Supporting Information

Brønsted base tuning the local reaction environment to enhance neutral

water oxidation

Mei Han^a, Kangning Liu^a, Hongyan Liang^{a*}, Yongchang Liu^{a*}

^a State Key Laboratory of High-Performance Roll Materials and Composite Forming, School of

Materials Science and Engineering, Tianjin University, Tianjin 300350, China

* Corresponding authors.

E-mail: ycliu@tju.edu.cn (Y.L.); hongyan.liang@tju.edu.cn (H.L.)

1. Experimental section

1.1 Reagents and materials

Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O), Ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O), Carbamide (CH₄N₂O), Potassium silicate (K₂SiO₃), Methanol (CH₃OH), Ethanol absolute (C₂H₆O) and Milli-Q ultrapure water (> 18 M Ω ·cm).

1.2 Synthesis of catalysts

A piece of commercial nickel foam (2 cm \times 3 cm) was cleaned with ethanol absolute and ultrapure water for 15 min, respectively. The 2.25mmol Ni(NO₃)₂·6H₂O and 0.75 mmol Fe(NO₃)₃·9H₂O were dissolved in 60 mL water, and the clean nickel foam was then immersed in this solution. Afterward, the mixture was transferred into a 100 mL Teflon-lined autoclave. The autoclave was sealed and heated at 120 °C for 10 h in an electric oven. The sample was washed with deionized water several times and dried in a vacuum drying oven (60°C, 2h). Through the above operations, pretreated NiFe(OH)_x can be obtained. Electrochemical adsorption of SiO₃^{2–} experiments using a three-electrode system were carried out in a series of K₂SiO₃ solutions with varying concentrations (0.2 M, 0.5 M and 1.0 M). The NiFe(OH)_x was used as the working electrode, platinum foil was used as the counter electrode, and Ag/AgCl was used as the reference electrode. The time and voltage were 120 s and 1V, respectively. The NiFe(OH)_x-SiO₃^{2–} sample was obtained after electrochemical adsorption. Based on the varying concentrations of the K₂SiO₃ electrolyte, the samples were sequentially labeled as NiFe(OH)_x-0.2SiO₃^{2–}, NiFe(OH)_x-0.5SiO₃^{2–} and NiFe(OH)_x-1.0SiO₃^{2–}.

1.3 Physicochemical characterization

The morphologies of the synthesized catalysts were characterized by field-emission scanning electron microscopy (SEM) (Hitachi S-4800) and transmission electron microscopy (TEM) (JEM-2100F). The crystal structure and elemental distribution were examined by powder X-ray diffraction (XRD) (Bruker D8) and energy-dispersive X-ray spectroscopy (EDS), respectively. The chemical states and surface composition information were analyzed by X-ray Photoelectron Spectroscopy (XPS) (AXIS SUPRA). The surface intermediates and phase changes during the reaction are detected by a Raman laser spectrometer (Renishaw inVia).

1.4 Electrochemical Measurements

The electrochemical experiments were carried out with the three-electrode system connected to the electrochemical workstation (Autolab PGSTAT302N). The working electrode was NiFe(OH)_x- SiO_3^{2-} (0.5 cm × 0.5 cm), the reference electrode was Ag/AgCl electrode, the counter electrode was Pt foil and the electrolyte was 0.5 M saturated KHCO₃. The linear sweep voltammetry (LSV) with a

scan rate of 1 mV s⁻¹ was used to evaluate the catalytic activity. All measured potentials were *vs* Ag/AgCl which are converted to a reversible hydrogen electrode (RHE) according to the Nernst equation ($E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.197$). Tafel slopes were derived by plotting overpotential against log (current density) from the linear region of the LSV polarization curves. The value was calculated following the Tafel equation of $y = b \times \log j + a$, where y is the overpotential, b is the Tafel slope and j is the current density. The electrochemical impedance spectroscopy (EIS) measurements were carried out in a static solution at a potential of 1.7 V *vs*. RHE, with a frequency range from 0.1 Hz to 100 kHz. The long-term stability test is carried out by the chronopotentiometry method with a 0.025A setting current.

1.5 The in-situ Raman measurements

In-situ Raman spectra were collected using a three-electrode electrochemical system. The NiFe(OH)x-SiO₃²⁻ and control samples were used as the working electrodes (reaction area ~1 cm²), with Pt foil as the counter electrode and Ag/AgCl as the reference electrode, and 0.5 M saturated KHCO₃ as the electrolyte. *In-situ* Raman measurements were conducted using a confocal Raman spectrometer (Alpha300, WITec) equipped with a 514 nm laser source. The surface intermediates formed during the reaction were detected using a Raman spectrometer (Renishaw inVia). Electrochemical experiments were performed using an electrochemical workstation (CHI760E) with a voltage scan range from 1.3 V to 2.1 V *vs.* RHE.

1.6 Electrochemical measurements in the AEM electrolyzers

The AEM electrolyzer is composed of bipolar plates with serpentine flow channels. The internal assembly includes a cathode electrode (Pt/C, loading mass of 1 mg cm⁻²), an anode NiFe(OH)_x-SiO₃²⁻

electrode, and an anion exchange membrane (Sustainion® X37-50). The assembly of the AEM electrolyzer does not require additional processes such as heating or pressing. For comparison, a commercial RuO₂ catalyst was coated onto nickel foam and used as the anode, with a loading mass of 1 mg cm⁻². The electrode area of the water electrolyzer is 0.25 cm². The electrolyte consists of 0.5 M saturated KHCO₃, which is circulated at a flow rate of 50 mL min⁻¹ using a peristaltic pump. The performance of the AEM electrolyzer was studied in neutral electrolytes at temperatures of 25 ± 2 °C and 60 ± 2 °C. Polarization curves were measured using linear sweep voltammetry (LSV) at a scan rate of 10 mV s⁻¹, and durability tests were conducted using potentiostatic methods.

2. Supplementary Figures

Fig. S1 The SEM image of the nickel foam surface with $NiFe(OH)_x$ -SiO₃²⁻.

Fig. S2 (a) The SEM, (b) TEM and (c) STEM images and the corresponding EDS elemental mapping of Ni, Fe, Si, O for NiFe(OH)_x-SiO₃^{2–} after OER.

Fig. S3 Cyclic voltammograms at various scan rates of 20, 40, 60,80 and 100 mV s⁻¹ for (a) $NiFe(OH)_x$ (b) $NiFe(OH)_x$ -0.2SiO₃²⁻ (c) $NiFe(OH)_x$ -0.5SiO₃²⁻ and (d) $NiFe(OH)_x$ -1.0SiO₃²⁻. (e) The differences between capacitive currents at the center of selected potential window as a function of scan rate for catalysts.

Fig. S4 The polarization curves normalized to the electrochemical active surface area (ECSA) of NiFe(OH)_x, NiFe(OH)_x- $0.2SiO_3^{2-}$, NiFe(OH)_x- $0.5SiO_3^{2-}$ and NiFe(OH)_x- $1.0SiO_3^{2-}$.

Fig. S5 The linear sweep voltammetry (LSV) polarization curves normalized to the catalyst mass of $NiFe(OH)_x$, $NiFe(OH)_x$ -0.2SiO₃²⁻, $NiFe(OH)_x$ -0.5SiO₃²⁻ and $NiFe(OH)_x$ -1.0SiO₃²⁻.

Fig. S6 (a) CVs of NiFe(OH)_x-SiO₃²⁻ at different scan rates increasing from 10 to 80 mV s⁻¹. (b) Oxidation peak current versus scan rate plot of NiFe(OH)_x-SiO₃²⁻.

Fig. S7 Plot of turnover frequency (TOF) vs. overpotential for $NiFe(OH)_x$ -SiO₃²⁻.

Fig. S8 High-resolution Raman of NiFe(OH)_x and NiFe(OH)_x-SiO₃²⁻ after the reaction.

Fig. S9 The FTIR spectra of $NiFe(OH)_x$ -SiO_{3²⁻} before and after OER.

Fig. S10 The XPS spectra of O 2p for NiFe(OH)_x and NiFe(OH)_x-SiO₃²⁻ after OER.

Fig. S11 The XPS spectra of Ni 2p, Fe 2p and Si 2p for NiFe(OH)_x-SiO₃²⁻ before and after OER.

Fig. S12 Chronopotentiometry test of the NiFe(OH)_x ||Pt/C electrocatalyst at 1.0 A cm⁻² in the AEM electrolyzer.

3. Supplementary Notes

Note S1. Calculations of AEM electrolyzer efficiency

Electrolyzer efficiency:

- 1) H₂ production rate@1.0 A cm⁻² = (j A cm⁻²) (1 e⁻/1.602×10⁻¹⁹ C) (1 H₂/2 e⁻) = 5.18×10^{-6} mol H₂ cm⁻² s⁻¹
- 2) LHV of $H_2 = 2.42 \times 10^5$ J mol⁻¹ H_2
- 3) H₂ power out = $(5.18 \times 10^{-6} \text{ mol cm}^{-2} \text{ s}^{-1}) \times (2.42 \times 10^{5} \text{ J mol}^{-1}) = 1.254 \text{ W cm}^{-2}$
- 4) Electrolyzer Power NiFe(OH)_x-SiO₃^{2−}||Pt/C@1.0 A cm⁻² (60°C) =1.0 A cm⁻²×1.81 V =1.81 W cm⁻²
- 5) Efficiency of NiFe(OH)_x-SiO₃²⁻||Pt/C = (H₂ Power Out) / (Electrolyzer Power) = 1.254 W cm⁻² $^{2}/1.81$ W cm⁻² =69.2%
- 6) Efficiency of $\text{RuO}_2 || \text{Pt/C} = (\text{H}_2 \text{ Power Out}) / (\text{Electrolyzer Power}) = 1.254 \text{ W cm}^{-2}/1.97 \text{ W cm}^{-2}$ =63.6%

Note S2. Calculations of H_2 cost in AEMWEs.

*Price per gasoline-gallon equivalent (GGE) H*₂*:*

= 1GGE H₂ / H₂ production rate \times Electrolyzer power \times Electricity bill

The cost of NiFe(OH)_x-SiO₃²⁻||Pt/C = 0.997 kg / ($5.18 \times 10^{-6} \text{ mol H}_2.\text{cm}^{-2} \text{ s}^{-1} \times 2 \text{ kg/mol}$) × 1.81 W cm⁻²×\$ 0.02/kW h = \$ 0.96/GGE H₂