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EXPERIMENTAL SECTION 

Materials: Ni(NO3)2·6H2O (purity, >99.99%), H2C2O4 (Analytical Reagent), absolute alcohol 

(Analytical Reagent), and NaOH (purity, >99.99%) were obtained from Aladdin Reagent Company, 

China. N2 (purity, >99.999%) was purchased from Tianjin Chemical Reagent Factory, China. 

Preparation of US-β-Ni(OH)2 QDs: 3 mmol Ni(NO3)2·6H2O was added into 50 mL alcohol to 

obtain solution A. 1.51 g H2C2O4 was weighed and dissolved in 50 mL alcohol to obtain solution B. 

the solution A was slowly dropped into solution B with vigorous stirring for 2 hours at room 

temperature, and then left at room temperature for 12 h. After that, the obtained bright blue product 

was isolated by centrifugation, washed with ethanol three times, followed by drying at 40 ℃ for 24 

hours to obtain NiC2O4 nanowires named NW-NiC2O4. 

40 mg NW-NiC2O4 was dissolved in 20 mL ethanol with vigorous stirring at room temperature. 

Then 0.1 mM NaOH solution was added to the solution. After ultrasonic reaction for 2 hours, 

centrifugation was carried out. The obtained precipitate was transferred into 1 M NaOH + 1 M 

ethanol solution and kept static for 24 hours. Subsequently, it was centrifuged at room temperature 

and washed multiple times with ethanol. Then, it was dried at 40 ℃ for 24 hours to obtain 

ultra-small β-Ni(OH)2 quantum dots (US-β-Ni(OH)2 QDs). 

Preparation of β-Ni(OH)2 nanosheets: The β-Ni(OH)2 nanosheets were prepared according to 

a literature method [1]. 5 mmol NiCl2·6H2O was dissolved in 200 mL water with vigorous stirring 

for 5 min followed by the adding of 0.6 mL of 28% ammonia solution. Then, the obtained solution 

was transferred into a 500 mL three neck flask and heated at 60 ℃ for 24 h. After cooling to room 

temperature, the light green product was collected by centrifugation, washed by ethanol several 

times, and then dried at 60 ℃ in air overnight for further characterization. 

Physical Characterization: SEM measurements were performed using a Merlin Compact at an 

accelerating voltage of 20 kV (Carl Zeiss Company). SEM-EDS were carried out using a Teneo 

volume scope. TEM and HRTEM measurements were performed using a Tecnai G2 F30 



transmission electron microscope with an accelerating voltage of 200 kV (FEI Company). Powder 

X-ray diffraction patterns were carried out using an Empyrean diffractometer (Panalytical company) 

assisted by monochromatic Cu-Kα radiation (λ = 1.54056 Å) within the 2θ range of 35°–70°. X-ray 

photoelectron spectroscopy (XPS) measurements were performed on a ThermoFisher ESCALAB 

250Xi spectrometer. XPSPEAK software (Ulvac-phi Company) was used for the XPS data 

processing. 

Electrochemical measurements: Electrochemical measurements of various catalysts were 

carried out using a CHI 660E workstation (Shanghai, China). A typical three-electrode system was 

used, with an Ag/AgCl as reference electrode, graphite rod as a counter electrode. Before the 

electrochemical test, the reference electrode was calibrated using Pt wire as the working electrode 

and counter electrode in high purity hydrogen saturated electrolyte solution, respectively. 

US-β-Ni(OH)2 QDs was loaded on carbon fiber paper with a size of 1 cm × 1 cm, which acted as 

the working electrodes for the electrochemical tests, and the mass loading on the carbon fiber paper 

was about 0.5 mg·cm-2. LSV curves were recorded at 5 mV·s-1 in O2-saturated 1.0 M KOH. The 

polarization curves were iR-corrected and the potentials were converted in reference to the 

reversible hydrogen electrode (ERHE = E(Ag/AgCl) + E0(Ag/AgCl) + 0.059·pH - iR). Operando 

electrochemical impedance spectroscopy (EIS) was carried out at different potentials from a 

frequency range of 0.1 Hz to 1000 kHz. 

Computational Detail: The US-β-Ni(OH)2 QDs model with a 4 × 5 × 1 supercell and 

β-Ni(OH)2 nanosheet with a 6 × 7 × 1 supercell was constructed to explore the dehydrogenation 

energy of Ni-OH and the adsorption energy of urea molecules. The density functional theory (DFT) 

was computed by Vienna ab initio Simulation Package (VASP). The projector augmented wave 

pseudopotential comprising the revised Perdew−Burke−Ernzerhof exchange-correlation functional 

was utilized to describe the interactions between core and electrons. An energy cutoff of 450 eV 

was used for the plane wave expansion of the electronic wave function. An 5 × 5 × 1 Monkhorst 



Pack k-point setup were used for the slab geometry optimization of US-β-Ni(OH)2 QDs and 

β-Ni(OH)2 nanosheet, respectively. The force and energy convergence criteria were set to 0.02 eV 

Å−1 and 10−5 eV, respectively. 



 

Figure S1. SEM images of NW-NiC2O4 precursor 

10 20 30 40 50 60 70 80

 

 

(0
0
1
) PDF#14-0117

(1
0
0
)

(1
0
1
)

(1
0
2
)

(1
1
0
)

(1
1
1
)

In
te

n
si

ty
 (

a
. 
u

.)

2 Theta (Degree)

US-β-Ni(OH)2 QDs

NW-NiC2O4

 

Figure S2. XRD patterns of the NW-NiC2O4 precursor and US-β-Ni(OH)2 QDs samples 
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Figure S3. FTIR spectrum of the NW-NiC2O4 precursor and US-β-Ni(OH)2 QDs samples 

 

 

 



 

Figure S4. The images of the obtained US-β-Ni(OH)2 QDs catalyst 

 

 

Figure S5. The TEM-EDX spectrum of the obtained US-β-Ni(OH)2 QDs catalyst 

 

 

Figure S6. TEM and HRTEM images of the β-Ni(OH)2 nanosheet 
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Figure S7. N2 adsorption-desorption isotherm curves. (a) US-β-Ni(OH)₂ QDs. (b) β-Ni(OH)₂ nanosheet 
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Figure S8. The longer-time chronopotentiometry curves of US-β-Ni(OH)2 QDs catalyst collected at the 

current density of 20 mA cm-2 
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Figure S9. CV curves measured in 1 M KOH solution at scan rates from 20 to 200 mV s-1.  

(a) US-β-Ni(OH)2 QDs. (b) β-Ni(OH)2 nanosheets 



 

Figure S10. LSV curves for UOR normalized by ECSA 
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Figure S11. The potential change of chronopotentiometry curves for the US-β-Ni(OH)₂ QDs after injecting CO3
2- 

and NO3
- solutions 
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Figure S12. The OH bond length of for the four distinct configurations of β-Ni(OH)2 
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Table S1. UOR activity comparison between US-β-Ni(OH)2 QDs and the reported UOR catalysts 

Catalyst 
Current density 

(mA cm−2) 

Potential 

(V vs. RHE) 
Substrate References 

US-β-Ni(OH)2 QDs 151 1.48 Carbon cloth This work 

Ni(OH)2 nanoflakes 142.4 1.62 Glassy carbon Ref-2 

Ni-MOF ~62.5 1.48 Glassy carbon Ref-3 

20% Pt/C ~4.5 1.48 Glassy carbon Ref-3 

β-Ni(OH)2 ~80 1.48 Glassy carbon Ref-4 

β-Ni(OH)2 nanosheets ~35 1.48 Glassy carbon Ref-5 

V0.12-doped Ni(OH)2 ~120 1.48 Ni Foam Ref-6 

α-Ni(OH)2-PNF-2 ~125 1.48 Glassy carbon Ref-7 

Ni3N-C ~50 1.48 Glassy carbon Ref-8 

Rh/C ~20 1.48 Self-standing Ref-9 

Ir/C ~30 1.48 Ni Foam Ref-10 

Ce-MOF-350 ~5 1.48 Glassy carbon Ref-11 

Ni2P ~50 1.48 Glassy carbon Ref-12 

V10%-Ni5P4 ~150 1.48 Carbon cloth Ref-13 

Ni(OH)2/NF ~75 1.48 Ni Foam Ref-14 

NF ~50 1.48 Ni Foam Ref-15 

NiFe(OH)x/MnO2/NF ~50 1.48 Ni Foam Ref-16 

Ce-Ni3N@CC >200 1.48 Carbon cloth Ref-17 

NiClO-D ~150 1.48 Glassy carbon Ref-18 

Co(OH)F/NF >200 1.48 Ni foam Ref-19 

NiCoVOx ~160 1.48 Carbon cloth Ref-20 



NiMoO-H2 ~100 1.48 Carbon cloth Ref-21 

Ni2P nanoflake ~80 1.48 Carbon cloth Ref-22 

Ni-WOx ~250 1.48 Ni foam Ref-23 

CuNiP/NF ~100 1.48 Ni foam Ref-24 

Co(OH)2-S ~110 1.48 Ni foam Ref-25 
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