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Table S1. Computed adsorption energies in kJ mol-1 of additional H atoms on the Pt79H105, Ru57H61 
and Pt10Ru47H64 nanoparticles.

Pt79H105 Ru57H61 Pt10Ru47H64

Site Eads Site Eads Site Eads

Hollow -50.1 (E3N-F3N) -46.7 (B’3N-B’3N) -45.7
T(C1N) -35.0 (C3N-D2N) -44.6 (C3N-D2N) -38.2
(A3Y-C2N) -34.4 (C3N-D2N)bis -44.5 T(C’4N) -37.4
T(B2N) -32.8 (C3N-D2N)tris -43.0 (A’1Y-B’3N) -36.8
T(B2N)bis -30.1 (C3N-C3N) -42.3 (C3N-F3N) -34.2
(A4Y-C1N) -26.8 (F3N-G3N) -39.6 (C’3N-D’1N) -29.0
(A3Y-B2Y) -26.1 (C3N-D1N) -30.6 T(B’3N) -28.2
T(A3N) -20.4 T(F4N) -26.7 T(B’3N)bis -25.2
T(C3N) -16.6 T(F4N)bis -24.6 (C3N-C3N) -24.6
T(C3N)bis -10.4 T(B4N) -24.1 T(F3N) -21.5
T(A4Y) -2.7 T(C4N) -22.9 T(B4N) -20.5
T(A4Y) -2.1 T(F3N) -17.4 (C3N-C3N) -19.6
T(A5Y)bis +8.0 T(B4N)bis -14.7 T(E4N) -19.5
T(C2Y)a +10.7 T(E3N) -11.3 T(F4N) -17.4
T(B3Y)a +14.7 T(C4N)bis -9.7 T(C’3N) -15.8

T(D1N) -8.1 T(D2N) -15.4
T(G2N) -4.0 T(B’3N)tris -15.2
T(C3N) +3.7 T(E3N) -14.8
T(A3N) +6.8 T(B4N)bis -14.5

T(C4N) -12.0
T(B4N) -11.6
T(C’4N)bis -9.3
T(C4N)bis -5.5
T(C3N) -4.3
T(D3N) +2.4



T(A3N) +3.5
T(G2N) +6.0
T(D’2N) +13.4

a H2 is formed during optimization



Table S2. Mean computed adsorption energies (kJ mol-1) of the 

H monolayer formation (Ru57H44 and Pt79H60) as well as the 

mean adsorption energy of the subsequent additional H atoms.

Ru57Hx Eads Pt79Hx Eads
43 -65.7 60 -55.8
55 -49.9 75 -41.8
61 -50.1 90 -36.5
66 -30.6 105 -29.1
77 -21.8 120 -26.0



Table S3. Comparison of the most relevant graphene-derived and Pt and/or Ru graphene-based HER 
nanoelectrocatalysts under acidic conditions. Parameters: mean diameter (Ø), onset overpotential 
(η0, mV), overpotential at |j| =10 mA/cm2 (η10, mV), Tafel slope (b, mV/dec), and exchange current 
density (|j0|, mA/cm2). Unless otherwise stated, electrolyte is 0.5 M H2SO4.

Entry catalyst Ø(nm) η0 (mV) η10 

(mV)

b (mV/dec) |j0|(mA/cm2) Ref.

1 a Ru5Pt1@NH2-rGO 

activated

1.7 ≈0 3 46 0.944 This 

work

2 a Ru@NH2-rGO 

activated

1.6 ≈0 20 36 2.860 This 

work

3 a Ru-r@P-rGO 1.4 ≈0 2 51 10.88 1

4 Pt0.47-Ru/Acet 1.46 - 28 33.3 - 2

5 Ru/D-NPC 5.4 - 68 41.7 2.51 3

6 PtRu@RFCS-6h 2.57 2.3 19.7 27.2 1.57 4

7 Pd3Pt29Ru62Te6 5 - 39 32 0.45 5

8 Ru@C2N 1.6±0.5 9.5 22 30 1.9 6

9 Ru-HMT-MP-7 9.5 - 29 19.3 - 7

10 Ru/(B-N)-PC 2~3 - 15 22.6 - 8

11 Pt1Ru1/NMHCS-A - - 22 38 - 9

12 3-GRR Pt−WC/CNT - - 25 22.3 - 10

13 Pt/CoOx-HCS-3000 2~4 - 28 31 - 11

14 Ru@β-HATB/CC 2.35 - 25 27.6 1.305 12

15 Ru2P/RGO-20 7 22 29 2.2 13

16 Ru/GLC 2~5 3 35 46 - 14

17 PtRu2/PF 2~3 10 22 30 2.81 15

18 PtRu/CC1500 <3 - 8 25 2.44 16

19 Pt53Ru39Ni8 55 -(looks 

like 0)

37 34 - 17

20 RuP2@NPC 8 ≈0 38 38 1.99 18

21 a Ru@rGO-r 2.6 - 29 48 2.50 19

22 a Ru@P-rGO-r 3.3 - 15 49 4.97 19

23 Ru1Pt2@rGO 3.0 - 6 20.9 - 20

a 1M H2SO4

Abbreviations used on Table S3:

P-rGO: phosphorous dopped reduced graphene oxide

Acet: commercial acetylene black

D-NPC: defect-rich nitrogen and phosphorus co-doped carbon nanosheets

RFCS: resorcinol– formaldehyde (RF) carbon spheres 

C2N: nitrogenated holey two-dimensional carbon structure 



Ru-HMT-MP-7: RuO2-RuP2/Ru on the N, P co-doped carbon matrix

(B-N)-PC: B, N co-doped polar carbon

NMHCS-A: activated N- doped mesoporous hollow carbon sphere 

3-GRR Pt−WC/CNT :3-multistep galvanic replacement reaction Tungsten carbide carbon nanotubes

HCS-3000:  hollow carbon sphere after 3000 cyclic voltammetry (CV) cycles 

β-HATB/CC :β-hexagonal ammonium tungsten bronze/ carbon cloth

Ru2P/RGO-20: reduced graphene oxide nanosheets

GLC: graphene-like layered carbon

PF : polyethylenedioxythiophene with trace amount of Fe 

CC1500: carbon-cloth-supported after 1500 ECD cycles

RuP2@NPC: N,P dual-doped carbon-encapsulated ruthenium diphosphide
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