang, Y. He, Z. Gao, C. Li, F. Zhao, X. Xu, J. Li and X. Liu, Constructing a TiN/CNT lithiophilic scaffold for dendrite-free Li-metal anode, *Carbon*, 2024, 222, 118999.
- S4. Y. Xu, L. Wang, W. Jia, Y. Yu, R. Zhang, T. Li, X. Fu, X. Niu, J. Li and Y. Kang, Threedimensional carbon material as stable host for dendrite-free lithium metal anodes, *Electrochimica Acta*, 2019, **301**, 251-257.
- S5. G. Wang, T. Liu, X. Fu, Z. Wu, M. Liu and X. Xiong, Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes, *Chemical Engineering*

Journal, 2021, 414, 128698.

- S6. Z. Xiao, D. Han, Y. Fu, K. Xie, W. Tian, C. Shu, K. Xi, C. Peng, Y. Wu, S. Dou and W. Tang, Eliminating concentration polarization with gradient lithiophilic sites towards high performance lithium metal anodes under low N/P ratio, *Chemical Engineering Journal*, 2024, 480, 148029.
- S7. J. Ma, J. Yang, C. Wu, M. Huang, J. Zhu, W. Zeng, L. Li, P. Li, X. Zhao, F. Qiao, Z. Zhang,
 D. He and S. Mu, Stabilizing nucleation seeds in Li metal anode via ion-selective graphene oxide interfaces, *Energy Storage Materials*, 2023, 56, 572-581.
- S8. M. Gao, Q. Dong, M. Yao, X. Wang, J. Li, W. Zhang, H. Huang, H. Guo, Z. Sun, Q. Chen,
 X. Han and W. Hu, Dual-gradient Engineering of Urchin-like Silver@Copper Oxide
 Heterostructures for Highly Stable Lithium Metal Anodes, *Advanced Functional Materials*,
 2024, 34, 2401442.
- S9. X. L. Li, S. Huang, D. Yan, J. Zhang, D. Fang, Y. V. Lim, Y. Wang, T. C. Li, Y. Li, L. Guo and H. Y. Yang, Tuning Lithiophilicity and Stability of 3D Conductive Scaffold via Covalent Ag-S Bond for High-Performance Lithium Metal Anode, *Energy & Environmental Materials* 2023, 6, e12274.
- S10. D. Xie, H.-H. Li, W.-Y. Diao, R. Jiang, F.-Y. Tao, H.-Z. Sun, X.-L. Wu and J.-P. Zhang,
 Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li
 nucleation/growth towards dendrite-free Li metal anode, *Energy Storage Materials*, 2021,
 36, 504-513.
- S11. H. Jiang, Y. Zhou, H. Zhu, F. Qin, Z. Han, M. Bai, J. Yang, J. Li, B. Hong and Y. Lai, Interconnected stacked hollow carbon spheres uniformly embedded with Ni₂P

nanoparticles as scalable host for practical Li metal anode, *Chemical Engineering Journal*, 2022, **428**, 132648.

- S12. Y. Qian, C. Wei, Y. Tian, B. Xi, S. Xiong, J. Feng and Y. Qian, Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode, *Chemical Engineering Journal*, 2021, **421**, 129685.
- S13. C. Gao, J. Li, K. Sun, H. Li, B. Hong, M. Bai, K. Zhang, Z. Zhang and Y. Lai, Controllable lithium deposition behavior hollow of N, O co-doped carbon nanospheres for practical lithium metal batteries, *Chemical Engineering Journal*, 2021, **412**, 128721.
- S14. X. Cao, Q. Wang, H. Wang, Z. Shang, J. Qin, W. Liu, H. Zhou and X. Sun, A mixed ionelectron conducting network derived from a porous CoP film for stable lithium metal anodes, *Materials Chemistry Frontiers*, 2021, 5, 5486-5496.
- S15. X. Chen, Z. Yuan, J. He, L. Tong, Y. Wang, J. Wu, X. Li and Y. Chen, A lithiophilic MnO@biomass-derived carbon nanofiber host for stable lithium-metal batteries, *Composites Communications*, 2023, 42, 101660.
- S16. Y. Jiang, J. Jiang, Z. Wang, M. Han, X. Liu, J. Yi, B. Zhao, X. Sun and J. Zhang, Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries, *Nano Energy*, 2020, **70**, 104504.
- S17. Z. Jiang, C. Meng, G. Chen, R. Yuan, A. Li, J. Zhou, X. Chen and H. Song, Lithiophilic onion-like carbon spheres as lithium metal uniform deposition host, *Journal of Colloid and Interface Science*, 2022, 627, 783-792.
- S18. W.-J. Yu, F. Liu, L. Zhang, Z. Liu, S. Wang and H. Tong, Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes, *Carbon*, 2022, **196**, 92-

101.

S19. T. Li, S. Gu, L. Chen, L. Zhang, X. Qin, Z. Huang, Y.-B. He, W. Lv and F. Kang, Bidirectional Lithiophilic Gradients Modification of Ultralight 3D Carbon Nanofiber Host for Stable Lithium Metal Anode, *Small*, 2022, 18, 2203273.