Supplementary Information (Sl) for Inorganic Chemistry Frontiers.
This journal is © the Partner Organisations 2025

Supplementary Information for

Polyhedral oligomeric silsesquioxane difluoroboron complexes as cooperative

octo-site catalysts for the photooxidation of sulfides to sulfoxides

Mateusz Janeta*?, Stawomir Szafer?

%Faculty of Chemistry, University of Wroctaw, F. Joliot-Curie 14, 50-383 Wroctaw (Poland).

S1



Table of Contents

Section 1. EXPerimental SECHION ........cvcviiiiiiee e re e nre s 3
IVTBEETTAIS ...t b bbbttt bbb bbbt 3
Characterization MELNOAS ..........oiieiiiie e enes 3
SYNENESES ...t bbbttt 5
Calculation of fluorescence quantum Yield .........cccooveiieiiiieiieece s 9
Detection of Y0, production in SOIULION .............cccveceevriceeiieeeeee et 9
Singlet oxygen (102) qUANTUM YIElUS .........cccoveeviiiieiiecieicee et 9
Quantum efficiency photooxidation of thioanisole..............cccciiiiiiiii 9
Reactive oxygen species (ROS) trapping eXperiment............cccovveveeveeiieenesvieseesieeseeseesnens 10

Photocatalytic aerobic oxidation of thioanisole in the presence of POSS-imine-BF, (POSS-
tert-BF2, POSS-sal-BF2, POSS-NPIE-BF2) .....ccooviiiiiiiiicree e 11
Photocatalytic aerobic oxidation of thioanisole in the presence of prop-imine-BF. (prop-tert-

BF2, prop-sal-BF2 or prop-nNpht-BF2) ........cccciiiiiiiiiiieiecesese e 11
Substrate scope for photocatalytic oxidation of various sulfides to sulfoxides in the presence
(o O R ST (=] ] = OSSPSR 11
Recycling of PhotOCALAIYST .........cviiiiiiii e 12
SECHION 2. UV-VIS SPECIIA......iviiii ettt ettt sttt ste e te e sbe e e e saeeste e e e sreenreans 13
Reactive oxygen species (ROS) trapping eXperiment............cccocveveeieeiieiesiieseesie e, 13
Detection of 10, production in SOIULION ............cccevrueieieceeicceeeece e, 16
Singlet Oxygen (102) QUANTUM YIS ........coveuivieeieiceeiecce e 19
Section 3. NMR spectra of photocatalytic aerobic oxidation of thioanisole............................ 20
Section 4. CharaCterization datA...........coceeeieriiiiesieiee e 25
POSSEIT-BI2 ..t ee e 25
POSS-SAI-BF2 ...ttt re e 32
POSS-NPNE-BI2 .ot ens 39
PrOP-TEIT-BI2 ..ttt st e e 45
PIOP-SAI-BI2 .. e 47
PrOP-NPIE-BR 2. 50
Section 5. Characterization data of POSS-tert-BF; after recycling of photocatalyst............... 53
RETEIBNCES: ...ttt b e st h ettt e b e et e e ne e e nres 55

S2



Section 1. Experimental section
Materials

All reactions were conducted under N2 by using standard Schlenk techniques. N,N-
Diisopropylethylamine (99%, Sigma-Aldrich), boron trifluoride diethyl etherate (98%, Alfa
Aesar), quinine sulfate (Sigma Aldrich), methylene blue, 9,10-diphenylanthracene (99%,
Sigma-Aldrich), methyl p-tolyl sulfide (99%, Sigma Aldrich), 3-bromothioanisole (97%, Sigma
Aldrich), thioanisole (99%, Sigma Aldrich), 4-(methylthio)benzonitrile (98%, Sigma Aldrich)
3,3"-dimethylbenzidene (for analytical purpose), 1,10-phenanthroline (>99%, Sigma Aldrich),
Na:SOs (99%, Chempur), KI (Chempur), NaNs, 1,4-diazabicyklo[2.2.2]oktan, 1,4-
benzoquinone, methanol, were used as received. Ks[Fe(C204)3]-3H20 was recrystallized from
the water before use. Dichloromethane (99%, Chempur) and triethylamine were purified via the

mBraun Purification System.

Known compounds

Octa(3-aminopropyl)silsesquioxane hydrochloride,* N-n-propyl-3,5-di-tert-butyl-
salicylaldimine, N-n-propyl-salicylaldimine, 2-hydroxy-N-n-propyl-1-naphthaldimine,
compounds POSSS-1,2 POSS-2 and POSS-3% were prepared using the methods based on a

previously reported procedure.

Chart S1. Structures of POSS ligands.

Characterization methods

14, 1B, 3C, and ?°Si NMR spectra were recorded using Bruker Avance 111 500 MHz or
Bruker Avance 11l 600 MHz spectrometer equipped with broadband inverse gradient probe
heads. Spectra were referred to the residual solvent signals ((CD3).SO, 2.50; CDCls, 7.26;
(*3CH3)2S0, 39.52; 3CDCls, 77.16 ppm) as an internal reference. For 2°Si NMR, the chemical
shifts were referenced to tetramethylsilane (TMS) (8 = 0.00 ppm), and for !B, the chemical
shifts were referenced to 15% BFs-Et.0 in CDCls (external reference, § = 0 ppm). °F NMR
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spectra were recorded using a Jeol INM-ECZR 500 MHz spectrometer. For °F NMR, the
chemical shifts were referenced to 0.05% trifluorotoluene in CDCI3 (external reference, 6 = -
63.72 ppm). The DRIFT spectra were recorded at room temperature using a Nicolet iS10 FT-
IR (Thermo Scientific) spectrometer equipped with a Pike EasiDiff DRIFTS accessory. The
spectra of samples are in the 4000 — 400 cm™! range and are averaging from 128 scans and
include atmospheric correction. The spectral resolution was 4 cm™'. MALDI mass spectra were
recorded on a Bruker Daltonics ultrafleXtreme or on a JMSS3000 SpiralTOF™-plus 2.0
MALDI-TOF spectrometer. Elemental analysis (C, H, and N) was performed using a VVario EL
Il elemental analyser. Content of B had been determined by Inductively Coupled Plasma
optical emission spectrometer. ICP measurements was performed using a ARL spectrometer
model 3410 (Fisons Instruments). Before analysis a weighted sample was digested in 5 mL of
piranha solution, left for 2 days and next diluted to 10 mL with distilled water.
Thermogravimetric and differential thermal analyses (simultaneous TG-DTA) were recorded
on a Setaram SETSY'S 16/18 instrument. Samples for thermogravimetric characterization were
placed in alumina crucibles under synthetic air (O2:N. = 40:60) at heating rate 10 Kxmin™.
Absorption spectra in the UV-vis range were measured using a Cary 60 or JASCO v-700
spectrometer equipped with a temperature controller. Measurements were performed at 293 K
on a 3.5 mL samples in a quartz cuvette with a path length of 10 mm. Emission measurements
were performed using an Edinburgh Instruments FLSP 920 spectrofluorometer equipped with
Hamamatsu R-928 photomultiplier and a 450 W Xe lamp as an excitation source. These spectra
were measured at 295 K in quartz cuvettes. The emission spectra were corrected for the
instrument response. All measurements were conducted using appropriate optical filters.
Photooxidation experiments were carried out in a cylindrical quartz reactor. A medium pressure
mercury lamp TQ 150 (Heraeus, Germany) with a power of 150 W and radiation flux @ 300-
600nm: 24.8W was positioned approximately 5 cm from the tube. Lamp was placed in a cooler

which was supplied with water during the experiments.
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Syntheses

Preparation of the POSS-tert-BF2. POSS-1 (1.00 g, 0.382 mmol) was dissolved in dry
dichloromethane (40 mL). Then N,N-diisopropylethylamine (1.33 mL, 7.66 mmol, 20 equiv.)
was added and the resulting mixture was stirred for 10 min at 40 °C, after which time boron
trifluoride diethyl etherate (0.962 mL, 7.66 mmol, 20 equiv.) was added dropwise. The final
mixture was stirred for 12h at 40 °C under nitrogen atmosphere and then cooled to room
temperature. Dichloromethane (150 mL) was added and the crude mixture was washed with
brine (3 x 100 mL) and then with water (100 mL). The organic layer was separated, dried over
MgSOs, and evaporated to dryness. The residue was filtered through a short plug of silica gel
with DCM. Solution was concentrated and then precipitated with MeOH to give the expected
product in an 87% yield (1.00 g) as a pale yellow solid. *H NMR (500 MHz, CDCls) & 8.38 (br
s, 8H, CHN), 7.62 (d, J = 2.4 Hz, 8H, 4-Ar-CH), 7.33 (d, J = 2.4 Hz, 8H, 6-Ar-CH), 3.71 (t, J
=7.2 Hz, 16H, CH2N), 2.01- 1.94 (m, 16H, -CH>-), 1.44 (s, 72H, tBu), 1.29 (s, 72H, tBu), 0.69
—0.66 (m, 16H, SiCH,); *C NMR (126 MHz, CDCls) & 165.8 (C=N), 156.1 (Cpn-0), 142.2
(ArC-CMes), 138.7 (ArC-CMes), 132.9 (ArC-H), 126.0 (ArC—H), 115.6 (C), 56.8 (CH2N),
35.2 (CMes), 34.4 (CMe3), 31.4 (—(CHz3)3), 29.5 ((CHz3)s), 24.1 (-CH2-), 9.1 (SiCH.); 1B NMR
(160 MHz, CDCls) 6 0.49 (1Jgr = 16 Hz, BF2); 1°F NMR (470 MHz, CDCls): § -136.8 (dd, 2Jer
= 35.3 Hz, Jrs = 14.1 Hz, 2F); Si NMR (99 MHz, CDCls) & -67.1; DRIFT (KBr): v = 2957
(m, ve-h), 2910 (W, vcr), 2872 (w, ve-H), 1644 (s, ve=n), 1570 (m, ve-r), 1468 (w), 1308 (m, vB-
o), 1192 (m), 1150 (M, Vasymsr2), 1110 (s, vsi-osi), 1055 (s, ve-N), 939 (W, Vsymsr2); MS
(MALDI) m/z calcd for CiasaH216BsF16NsO20SisNa: 3017.4762 [M+Na]*; found: 3017.4677;
C144H216BgF15NgO20SigN: 2974.4880 [M-F]+; found: 2974.4844; elemental analysis calcd (%)
for C144H216BgF16N8O20Sig (2994.48): C, 57.76; H, 7.27; N, 3.74; found: C, 57.80; H, 7.42; N,
3.81; UV—vis (dichloromethane, 293 K) A [nm]: 271, 367; decomposition onset temperature
(Ts%, 10 °C-min™): 350 °C (air); temperature of decomposition to SiO, (determined by TGA
measurement, air, 10 °C-mint): 598 °C; ceramic yield (at 900 °C): 16.40% (calced 15.97%).

Preparation of the POSS-sal-BF2. POSS-2 (1.00 g, 0.583 mmol) was dissolved in dry
dichloromethane (40 mL). Then N,N-diisopropylethylamine (2.03 mL, 11.7 mmol, 20 equiv.)
was added and the resulting mixture was stirred for 10 min at 40 °C, after which time boron
trifluoride diethyl etherate (1.47 mL, 11.7 mmol, 20 equiv.) was added dropwise. The final
mixture was stirred for 2h at 40 °C under nitrogen atmosphere and then cooled to room
temperature. Dichloromethane (60 mL) was added, and the crude mixture was washed with
water (3 x 100 mL). The organic layer was separated, dried over MgSQO4 and evaporated to

dryness. The residue was purified by recrystallization from DCM to give the expected product
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in a 90% yield (1.10 g) as a pale yellow solid. *H NMR (500 MHz, DMSO-ds) & 8.78 (br s, 8H,
CHN), 7.59 (td, J = 7.0 Hz, J = 1.7 Hz, 8H, Ar-CH), 7.58 (dd, J = 7.8 Hz, J = 1.6 Hz, 8H, Ar-
CH), 7.00 (td, J = 7.9 Hz, J = 0.8 Hz 8H, Ar-CH), 6.96 (d, J = 8.4 Hz, 8H, Ar-CH), 3.67 (t, J =
7.2 Hz, 16H, CH2N), 1.99 — 1.72 (m, 16H, ~CH,-), 0.68 (t, 16H, SiCHy); *C NMR (126 MHz,
DMSO-dg) 6 166.3 (C=N), 157.7 (Cpn-O), 137.7, 132.4, 119.9, 118.0, 115.4 (5C, ArC), 55.1
(CH2N), 22.8 (-CHz-), 8.2 (SiCH>); !B NMR (160 MHz, DMSO-ds) & 0.39 (1Jgr = 16 Hz, BF»);
F NMR (470 MHz, DMSO-de): & -131.4 (dd, 2Jrr = 33.2 Hz, 1Jes = 14.2 Hz, 2F); 2°Si NMR
(99 MHz, CDCl3) 6 -67.1; DRIFT (KBr): v = 2938 (w, vc-H), 2890 (w, vc-H), 1648 (s, ve=n),
1564 (m, vs-F), 1485 (m), 1466 (w), 1415 (w), 1312 (m, ve-0), 1135 (M, Vasym BF2), 1116 (S, vsi-
o-si), 1054 (s, ven), 938 (W, Vsym Br2); MS (MALDI) m/z calcd for CgoHgsBsF16NsO20Sis:
2096.4824 [M]*; found: 2096.4937; CgoHgsB7F12NgO20Sis: 2009.4789 [M-BF4]*; found:
2009.4713; elemental analysis calcd (%) for CgoHgsBsF16NsO20Sig (2096.75): C, 45.83; H, 4.23;
N, 5.34; found: C, 45.78; H, 4.25; N, 5.30; UV—vis (dichloromethane, 293 K) A [nm]: 281, 348;
decomposition onset temperature (Tso, 10 °C-min): 335 °C (air), 344 °C (N2); temperature of
decomposition to SiO, (determined by TGA measurement, air, 10 °C-mint): 542 °C; ceramic
yield (at 900 °C): 26.17% (calcd 22.93%).

Preparation of the POSS-npht-BF2. POSS-3 (1.00 g, 0.473 mmol) was dissolved in dry
dichloromethane (40 mL). Then N,N-diisopropylethylamine (1.65 mL, 9.46 mmol, 20 equiv.)
was added and the resulting mixture was stirred for 10 min at 40 °C, after which time boron
trifluoride diethyl etherate (1.19 mL, 9.46 mmol, 20 equiv.) was added dropwise. The final
mixture was stirred for 2h at 40 °C under nitrogen atmosphere and then cooled to room
temperature. Dichloromethane (60 mL) was added, and the crude mixture was washed with
water (3 x 100 mL). The organic layer was separated, dried over MgSO4, and evaporated to
dryness. The residue was filtered through a short plug of silica gel with DCM. Solution was
concentrated and then precipitated with MeOH to give the expected product in an 83% vyield
(0.975 g) as a pale yellow solid. *H NMR (500 MHz, DMSO-dg) & 9.47 (br s, 8H, CHN), 8.26
(d, 3Jun = 8.5 Hz, 8H, Nph-H), 8.11 (d, J = 9.1 Hz, 8H, Nph-H), 7.86 (d, 3Jun = 8.5 Hz, 8H,
Nph-H), 7.53 (t, 3Jun = 7.6 Hz, 8H, Nph-H), 7.40 (t, 3Jun = 7.6 Hz, 8H, Nph-H), 7.03 (d, 3Jun
=9.1 Hz, 8H, Nph-H), 3.76 (t, 3Jun = 6.5 Hz, 16H, CH2N), 1.97-1.91 (m, 16H, -CH>-), 0.74 (t,
3Jun = 8.5 Hz, 16H, SiCH,); *C{*H} NMR (126 MHz, DMSO-dg) & 162.0 (S, Cnpr-O), 159.5
(s, C=N), 139.1, 131.1, 128.9, 128.7, 127.4, 124.5, 120.5, 119.4, 107.6 (9C, Nph-C), 55.4 (s,
CH2N), 23.2 (s, CH>), 8.3(s, SiCH2); !B NMR (160 MHz, DMSO-ds) § 0.39 (*Jer = 16 Hz,
BF2); °F NMR (470 MHz, CDCls): § -137.2 (dd, 2Jrr = 32.5 Hz, 1Jrs = 13.9 Hz, 2F); 2°Si NMR
(99 MHz, DMSO-de) 6 -67.0; DRIFT (KBr): v = 2935 (w, vc-H), 2886 (w, vc-H), 1636 (S, ve=n),
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1561 (m, ve-r), 1485 (m), 1470 (w), 1347 (w), 1312 (m, ve-0), 1207 (m), 1166 (M, Vasym BF2),
1116 (s, vsi-o-si), 1054 (s, ve-N), 826 (W, Vsym Br2); UV—vis (dichloromethane, 293 K) A [nm]:
271, 325, 355, 372; MS (MALDI) m/z calcd for C112H104BgF16NgO20Sis: 2496.6089 [M ]7;
found: 2495.6289; elemental analysis calcd (%) for C112H104BgF16NgO20Sis (2496.60): C, 53.87;
H, 4.20; N, 4.49; found: C, 53.78; H, 4.02; N, 4.37; decomposition onset temperature (Tso,
10 °C-mint): 339 °C (air), 340 °C (N_); temperature of decomposition to SiO; (determined by
TGA measurement, air, 10 °C-min™): 595 °C, ceramic yield (at 900 °C): 22.84% (calcd
19.25%).

Preparation of the prop-tert-BF2. N-n-propyl-3,5-di-tert-butyl-salicylaldimine (2.41 g,
11.28 mmol) was dissolved in dry dichloromethane (80 mL) then N,N-diisopropylethylamine
(4.914 mL, 28.21 mmol, 2.5 equiv.) was added, the resulting mixture was stirred for 10 min at
40 °C after which boron trifluoride diethyl etherate (3.543 mL, 28.21 mmol, 2.5 equiv.) was
added dropwise. The final mixture was stirred for 2h at 40 °C under a nitrogen atmosphere and
then cooled to room temperature. Dichloromethane (60 mL) was added, and the crude mixture
was washed with water (3 x 100 mL). The organic layer was separated, dried over Na;SO4 and
evaporated to dryness. The residue was purified by column chromatography (DCM) to give the
expected product in a 85% yield (3.50 g) as a yellow solid. *H NMR (500 MHz, CDCls) § 8.16
(brs, 1H, CHN), 7.65 (d, J = 2.4 Hz, 1H, ArC-H), 7.17 (d, J = 2.4 Hz, 1H, ArC-H), 3.71 (t, J =
7.3 Hz, 2H, NCH?>), 2.08 — 1.78 (m, 2H, —CH2-), 1.46 (s, 9H, —(CH3)3), 1.31 (s, 9H, —(CHz3)3),
1.01 (t, J = 7.4 Hz, 3H, CHs); *3C NMR (126 MHz, CDCls3) § 165.7 (C=N), 156.0 (Ph-0), 142.0
(ArC-CMes), 138.6 (ArC-CMes), 132.8 (ArC-H), 125.9 (ArC-H), 115.4 (C), 56.7 (NCH>),
35.1 (CMes), 34.3 (CMes), 31.3 ((CH3)3), 29.4 (—(CHs)s), 24.0 (-CH2-), 9.0 (CHs); ''B NMR
(160 MHz, CDCls) § 0.50 (t, 1Jsr = 17.6 Hz, BF2); °F NMR (470 MHz, CDCls): § -139.3 (q,
1Jrg = 18.0 Hz, 2F); DRIFT (KBr): ¥ = 2959 (m, vc-h), 2905 (W, ve-H), 2869 (W, ve-H), 1647 (s,
vean), 1571 (m, vef), 1477 (w), 1338 (m, ve-0), 1101 (M, Vasym Br2), 1055 (s, ve-n), 947 (W, Vsym
BF2).

Preparation of the prop-sal-BF2. N-n-propyl-salicylaldimine (2.00 g, 11.28 mmol) was
dissolved in dry dichloromethane (80 mL) and N,N-diisopropylethylamine (4.914 mL, 28.21
mmol, 2.5 equiv.) was added. The resulting mixture was stirred for 10 min at 40 °C after which
time boron trifluoride diethyl etherate (3.543 mL, 28.21 mmol, 2.5 equiv.) was added dropwise.
The final mixture was stirred for 2h at 40 °C under a nitrogen atmosphere and then cooled to
room temperature. Dichloromethane (60 mL) was added, and the crude mixture was washed
with water (3 x 100 mL). The organic layer was separated, dried over Na,SO4 and evaporated

to dryness. The residue was purified by column chromatography (DCM) to give the expected
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product in a 88% yield (2.10 g) as a yellow solid. *H NMR (500 MHz, CDCls) & 8.31 (br s, 1H,
CHN), 7.52 (t, 3Ju-n = 7.8 Hz, 2H, ArC-H ), 7.42 (dd, 3Ju-n = 7.7 Hz, 1H, ArC-H), 6.99 (d, 3Jn-
n = 8.4 Hz, 1H, ArC-H), 6.92 (t, 3Jun = 7.9 Hz, 1H, ArC-H), 3.69 (t, 3Jun = 7.3 Hz, 2H,
NCH?>), 1.87 (m, 2H, -CH2-), 0.95 (t, 3Js+ = 7.4 Hz, 3H, CH3); °C NMR (126 MHz, CDCls)
d 164.5 (C=N), 158.8 (Cpn-0O), 138.0 (ArC—H), 131.7 (ArC-H), 120.1 (ArC-H), 118.9 (ArC-
H), 115.4 (C), 55.9 (NCHy), 23.2 (-CH2-), 11.1 (CH3); *B NMR (160 MHz, CDCls) § 0.34 (t,
1Jgr = 16.4 Hz, BF,); F NMR (470 MHz, CDCls): & -134.7 (q, YJre = 14.5 Hz, 2F); DRIFT
(KBr): v = 2966 (w, vc-H), 2883 (w, vc-H), 1653 (S, ve=n), 1566 (M, ve-F), 1487 (m), 1467 (w),
1420 (w), 1316 (m, ve-0), 1136 (M, Vasym Br2), 1058 (S, ve-n), 950 (W, Vsym BF2).

Preparation of the prop-npht-BF2. 2-Hydroxy-N-n-propyl-1-naphthaldimine (3.11 g, 11.28
mmol) was dissolved in dry dichloromethane (80 mL) and N,N-diisopropylethylamine (4.914
mL, 28.21 mmol, 2.5 equiv.) was added. The resulting mixture was stirred for 10 min at 40 °C
after which time boron trifluoride diethyl etherate (3.543 mL, 28.21 mmol, 2.5 equiv.) was
added dropwise. The final mixture was stirred for 2h at 40 °C under a nitrogen atmosphere and
then cooled to room temperature. Dichloromethane (60 mL) was added and the crude mixture
was washed with water (3 x 100 mL). The organic layer was separated, dried over Na;SO4 and
evaporated to dryness. The residue was purified by column chromatography (DCM) to give the
expected product in a 85% yield (3.10 g) as a yellow solid. *H NMR (500 MHz, CDCls) & 8.90
(m, 1H, CHN), 7.97 (dd, J = 8.7, 4.2 Hz, 2H, ArC-H), 7.78 (dd, J = 8.1, 1.3 Hz, 1H, ArC-H),
7.59 (ddd, J =8.4, 7.0, 1.4 Hz, 1H, ArC-H), 7.43 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H, ArC-H), 7.18
(d, J=9.1 Hz, 1H, ArC-H), 3.85-3.77 (m, 2H, NCH), 2.04 — 1.92 (m, 2H, —-CH2-), 1.05 (t, J
=7.4Hz, 3H, CHs); *C NMR (126 MHz, CDCl3) § 161.4 (Cnph-O), 159.3 (C=N), 139.6, 131.3,
129.6, 129.2, 128.0, 124.8, 120.5, 119.1, 107.7 (9C, Nph-C), 56.6 (NCH), 23.8 (-CH>-), 11.3
(CH3); B NMR (160 MHz, CDCls) § 0.45 (t, YJsr = 16.4 Hz, BF2); *F NMR (470 MHz,
CDCls): § -138.02 (q, Jrs = 13.6 Hz, 2F); DRIFT (KBr): v = 2966 (W, vc-n), 2936 (W, Vc-H),
2877 (w, vc-H), 1641 (s, ve=n), 1565 (m, ve-r), 1475 (m), 1347 (w), 1312 (m, ve-0), 1208 (m),
1165 (M, Vasym Br2), 1120 (S, vsi-o-si), 1039 (s, ve-n), 823 (W, Vsym BF2).
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Calculation of fluorescence quantum yield

Fluorescence quantum yields were calculated using Equation (1):

I(sample)xOD(ref)xn?(sample) (1)
I(ref)x0D(sample)xn2(ref)

O = Dp(ref) X

where | is the integrated fluorescence intensity, OD is the optical density at the excitation
wavelength, n is the refractive index of the solvent, ref stands for reference standard: quinine
sulfate in 0.1M H2SO4 (®f =0.577).4
Detection of 'O2 production in solution

9,10-diphenylanthracene (DPA) was used as an indicator for detection of O, in solution.
Tested photosensitizer (1.0x107 mol of POSS-imine-BF2 or 1.25x10°® of prop-imine-BF2)
was dissolved in 10 mL of MeOH containing DPA (4.0x10 mol). The mixture was then placed
in a cuvette and irradiated (Herolab NU-15, Lir = 365 nm, intensity 1.30 mW/cm?). The
absorption change of the sample at 391 nm was recorded by the UV-Vis absorption
spectrophotometer.
Singlet oxygen (*O2) quantum yields

The singlet oxygen quantum yield ®(*02) was determined by monitoring the photooxidation
of 9,10-diphenylanthracene (DPA), a well-known 1O scavenger that rapidly reacts to form
colorless oxidized product. It absorbs in the visible region (340-410 nm) and its absorbance
decreases over time as it scavenges 'O.. The singlet oxygen quantum yields were calculated
under low concentration conditions (0.036 mM photosensitizer and 0.15 mM DPA) to minimize
the possibility of 102 quenching of by the photosensitizer. The quantum yields were determined
using a relative method with methylene blue (singlet oxygen quantum yield 52%)° as the

reference dye,® following the equation shown in Equation (1):

m(sample)XF(MB) (2)
m(MB)xF(sample)

D(10;) = ®(10,)ME x

In the equation ®( *0,)M® represents the singlet oxygen quantum yield of methylene blue.

The parameter m is the slope of a plot with a difference in the change in the absorbance of
DPA at 391 nm with the irradiation time. The absorption correction factor, F, is given by the
equation F = 1 — 10°P where OD is the optical density at the irradiation wavelength.
Quantum efficiency photooxidation of thioanisole

The quantum vyield of photooxidation of thioanisole reactions was determined at 298 K
following procedures described in literature.” Thioanisole (25 pL, 0.213 mmol) and the
photocatalyst (0.133 umol of POSS-imine-BF2 or 1.06 pumol prop-imine-BF2, 0.5%mol
loading based on the acceptor site) were added in 6 mL of methanol in a quartz tube. O> was

bubbled through the mixture for 10 min. The tube was then sealed and fitted with an O balloon.
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The reaction mixture was irradiated using a medium pressure mercury vapor lamp (Heraeus TQ
150, 150 W, power densityl00 W/cm?, radiation flux @ 300-600nm: 24.8W) positioned
approximately 5 cm from the tube. After certain time (1-20 min) of irradiation, the solvent was
evaporated. Conversions were calculated by integrating the crude *H NMR ratios of the
substrate and product.

The quantum yield for product formation (®product) IS defined by the number of product
molecules generated divided by the number of photons absorbed by the starting material
(Equation (3).

number of product molecules generated (3)

d =

number of photons absorbed

Potassium ferrioxalate solution in 0.05M H2SO4 (6 mL, 0.15 M) were was placed in a quartz
tube. The reaction mixture was irradiated using a medium pressure mercury vapor lamp
(Heraeus TQ 150, 150 W, power densityl00 W/cm?, radiation flux @ 300-600nm: 24.8W)
positioned approximately 5 cm from the tube. After certain time (1-20 min) of irradiation, 1 mL
of solution was diluted 0.05M H2SO4 to 10 mL. 3 mL of that solution was developed by adding
0.5 mL of a 0.05M sulfuric acid solution containing 0.03M sodium acetate trihydrate and
0.003M 1,10-phenanthroline. After 1 h, the concentration of the samples was determined
spectrometrically at 510 nm.

The photon flux of the lamp used was determined by standard ferrioxalate actinometry, using
Equation (4).8

moleFe2+

photon flux (F) = PVrer

(4)

Where t is the time of irradiation, @ is the quantum yield for Fe?* production in ferrioxalate
actinometry (® =1.01), and f is the frequency.

Reactive oxygen species (ROS) trapping experiment

Reactive oxygen species (ROS) were detected by monitoring the photooxidation of 3,3'-
dimethylbenzidene (DMB). DMB contains two readily oxidized amino groups and can be
converted into a colored product via one electron and two electron oxidation pathways (Scheme
S1). The long-wavelength absorption band of the one-electron oxidation intermediate, which
forms a charge-transfer complex between the diamine (DMB) as the donor and the diimine
dication (DMB?*) as the acceptor, appears at 370 nm and within the range of 550-760 nm, with

a maximum at 650 nm.®
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Tested photosensitizer (1.0x107" mol of POSS-imine-BF2 or 1.25x10°® of prop-imine-BF2)
was dissolved in 10 mL of DCM containing 3,3'-dimethylbenzidene (0.233 g). The solution
was bubbled with oxygen for 5 minutes, placed in a quartz cuvette, and then irradiated with
light (Herolab NU-15, Xirr = 365 nm, intensity 1.30 mW/cm?). After 90 seconds of irradiation,
the UV-Vis spectrum was recorded, revealing an absorption change at 287 nm and the

appearance of a new band at 360 nm, as well as within the range of 550-760 nm.

Photocatalytic aerobic oxidation of thioanisole in the presence of POSS-imine-BF2 (POSS-
tert-BF2, POSS-sal-BF2, POSS-npht-BF2)

Thioanisole (50 pL, 0.425 mmol) and POSS-imine-BF2 (0.266 umol, 0.5%mol loading
based on the single acceptor site) were added in 12 mL of methanol in a quartz tube. O> was
bubbled through the mixture for 10 min. The tube was then sealed and fitted with an O balloon.
The reaction mixture was irradiated using a medium pressure mercury vapor lamp (Heraeus TQ
150, radiation flux ® 300-600nm: 24.8W) positioned approximately 5 cm from the tube. After
40 minutes of irradiation, the solvent was evaporated. Conversions were calculated by
integrating the crude *H NMR ratios of the substrate and product.

Photocatalytic aerobic oxidation of thioanisole in the presence of prop-imine-BF2 (prop-
tert-BF2, prop-sal-BF2 or prop-npht-BF2)

Thioanisole (50 puL, 0.425 mmol) and prop-imine-BF2 (2.13 umol, 0.5%mol loading) were
added in 12 mL of methanol in a quartz tube. O> was bubbled through the mixture for 10 min.
The tube was then sealed and fitted with an Oz balloon. The reaction mixture was irradiated
using a medium pressure mercury vapor lamp (Heraeus TQ 150, radiation flux @ 300-600nm:
24.8W) positioned approximately 5 cm from the tube. After 40 minutes of irradiation, the
solvent was evaporated. Conversions were calculated by integrating the crude *H NMR ratios

of the substrate and product.

Substrate scope for photocatalytic oxidation of various sulfides to sulfoxides in the
presence of POSS-tert-BF.

Thioether (0.425 mmol) and POSS-tert-BF2 (0.796 mg, 0.266 umol, 0.5%mol loading based
on the single acceptor site) were added in 12 mL of methanol in a quartz tube. O, was bubbled
through the mixture for 10 min. The tube was then sealed and fitted with an O balloon. The
reaction mixture was irradiated using a medium pressure mercury vapor lamp (Heraeus TQ 150,

radiation flux @ 300-600nm: 24.8W) positioned approximately 5 cm from the tube. After 40
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minutes of irradiation, the solvent was evaporated. To determine isolating yields, following the
reaction the mixture was filtered through a short plug of silica gel with DCM and then

evaporated. Products were identifies by *H NMR.

Recycling of photocatalyst

After completing the first reaction run, the photocatalyst was recovered by evaporation the
volatiles and thoroughly washing it several times with hexane to remove any residual products
or unreacted substrates. The recovered POSS-tert-BF2 was dried under vacuum at 80°C
overnight. The used photocatalyst was subsequently re-employed in the next cycle under

identical conditions.
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Section 2. UV-vis spectra
Reactive oxygen species (ROS) trapping experiment

NH, NH, ] ] NH
ROS . RO ' .
— . +HY —— | +2H
e o
NH, L NH, L NH, NH NH
DMB DMB radical cation Charge transfer complex Oxidized DMB (diimine)
Aaps = 287 nm Aabs = 360 and 550-760 nm Aabs = 360 and 550-760 nm

-

Scheme S1. DMB 3,3'-dimethylbenzidene reactivity towards oxidant agents.
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Figure S1. UV-Vis-NIR absorption spectra of the cationic radical of 3,3'-dimethylbenzidine

(DMB) generated by POSS-tert-BF: in the presence of light (Air = 365 nm, intensity 1.30
mW/cm?) and oxygen in DCM.
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Figure S2. UV-vis absorption spectra of the cationic radical of 3,3'-dimethylbenzidine (DMB)

generated by POSS-sal-BF:2 in the presence of light (Airr = 365 nm, intensity 1.30 mW/cm?) and

oxygen in DCM.
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Figure S3. UV-Vis-NIR absorption spectra of the cationic radical of 3,3'-dimethylbenzidine
(DMB) generated by POSS-npht-BF2 in the presence of light (Air = 365 nm, intensity 1.30

mW/cm?) and oxygen in DCM.
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Figure S4. UV-vis absorption spectra of the cationic radical of 3,3'-dimethylbenzidine (DMB)
generated by prop-tert-BF: in the presence of light (Air = 365 nm, intensity 1.30 mW/cm?) and
oxygen in DCM.
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Figure S5. UV-vis absorption spectra of the cationic radical of 3,3'-dimethylbenzidine (DMB)

generated by prop-sal-BF2 in the presence of light (Airr = 365 nm, intensity 1.30 m\W/cm?) and

oxygen in DCM.
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Figure S6. UV-vis absorption spectra of the cationic radical of 3,3'-dimethylbenzidine (DMB)
generated by prop-npht-BF: in the presence of light (Airr = 365 nm, intensity 1.30 mW/cm?)
and oxygen in DCM.
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Figure S7. (a) Changes in absorbance spectrum of DPA in MeOH upon irradiation (Airr = 365
nm, intensity 1.30 mW/cm?) in presence of POSS-tert-BF2 in different interval of time and (b)
plot of changes in absorption at 391 nm. AOD= Ao-As, Ao - absorbance at time = 0 min and At

- absorbance at time = t.
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Figure S8. (a) Changes in absorbance spectrum of DPA in MeOH upon irradiation (Airr = 365
nm, intensity 1.30 mW/cm?) in presence of POSS-sal-BF in different interval of time and (b)
plot of changes in absorption at 391 nm. Black line absorbance of POSS-sal-BF2 before adding
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Figure S9. (a) Changes in absorbance spectrum of DPA in MeOH upon irradiation (Airr = 365
nm, intensity 1.30 mW/cm?) in presence of POSS-npht-BF- in different interval of time and
(b) plot of changes in absorption at 391 nm. AOD= Ao-As, Ao - absorbance at time = 0 min and

A: - absorbance at time = t.
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Figure S10. (a) Changes in absorbance spectrum of DPA in MeOH upon irradiation (Airr = 365
nm, intensity 1.30 mW/cm?) in presence of prop-tert-BF2 in different interval of time and (b)
plot of changes in absorption at 391 nm. AOD= Ao-At, Ao - absorbance at time = 0 min and At

- absorbance at time = t.
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Figure S11. (a) Changes in absorbance spectrum of DPA in MeOH upon irradiation (Airr = 365
nm, intensity 1.30 mW/cm?) in presence of prop-sal-BF: in different interval of time and (b)
plot of changes in absorption at 391 nm. AOD= Ao-A¢, Ao - absorbance at time = 0 min and At

- absorbance at time = t.
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Section 3. NMR spectra of photocatalytic aerobic oxidation of thioanisole
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Figure S14. *H NMR (500 MHz, CDCls) spectra of crude mixture for oxidation of thioanisole
using POSS-tert-BF2. * Residue methanol.
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Figure S15. 'H NMR (500 MHz, CDCIs) spectrum of obtained Methyl phenyl sulfoxide
using POSS-tert-BF2 as a photocatalyst (entry 4 Table 2).
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Figure S16. 'H NMR (500 MHz, CDClIs) spectrum of obtained 1-methyl-4-
(methylsulfinyl)benzene using POSS-tert-BF2 as a photocatalyst.
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Figure S17. *H NMR (500 MHz, CDCls) spectrum of obtained 4-(methylsulfinyl)benzonitrile
using POSS-tert-BF2 as a photocatalyst.
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Figure S18. 'H NMR (500 MHz, CDClIs) spectrum of obtained 1-bromo-3-
(methylsulfinyl)benzene using POSS-tert-BF2 as a photocatalyst.
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Figure S19. 'H NMR (500 MHz, CDClIs) spectrum of obtained 1-bromo-2-
(methylsulfinyl)benzene using POSS-tert-BF: as a photocatalyst.
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Figure S20. 'H NMR (500 MHz, CDCIs) spectrum of obtained 1-(4-
(methylsulfinyl)phenyl)ethan-1-one using POSS-tert-BF2 as a photocatalyst.
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Section 4. Characterization data
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Figure S22. *H NMR (500 MHz, CDClIs) spectrum of POSS-tert-BFo.
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Figure S23. 3C NMR (126 MHz, CDCls) spectrum of POSS-tert-BF2.
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Figure S24. !B NMR (160 MHz, CDCls) spectrum of POSS-tert-BF..
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Figure S25. %F NMR (471 MHz, CDClIs) spectrum of POSS-tert-BFo.
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Figure S26. 2°Si NMR (99 MHz, CDCls) spectrum of POSS-tert-BF..
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Figure S27. DOSY NMR (500 MHz, CDCls3) spectrum of POSS-tert-BF.
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Figure S28. (*H, *H)-NOESY NMR (1D, 500 MHz, CDCls) spectrum of POSS-tert-BF-.
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Figure S29. (*H, 3C)-HSQC NMR (1D, 500 MHz, CDCls) spectrum of POSS-tert-BFo.
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Figure S31. MALDI mass spectrum of POSS-tert-BF..
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Figure S32. Measured (top) and simulated (bottom) for C144H216BsF16NsO20Sis [M+Na] * MS

(MALDI) spectra of POSS-tert-BF.
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Section 5. Characterization data of POSS-tert-BF: after recycling of photocatalyst
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Figure S74. !B NMR (160 MHz, CDCl3) spectrum of POSS-tert-BF: after 5 cycles of
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Table S1. The ICP-OES results of POSS-tert-BF2 after 5 cycles of photooxidation of sulfides

to sulfoxides.

Instrument 0
Sample Mass [g] Volume [ml] | Element data [mg/L] Content [%]
POSS-tert-BF2 0.001 10 B 2.90 2.90
POSS-tert-BF2 0.001 10 B 2.81 2.81
POSS-tert-BF2 0.001 10 B 2.81 2.81
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