SUPPORTING INFORMATION

Insights for Controlling Plutonium Behavior in Hydrochloric Acid Solutions

Yufei Wang,^{1,b} Natalie T. Rice,^{1,b} Julia G. Knapp,^{1,b} Sara L. Adelman,¹ Kelly E. Aldrich,¹ Brian T. Arko,¹ Manuel L. Besmer,¹ J. Connor Gilhula,¹ Christopher J. Godt,¹ Jan Klouda,¹ Stosh A. Kozimor,^{1,*} Brian N. Long,¹ Molly M. MacInnes,¹ Travis Marshall-Roth,¹ Alexandra L. Nagelski,¹ Ida D. Piedmonte.¹

¹ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States of America.

- * To whom correspondence should be addressed, stosh@lanl.gov.
- ^b These are co-first authors because they contributed equally to this manuscript.

Table of Contents

I. Figures and Tables	3
II. Equation Derivations	8
III. References	9

I. Figures and Tables

Figure S1. Dependence of the ratio of anodic peak current, i_{pa} , to cathodic peak current, i_{pc} , on the HCl_(aq) concentration at different scan rates (0.01 – 1 V/s), represented by orange (0.01), blue (0.05), gray (0.1), yellow (0.2), cyan (0.5), and green (1 V/s), respectively.

Figure S2. The UV-Vis-NIR spectra from plutonium solutions (0.2 M) dissolved in $HCl_{(aq)}$ (9 M) before (black trace) and after (orange trace) additions of $NaClO_{2(aq)}$ (6.6 M). Before $NaClO_{2(aq)}$ addition, the UV-Vis-NIR spectrum showed a mixture of $Pu^{4+}_{(aq)}$ and $Pu^{3+}_{(aq)}$. After $NaClO_{2(aq)}$ addition, only $Pu^{4+}_{(aq)}$ was detected.

Figure S3. The UV-Vis-NIR spectra from a $Pu^{4+}_{(aq)}$ (0.2 M) solution dissolved in $HCl_{(aq)}$ (9 M) before (black trace) and after (orange trace) additions of $CsCl_{2(aq)}$ (3 M). Before $CsCl_{(aq)}$ addition, the UV-Vis-NIR spectrum showed $Pu^{4+}_{(aq)}$ dissolved in solution. Addition of $CsCl_{(aq)}$ caused the plutonium the precipitate as $Cs_2PuCl_{6(solid)}$.

Figure S4. The PXRD patterns of the as-prepared $Cs_2PuCl_{6(solid)}$ (pink trace) compared to the simulated PXRD pattern (blue trace) from the reported crystal structure.¹ The simulated pattern was made in Mercury.²

Table S1. The coefficient of determination, R^2 , for the least-squares fitting of peak current

	Pu HCl _(aq) Solutions				
	1 M HCI _(aq)	3 M HCI _(aq)	5.5 M HCI _(aq)	8 M HCI _(aq)	11 M HCI _(aq)
R ²	0.996	0.988	0.987	0.992	0.995

 (i_p) as a function of the scan rate $(v^{1/2})$ for plutonium in HCl_(aq) solutions (1 – 11 M).

II. Equation Derivations

Using Halfwave Potentials ($E_{\frac{1}{2}}$) to Evaluate Pu Coordination Numbers for Cl¹⁻.

The Pu^{4+/3+} electron transfer in HCl_(*aq*) solutions at low scan rates was best described as a reversible redox process (Eq 1) coupled with reversible complexation reactions (Eq 2). This means that the half-wave potentials ($E_{1/2}$) dependence on HCl_(*aq*) concentration inform on the number of Cl¹⁻ ligands (symbolized by *l*) bound by Pu⁴⁺_(*aq*). A mathematical expression (Eq 5) can be derived to infer the ligand number with the aid of chemical equilibrium (Eq 2), Nernst equation (Eq 3), and steady-state mass transport equation (Eq 4).³

$$Pu^{4+} \rightleftharpoons Pu^{3+}$$
 Eq 1
 $C_{PuCl_{x}}$

$$Pu^{4+} + x \cdot Cl^{-} \stackrel{K}{\rightleftharpoons} PuCl^{4-x} \qquad \qquad K = \frac{K}{C_{Pu^{4+}} C_{Cl^{-}}} \qquad \qquad \text{Eq 2}$$

$$E = E^{o} - \frac{RT}{nF} \ln \frac{a_{Pu^{3}+}}{a_{Pu^{4}+}} = \sum_{E^{o}}^{E^{o} - \frac{1}{nf} \ln \frac{\gamma_{Pu^{3}+}}{\gamma_{Pu^{4}+}}} - \frac{1}{nf} \ln \frac{C_{Pu^{3}+}}{C_{Pu^{4}+}} = E^{o'} - \frac{1}{nf} \ln \frac{KC_{Cl} \cdot C_{Pu^{3}+}}{C_{PuCl_{x}}}$$

$$\begin{cases} k_{c,Pu^{3}+} \left(C_{Pu^{3}+} - C_{Pu^{3}+}\right) = \frac{i_{a}}{nFA} \Rightarrow C_{Pu^{3}+} = \frac{i_{a,lim} - i_{a}}{nFAk_{c,Pu^{3}+}} \\ -k_{c,PuCl_{x}} \left(C_{Pu^{2}Cl_{x}} - C_{PuCl_{x}}\right) = \frac{i_{c}}{nFA} \Rightarrow C_{PuCl_{l}} = \frac{i_{c,lim} - i_{c}}{-nFAk_{c,PuCl_{x}}} \end{cases}$$

$$Eq 4$$

$$k_{c,PuCl_{x}} \left(C_{Pu^{2}Cl_{x}} - C_{PuCl_{x}}\right) = \frac{i_{c}}{nFA} \Rightarrow C_{PuCl_{l}} = \frac{i_{c,lim} - i_{c}}{-nFAk_{c,PuCl_{x}}}$$

$$Eq 4$$

$$E = E^{o'} - \frac{1}{nf} \ln \left(\frac{KC_{c,Pu}^{*} - u}{\frac{nFAk}{c_{c,Pu}^{3} + }}{\frac{i_{c,lim} - i_{c}}{-nFAk_{c,Pu}cl_{x}}} \right) = E^{o'} - \frac{1}{nf} \ln \frac{i_{c,Pu} - u}{k} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{\frac{i_{c} - u}{nf} - i_{c}}{-\frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - nFAk_{c,Pu}cl_{x}}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{\frac{i_{c} - u}{nf} - i_{c}}{-\frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{lim} - i_{c}}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{lim} - i_{c}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{lim} - i_{c}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{lim} - i_{c}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{lim} - i_{c}} = E^{o'} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - nFAk_{c} - nFAk_{c} - nFAk_{c} - nFAk_{c} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - nFAk_{c} - nFAk_{c} - nFAk_{c} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - nFAk_{c} - nFAk_{c} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - nFAk_{c} - nFAk_{c} - \frac{1}{nf} \ln \frac{i_{c} - i_{c}}{i_{c} - \frac{i_{c} - i_{c}}{$$

Where E, $\underline{E^{o'}}$, and $E_{1/2}$ are reduction potential, formal potential, and half-wave potential, respectively; n, the stoichiometric number of electrons involved in Eq 1, n = 1 for Eq 1; K, the equilibrium constant of the complexation reaction (Eq 2); C_j^* , the bulk concentration of species j (j = M (metal), L (ligand), and ML (complex)); C_j , the concentration of species j at the electrode surface, $C_{Cl-} \approx C_{Cl-} \approx c_{cl$

the natural logarithm of the $Cl^{1-}_{(aq)}$ concentration enables the calculation of the number of Cl^{1-} ligands bound by plutonium.

III. References

- 1. W.H. Zachariasen, Acta Crys., 1948, 1, 268, DOI: <u>10.1107/S0365110X48000715</u>.
- C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, 53, 226-235. DOI: 10.1107/S1600576719014092.
- 3. Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, 2022.