Supporting Information

Pore-Structure Control in Bimetallic Coordination Networks for Natural Gas Purification with Record C₂H₆/CH₄ Selectivity

Li-Ping Zhang, ^a Yi-Tao Li, ^a Yu Jiang, ^a Run-Yuan Jiang, ^a Shuang Ni, ^a Qing-Yuan Yang ^{*a}

^a School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

E-mail: qingyuan.yang@xjtu.edu.cn

CONTENTS

1.	Experimental Section	S1
2.	IAST selectivity calculation details	S4
3.	Adsorption enthalpy calculation details	S4
4.	Theoretical studies	S5
5.	Tables and figures	S6

1. Experimental Section

Materials: Indium nitrate hydrate (In(NO₃)₃·xH₂O, 99.99%) and cuprous iodide (CuI, \geq 99.5%) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. isonicotinic acid (99.96%) and 3-aminoisonicotinic acid (97%) were purchased from Shanghai Bide Pharmaceutical Technology Co., Ltd. N,N-dimethylformamide (DMF, \geq 99.5%) was purchased from Sinopharm Chemical Reagent Co.,Ltd. Methanol (CH₃OH, 99.5%) was purchased from shanghai McLean Biochemical Technology Co., Ltd. All reagents and solvents received were used without further purification. *Synthesis of* **CuIn(ina)**4: The CuIn(ina)₄ was synthesized according to the literature method.^[11] CuI (95 mg, 0.5 mmol), In(NO₃)₃·xH₂O (150 mg, 0.5 mmol), isonicotinic acid (246 mg, 2 mmol), 4.5 mL DMF and 0.5 mL methanol were mixed in a heatresistant glass bottle. In an oven, the mixture was heated under 100°C for 3 days to produce red crystal. The as-synthesized CuIn(ina)₄ was replaced per day. The activated sample for gas adsorption can be obtained by heating at 100°C for 12 h under vacuum condition.

Synthesis of $CuIn(3-ain)_4$: The CuIn(3-ain)₄ powder was synthesized according to the literature method.^[2] CuI (95 mg, 0.5 mmol), In(NO₃)₃·xH₂O (150 mg, 0.5 mmol), 3-aminoisonicotinic acid (276 mg, 2 mmol), 4.5 mL DMF and 0.5 mL methanol were mixed in a heat-resistant glass bottle. The reaction and activation conditions were the same as for CuIn(ina)₄. (Yield: 303.5 mg, 83.52%).

Characterization: X-ray diffraction (XRD) was carried out using the XRD-6100 diffractometer equipped with a Cu tube. The products were recorded in the 2θ range from 6.0° to 50.0°. Thermogravimetric analysis (TGA) were carried out using a

NETZSCH STA449F5 instrument under a nitrogen atmosphere (nitrogen flow rate of 50 mL min⁻¹). Sample was heated in closed alumina cells at a heating rate of 10 °C min⁻¹ in the temperature in the range of 25-700 °C. Fourier transform infrared spectroscopy (FT-IR) spectra were obtained by using Nicolet iS50 FT-IR spectrometer.

Single-Component Gas Adsorption Measurements: Before sorption analysis, all the samples were activated under a vacuum condition. The single-component adsorption isotherms of CO₂ were performed on BSD-PMC (Beishide Instrument) at 195 K. The single-component adsorption isotherms of CH₄, C₂H₆ and C₃H₈ were performed on JW-BK200C (JWGB Sci & Tech Co. Ltd.) at different temperatures (273 K, 298 K, and 313 K for CH₄, C₂H₆ and C₃H₈). The temperatures during sorption measurements were precisely maintained using anhydrous ethanol as a constant temperature bath. Temperatures of 195 K was achieved with isopropyl alcohol-dry ice bath.

Adsorption rate curves: CH_4 , C_2H_6 and C_3H_8 gases were introduced into the MOF material within the sample tube at 298 K and a pressure of 100 kPa, respectively. The instantaneous adsorption rates of $CuIn(ina)_4$ and $CuIn(3-ain)_4$ on the three gases could be calculated by recording the capacity of adsorbed gases at each moment of time by the MOF materials.

Calculation of gas occupancy and gas density: Gas occupancy for CH₄, C₂H₆, and C₃H₈ in CuIn(ina)₄ and CuIn(3-ain)₄ were calculated by the following equation:

$$Gas \ occupancy = Q * NA * \rho * V_c * 10^{-27}$$

Here, Q (mmol g⁻¹) is the saturated gas uptake; NA is the Avogadro constant; ρ (g cm⁻³) is the structure density and V_c (Å³) is the cell volume. Calculated results are shown in Table S2.

Gas density of CH₄, C_2H_6 , and C_3H_8 in the pore of CuIn(ina)₄ and CuIn(3-ain)₄ were calculated by the following equation:

Gas density =
$$Q * 10^{-3} * M/V_p$$

Here, Q (mmol g^{-1}) is the saturated gas uptake; M is the molar mass (g mol⁻¹) and V_p (ml g^{-1}) is the pore volume. The calculated results are shown in Table S3.

Breakthrough experiments: Breakthrough measurements were performed using BSD-MAB Analyzer coupled with a gas BSD-mass mass spectrometry (TCD-Thermal Conductivity Detector, detection limit 1 ppm) from Beishide Co, Ltd. Before breakthrough experiment, MOF powder samples were packed into a glass penetration column with an internal diameter of 5 mm and then purged with He flow (20 mL min⁻¹) at least 2 h at 100°C. Subsequently, the glass column was placed in a circulating water bath to control the reaction temperature, and then the $CH_4/C_2H_6/C_3H_8$ gas mixture ($CH_4/C_2H_6/C_3H_8$, v/v/v=85/10/5, total flow rate of 8 mL min⁻¹) was introduced into the system. Meanwhile, passed gas signals were detected by mass spectrometry in real time.

The CH₄ productivity (q) is defined by the breakthrough amount of CH₄ (defined as a volume of gas at STP) from an adsorption bed packed with 1 kg of MOF. The breakthrough amount was calculated by integration of the breakthrough curves during a period from t₁ to t₂ during which the CH₄ purity is higher than or equal to to a threshold value p (such as 99.9999%):

$$q = \frac{\int_{t_1}^{t_2} F_{CH_4,out} dt}{m_{MOF}}$$

Where $F_{CH_4,out}$ the flowrate of effluent CH₄ and m_{MOF} is the amount of MOF packed in the bed.

2. IAST selectivity calculation details

Before calculating IAST selectivity, the single-component gas adsorption isotherms were fit using a dual-site Langmuir-Freundlich equation, which is

$$q = \frac{A1 \times B1 \times P^{C1}}{1 + B1 \times P^{C1}} + \frac{A2 \times B2 \times P^{C2}}{1 + B2 \times P^{C2}}$$

where q is the quantity of gases adsorbed in mmol g^{-1} , *A* is the amount adsorbed when saturated with the gas in mmol g^{-1} , *B* is the Langmuir parameter in kPa⁻¹, *P* is gas pressure in kPa, *C* is the dimensionless Freundlich parameter, and subscripts 1 and 2 correspond to two different site identities.

Adsorption selectivity of C₃H₈/CH₄ or C₂H₆/CH₄, mixed gases were predicted from single component adsorption isotherms using Ideal Adsorbed Solution Theory (IAST).

$$S_{ads} = \frac{X_1 / X_2}{Y_1 / Y_2}$$

Where S is the selectivity of component 1 relative to 2. X_1 and X_2 are the molar fractions of components 1 and 2 in the adsorption phase, respectively. Y_1 and Y_2 are molar fractions of components 1 and 2 in the gas phase, respectively.

3. Adsorption enthalpy calculation details

Using data from 273 and 298 K, the adsorption enthalpy was calculated fitting by the Virial equation. P is the pressure described in Pa, N is the adsorbed amount in

mmol/g, T is the temperature in K, a_i and b_i are Virial coefficients, and m and n are the number of coefficients used to describe the isotherms. Q_{st} is the coveragedependent enthalpy of adsorption and R is the universal gas constant.

$$LnP = LnN + \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} {n \choose k} b_i N^i$$
$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

4. Theoretical studies

The computational part of the work was carried out at Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2. The host-guest interactions were calculated using Material Studio software package. Before the Grand Canonical Monte Carlo (GCMC) simulations, the guest molecules CH₄, C₂H₆, and C₃H₈ were geometrically optimized using Forcite code.^[3] The Metropolis method ^[4] was applied to perform the GCMC simulations. The standard Universal force field described the guest-framework interactions. For each state point, the system was equilibrated for 1×10⁶ steps, and then the ultimate data were collected for another 1×10⁷ steps. The locate task simulated the beneficial adsorption sites with a single guest molecule.

5. Tables and figures

Figure S1. PXRD patterns of (a) CuIn(ina)₄ and (b) CuIn(3-ain)₄.

Figure S2. TGA analysis curve of (a) $CuIn(ina)_4$ and (b) $CuIn(3-ain)_4$. The data were collected under 10 K min⁻¹ of heating rate.

Figure S3. (a) CO₂ adsorption and desorption isotherms at 195 K for CuIn(ina)₄. (b) Pore size distribution for CuIn(ina)₄ analyzed by HK method.

Figure S4. (a) CO₂ adsorption and desorption isotherms at 195 K for CuIn(3-ain)₄. (b) Pore size distribution for CuIn(3-ain)₄ analyzed by HK method.

Figure S5. Adsorption isotherms of CH₄ on CuIn(ina)₄ at 273 K, 298 K, and 313 K.

Figure S6. Adsorption isotherms of C₂H₆ on CuIn(ina)₄ at 273 K, 298 K, and 313 K.

Figure S7. Adsorption isotherms of C₃H₈ on CuIn(ina)₄ at 273 K, 298 K, and 313 K.

Figure S8. Adsorption isotherms of CH4 on CuIn(3-ain)4 at 273 K, 298 K, and 313 K.

Figure S9. Adsorption isotherms of C₂H₆ on CuIn(3-ain)₄ at 273 K, 298 K, and 313 K.

Figure S10. Adsorption isotherms of C₃H₈ on CuIn(3-ain)₄ at 273 K, 298 K, and 313 K.

Figure S11. Comparison of C_2H_6 and C_3H_8 uptake (0-5 kPa) between $CuIn(3-ain)_4$ and $CuIn(ina)_4$.

Figure S12. Qst of CH4, C2H6, and C3H8 adsorption in CuIn(3-ain)4.

Figure S13. IAST selectivity of CuIn(ina)₄ and CuIn(3-ain)₄ towards C_3H_8/CH_4 (50:50) and C_2H_6/CH_4 (50:50) at 298 K.

Figure S14. IAST selectivity of CuIn(ina)₄ and CuIn(3-ain)₄ towards C_3H_8/CH_4 (1:99) and C_2H_6/CH_4 (1:99) at 298 K.

Figure S15. (a) FT-IR spectra of activated, CH₄, C₂H₆ and C₃H₈-loaded CuIn(3-ain)₄; (b) The partial magnification of the FT-IR spectra.

Figure S16. Density distribution of CH₄ on CuIn(ina)₄ at (a) 1 kPa, (b) 100 kPa and 298

Figure S17. Density distribution of C_2H_6 on $CuIn(ina)_4$ at (a) 1 kPa, (b) 100 kPa and 298

Figure S18. Density distribution of C₃H₈ on CuIn(ina)₄ at (a) 1 kPa, (b) 100 kPa and 298

Figure S19. Density distribution of CH4 on CuIn(3-ain)4 at (a) 1 kPa, (b) 100 kPa and 298

Figure S20. Density distribution of C_2H_6 on $CuIn(3-ain)_4$ at (a) 1 kPa, (b) 100 kPa and 298 K.

Figure S21. Density distribution of C_3H_8 on $CuIn(3-ain)_4$ at (a) 1 kPa, (b) 100 kPa and 298 K.

Figure S22. Desorption curves were recorded on the column at 100°C under He flow of 30 mL min⁻¹.

Figure S23. Cycling CH₄ adsorption-desorption experiments for CuIn(3-ain)₄.

Figure S24. Cycling C₂H₆ adsorption-desorption experiments for CuIn(3-ain)₄.

Figure S25. Cycling C₃H₈ adsorption-desorption experiments for CuIn(3-ain)₄.

Figure S26. PXRD patterns of CuIn(3-ain)₄ after gas adsorption and breakthrough experiments.

Figure S27. Dynamic breakthrough curves for (a) C_2H_6/CH_4 (5/5, v/v) and (b) C_3H_8/CH_4 (5/5, v/v) binary mixtures (total flow rate of 8 mL min⁻¹) at 298 K and 1.0 bar.

Figure S28. Schematic illustration of the setup for breakthrough experiments.

Figure S29. Dual-site Langmuir-Freundlich model for CH₄ adsorption isotherm on CuIn(ina)₄ at 298 K.

Figure S30. Dual-site Langmuir-Freundlich model for C₂H₆ adsorption isotherm on CuIn(ina)₄ at 298 K.

Figure S31. Dual-site Langmuir-Freundlich model for C₃H₈ adsorption isotherm on CuIn(ina)₄

at 298 K.

Figure S32. Dual-site Langmuir-Freundlich model for CH₄ adsorption isotherm on CuIn(3-ain)₄ at 298 K.

Figure S33. Dual-site Langmuir-Freundlich model for C_2H_6 adsorption isotherm on CuIn(3-ain)₄ at 298 K.

Figure S34. Dual-site Langmuir-Freundlich model for C₃H₈ adsorption isotherm on CuIn(3-ain)₄ at 298 K.

	Molecular weight (g mol ⁻¹)	Kinetic diameter (Å)	Boiling points (K)	Polarizability (10 ⁻²⁵ cm ³)	Dipole moment (10 ⁻¹⁸ esu cm)	Quadruple moment (10 ⁻²⁶ esu cm ²)
CH ₄	16.04	3.758	111.66	25.93	0	0
C_2H_6	30.07	4.443	184.55	44.3-44.7	0	0.65
C ₃ H ₈	44.10	4.3-5.118	231.02	62.9-63.7	0.084	_

Table S1. Comparison of physical parameters of CH₄, C₂H₆, and C₃H₈.

Table 52. Structure parameters and the calculated results for gas occupancy.							
Adsorbent	Adsorbate	ρ (g cm ⁻³)	Vc (Å ³)	Q (mmol g ⁻¹)	Gas occupancy		
	CH4	1.277	1734.7	1.25	1.67		
CuIn(ina) ₄	C_2H_6	1.277	1734.7	3.14	4.19		
	C_3H_8	1.277	1734.7	3.25	4.34		
	CH4	1.576	1899.3	1.66	2.99		
CuIn(3-ain) ₄	C_2H_6	1.576	1899.3	2.96	5.34		
	C_3H_8	1.576	1899.3	3.01	5.42		

Table S2. Structure parameters and the calculated results for gas occupancy.

Adsorbent	Adsorbate	M (g mol ⁻¹)	V _p (ml g ⁻¹)) Q (mmol g ⁻¹)	Gas density (g ml ⁻¹)
	CH4	16	0.22	1.25	0.09
CuIn(ina)4	C_2H_6	30	0.22	3.14	0.43
	C_3H_8	44	0.22	3.25	0.65
	CH4	16	0.20	1.66	0.13
CuIn(3-ain) ₄	C_2H_6	30	0.20	2.96	0.44
	C_3H_8	44	0.20	3.01	0.66

Table S3. Structure parameters and the calculated results for gas density.

	C3H8	C2H6	C ₃ H ₈ /CH ₄	C2H6/CH4	
MOFs	Uptake ^a	Uptake ^a	(50:50)	(50:50)	Ref
	(mmol g ⁻¹)	(mmol g ⁻¹)	Selectivity ^b	Selectivity ^b	
CuIn(3-ain) ₄	3.01	2.96	1047	101	This work
CuIn(ina) ₄	3.25	3.14	625	24	This work
ZUL-C2	2.52	2.82	632	91	[5]
ZUL-C1	2.72	2.95	73	22	[5]
Co-MOF	2.65	2.62	290	26	[6]
Ni(TMBDC)(DABCO)0.5	5.54	5.81	274	29	[7]
JLU-Liu15	3.88	3.47	461.5	27.8	[8]
BSF-2	2.21	1.52	681	25	[9]
BSF-1	2.03	1.64	353	23	[9]
JLU-Liu6	2.58	2.15	274.6	20.4	[10]
NKM-101	3.34	2.92	223.1	20.1	[11]
JLU-Liu40	7.32	4.64	845	21	[12]
Ni(HBTC)(bipy)	6.18	5.85	1857	27.5	[13]
LIFM-ZZ-1	4.06	2.80	485	16	[14]
MIL-142A	5.32	3.82	1300	13.7	[15]
JLU-Liu22	4.15	3.30	271.5	14.4	[16]

Table S4. Comparison of C3/C2 adsorption capacity and C_2H_6/CH_4 (50/50) and C_3H_8/CH_4 (50/50) selectivities of some reported materials (298 K, 1 bar).

^a IAST selectivity under the condition of equimolar binary mixtures at 298 K and 100 kPa.

^b Gas adsorption uptake at 298 K and 100 kPa.

MOFs	C3H8 uptake at 5kPa (mmol g ⁻¹)	C2H6 uptake at 10 kPa (mmol g ⁻¹)	C3H8/CH4 (5:85) Selectivity ^a	C2H6/CH4 (10:85) Selectivity ^a	Ref
CuIn(3-ain) ₄	2.92	2.71	945	99	This work
CuIn(ina)4	3.09	2.11	1164	32	This work
ZUL-C2	2.08	2.27	741	82	[5]
ZUL-C1	2.17	1.85	158	28	[5]
Ni(TMBDC)(DABCO)0.5	3.37	2.93	274	29	[7]
BSF-2	1.13	0.62	681	25	[9]
NKM-101	1.85	1.82	189.66	18.19	[11]
JLU-Liu40	2.14	0.76	170.36	16.96	[12]
Ni(HBTC)(bipy)	4.52	1.5	317.5	16.9	[13]
JLU-Liu22	2.12	1.00	144.89	5.5	[16]
MOF-303	3.38	1.82	5114	26	[17]
SNNU-Bai69	1.33	0.66	214.4	25.3	[18]
TIFSIX-Cu-TPA	2.33	1.01			[19]
CMOM-7	2.71	1.14	151.4	17.1	[20]
0.3Gly@HKUST-1	4.13	1.10	—		[21]

Table S5. Comparison of C_2H_6 and C_3H_8 uptake at low pressure and IAST selectivity towards gas mixtures of C_2H_6/CH_4 (10/85) and C_3H_8/CH_4 (5/85) selectivities of some reported materials (298 K, 1 bar).

^a IAST selectivity under the condition of equimolar binary mixtures at 298 K and 100 kPa.

References

- 1. L. Yang, Q. Gao, Y. M. Zhang, R. H. Wang and L. Z. Chen, Efficient C₂H₆/C₂H₄ adsorption separation by a microporous heterometal-organic framework, *J. Colloid Interf Sci.*, 2023, **652**, 1093-1098.
- 2. L. P. Zhang, G. W. Guan, Y. T. Li, H. R. Liu, S. T. Zheng, Y. Jiang, R. Bai and Q. Y. Yang, Amino-Functionalized Metal-Organic Frameworks Featuring Ultra-Strong Ethane Nano-Traps for Efficient C₂H₆/C₂H₄ Separation, *Small*, 2024, e2402382.
- 3. A. K. Rappe, K. S. Colwell and C. J. Casewit, Application of a Universal Force-Field to Metal-Complexes, *Inorg. Chem.*, 1993, *32*, 3438-3450.
- 4. B. Delley, From molecules to solids with the DMol³ approach, *J Chem Phys.*, 2000, *113*, 7756-7764.
- 5. J. Y. Zhou, T. Ke, F. Steinke, N. Stock, Z. G. Zhang, Z. B. Bao, X. He, Q. L. Ren and Q. W. Yang, Tunable Confined Aliphatic Pore Environment in Robust Metal-Organic Frameworks for Efficient Separation of Gases with a Similar Structure, *J. Am. Chem. Soc.*, 2022, *144*, 14322-14329.
- L. Lan, N. Lu, J. C. Yin, Q. Gao, F. F. Lang, Y. H. Zhang, H. X. Nie, N. Li and X. H. Bu, Simultaneous extraction of C₃H₈ and C₂H₆ from ternary C₃H₈/C₂H₆/CH₄ mixtures in an ultra-microporous metal-organic framework, *Chem. Eng. J.*, 2023, 476, 146750.
- Y. F. Wu, Z. W. Liu, J. J. Peng, X. Wang, X. Zhou and Z. Li, Enhancing Selective Adsorption in a Robust Pillared-Layer Metal-Organic Framework via Channel Methylation for the Recovery of C2-C3 from Natural Gas, ACS. Appl. Mater. Interfaces, 2020, 12, 51499-51505.
- X. L. Luo, L. B. Sun, J. Zhao, D. S. Li, D. M. Wang, G. H. Li, Q. S. Huo and Y. L. Liu, Three Metal-Organic Frameworks Based on Binodal Inorganic Building Units and Hetero-O, N Donor Ligand: Solvothermal Syntheses, Structures, and Gas Sorption Properties, *Cryst. Growth Des.*, 2015, *15*, 4901-4907.
- 9. Y. B. Zhang, L. F. Yang, L. Y. Wang, X. L. Cui and H. B. Xing, Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons, *J. Mater. Chem. A.*, 2019, *7*, 27560-27566.
- 10. D. M. Wang, T. T. Zhao, Y. Cao, S. Yao, G. H. Li, Q. S. Huo and Y. L. Liu, High performance gas adsorption and separation of natural gas in two microporous metalorganic frameworks with ternary building units, *Chem. Commun.*, 2014, *50*, 8648-8650.
- Y. Qiao, X. Chang, J. Y. Zheng, M. Yi, Z. Chang, M. H. Yu and X. H. Bu, Self-Interpenetrated Water-Stable Microporous Metal-Organic Framework toward Storage and Purification of Light Hydrocarbons, *Inorg. Chem.*, 2021, 60, 2749-2755.
- 12. Q. S. Sun, S. Yao, B. Liu, X. Y. Liu, G. H. Li, X. Y. Liu and Y. L. Liu, A novel polyhedron-based metal-organic framework with high performance for gas uptake and light hydrocarbon separation, *Dalton T.*, 2018, *47*, 5005-5010.
- P. T. Guo, M. Chang, T. G. Yan, Y. X. Li and D. H. Liu, A pillared-layer metal-organic framework for efficient separation of C₃H₈/C₂H₆/CH₄ in natural gas, *Chin. J. Chem. Eng.*, 2022, 42, 10-16.
- Z. Zeng, W. Wang, X. H. Xiong, N. X. Zhu, Y. Y. Xiong, Z. W. Wei and J. J. Jiang, Flexible Microporous Copper(II) Metal-Organic Framework toward the Storage and Separation of C1-C3 Hydrocarbons in Natural Gas, *Inorg. Chem.*, 2021, 60, 8456-8460.
- 15. Y. N. Yuan, H. X. Wu, Y. Z. Xu, D. F. Lv, S. Tu, Y. Wu, Z. Li and Q. B. Xia, Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks, *Chem. Eng. J.*, 2020, *395*, 125057.

- 16. D. M. Wang, B. Liu, S. Yao, T. Wang, G. H. Li, Q. S. Huo and Y. L. Liu, A polyhedral metal-organic framework based on the supermolecular building block strategy exhibiting high performance for carbon dioxide capture and separation of light hydrocarbons, *Chem. Commun.*, 2015, *51*, 15287-15289.
- 17. S. K. Xian, J. J. Peng, H. Pandey, T. Thonhauser, H. Wang and J. Li, Robust Metal-Organic Frameworks with High Industrial Applicability in Efficient Recovery of C₃H₈ and C₂H₆ from Natural Gas Upgrading, *Engineering-Prc*, 2023, *23*, 56-63.
- M. Ding, Q. Wang, H. T. Cheng and J. F. Bai, Synthesis, structure and highly selective C₃H₈/CH₄ and C₂H₆/CH₄ adsorption of a (4,8)-c ternary flu-metal-organic framework based upon both [Sc₄O₂(COO)₈] and [Cu₄OCl₆] clusters, *Crystengcomm*, 2022, 24, 2388-2392.
- 19. Y. X. Chen, Y. J. Jiang, J. H. Li, X. H. Hong, H. F. Ni, L. Y. Wang, N. Ma, M. M. Tong, R. Krishna and Y. B. Zhang, Optimizing the cask effect in multicomponent natural gas purification to provide high methane productivity, *AIChE J.*, 2024, *70*, e18320.
- C. H. Deng, L. Zhao, M. Y. Gao, S. Darwish, B. Q. Song, D. Sensharma, M. Lusi, Y. L. Peng, S. Mukherjee and M. J. Zaworotko, Ultramicroporous Lonsdaleite Topology MOF with High Propane Uptake and Propane/Methane Selectivity for Propane Capture from Simulated Natural Gas, *ACS Mater. Lett.*, 2023, *6*, 56-65.
- 21. Y. F. Wu, Y. W. Sun, J. Xiao, X. Wang and Z. Li, Glycine-Modified HKUST-1 with Simultaneously Enhanced Moisture Stability and Improved Adsorption for Light Hydrocarbons Separation, *ACS Sustainable Chem. Eng.*, 2019, *7*, 1557-1563.