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1. Experimental Section 

Chemicals and Materials 

Cerium nitrate hexahydrate (Ce(NO3)3·6H2O) was purchased from Aladdin. Potassium 

tetrachloroplatinate (Ⅱ) (K2PtCl4 98%) was obtained from Macklin. Ethylene glycol 

(C2H4(OH)2) was purchased from Sinopharm. Potassium thiocyanate (KSCN) was 

purchased from Aladdin. Urea was purchased from Aladdin. Sulfuric acid (H2SO4 98%) 

was purchased from Sinopharm. Commercial Pt/C catalyst (20 wt% Pt on carbon black) 

purchased from Alfa Aesar. Vulcan XC-72R carbon black was purchased from Cabot 

Corp. Commercial ruthenium (IV) oxide (RuO2 99.9%) catalyst was purchased from 

Sigma-Aldrich. Conductive carbon paper was purchased from TORAY (TGP-H-060).

Synthesis of CeO2 

5.699 g Ce(NO3)3·6H2O and 3.940 g urea were dissolved in 30 mL deionized water and 

stirred for 30 min. Subsequently, the solution was stirred at 140 ℃ in an oil bath for 

240 min. The obtained products were washed with deionized water. The products were 

dried at 105 ℃ for 2 h. Finally, the powder, placed in a tube furnace, was heated to 500 

℃ for 180 min with a heating rate of 10 ℃ min-1 in air atmosphere and then naturally 

cooled to room temperature. The yellow CeO2 powder was obtained.

Synthesis of Pt/CeO2-OV 

10 mg of K2PtCl4 and 100 mg CeO2 were fully ground to obtain the yellow powder, 

which was put into the porcelain boat and added 30 μL ethylene glycol. Then, it is 

placed in the microwave for 60 s. The yellow powder changed into black. Then, 20 mL 

deionized water was added and evaporated at 80 °C with stirring to obtain black 

Pt/CeO2-OV.

2. Physical Characterization 

Physical characterizations of the catalysts were performed by scanning electron 

microscopy (SEM) (Regulus 8100) and transmission electron microscopy (TEM) 

(JEM-F200). X-ray diffraction (XRD) (Japan Rigaku Ultima IV) and X-ray 

photoelectron spectroscopy (XPS) (America Thermo Scientific K-Alpha) were used to 

determine the crystal structure and chemical composition. Electron paramagnetic 

resonance (EPR) (BRUKE EMXPLUS) can be used to qualitatively and quantitatively 
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detect oxygen vacancies in catalysts. Raman spectroscopy (D-MAX 2500/PC) can 

analyze the structural information of the catalysts. Inductively coupled plasma optical 

emission spectrometer (ICP-OES) (Hitachi U4150) analyzes the amount of Ru in the 

catalyst. 

3. Electrochemical Measurements 

All electrochemical measurements were conducted using a typical three-electrode setup 

in 0.5 M H2SO4 with a reversible hydrogen electrode (RHE), glassy carbon electrode 

and carbon rod as the reference electrode, working electrode, and counter electrode, 

respectively, at room temperature. For ink preparation, 5 mg of catalyst and 1mg of 

carbon black were added to 1 mL Nafion solution and sonicated for 30 min. Then, the 

10 µL prepared ink was decorated onto the glassy carbon electrode for testing. Linear 

sweep voltammetry (LSV) was collected with scanning rate of 5 mV s-1 with 95% IR 

compensation. Electrochemical impedance spectroscopy (EIS) measurements were 

carried out in frequency ranges from 100 kHz to 0.01 Hz with an amplitude of 5 mV. 

Multi-step chronopotentiometry, multi-step chronoamperometry and 

chronoamperometry were performed to study the stability of the prepared catalysts. 

Overall water splitting tests are measured by two electrodes with carbon paper as a 

substrate to load the catalyst. The size of the carbon paper is 1×1 cm2 with 2 mg of 

catalysts.

CV Measurements 

Cyclic voltammetry was performed with different scan rates (20-120 mV s-1) in the 

non-Faraday interval.

ECSA (electrochemically active surface area) measurements

ECSA =
𝐶𝑑𝑙 × 𝑆

𝐶𝑠

S is the area of the working electrode (0.19625 cm2). And Cs is the constant (0.5 M 

H2SO4) that converts the capacitance to ECSA with a value of 0.02 mF cm-2.1

Mass activity computation 

Mass activity = Current (mA) / m (Pt)
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Current is taken from linear sweep voltammetry curves at an overpotential of 100 mV, 

and m(Pt) is the mass of Pt on the working electrode.

Turnover frequency calculation (TOF) 

Turnover frequency (TOF) is a familiar evaluation criterion of catalysts, which is 

identified as the number of reactants of the electrocatalytic active sites per area to 

convert to the expected product per time2.

         Total hydrogen turnovers

         = (|j|
mA

cm2
)(

1C
s

1000 mA
)(

1 mol e -

96485.3 C
)(

1 mol

2 mol e -
)(

6.022 × 1023 molecules H2

1 mol H2
)

         = 3.12 × 1015
H2/s

cm2
per

mA

cm2

 10 mV         Pt/CeO2 - OV (active sites)

         = (catalyst loading per geometric area × ( g

cm2) × 𝑃𝑡 wt%

𝑃𝑡 MW( g
mol) )(6.022 × 1023𝑃𝑡 atomes

1 mol 𝑃𝑡 )

         = (0.255 ×
10 - 3g

cm2
× 3.85 wt%

195.1 )(6.022 × 1023𝑃𝑡 atomes
1 mol 𝑃𝑡 )

         = 3.03 × 1016 𝑃𝑡 sites per cm2

TOF = (3.12 × 1015

3.03 × 1016
× |j|) = 0.10 × | - 11.07| = 1.14 Pt sites per cm2

 30 mVPt/CeO2 - OV (active sites)

TOF = (3.12 × 1015

3.03 × 1016
× |j|) = 0.10 × | - 56.25| = 5.63 Pt sites per cm2

 50 mVPt/CeO2 - OV (active sites)

TOF = (3.12 × 1015

3.03 × 1016
× |j|) = 0.10 × | - 106.80| = 10.68 Pt sites per cm2

10 mV         Pt/C (active sites)
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= (|j|
mA

cm2
)(

1C
s

1000 mA
)(

1 mol e -

96485.3 C
)(

1 mol

2 mol e -
)(

6.022 × 1023 molecules H2

1 mol H2
)

= 3.12 × 1015
H2/s

cm2
per

mA

cm2

         = (catalyst loading per geometric area × ( g

cm2) × Pt wt%

Pt MW( g
mol) )(6.022 × 1023Pt atomes

1 mol Pt )

         = (0.255 ×
10 - 3g

cm2
× 20 wt%

195.1 )(6.022 × 1023Pt atomes
1 mol Pt )

         = 1.57 × 1017 Pt sites per cm2

TOF = (3.12 × 1015

1.57 × 1017
× |j|) = 0.020 × | - 20.06| = 0.40 Pt sites per cm2

30 mVPt/C (active sites)  

TOF = (3.12 × 1015

1.57 × 1017
× |j|) = 0.020 × | - 143.13| =  2.86 Pt sites per cm2

50 mVPt/C (active sites)  

TOF = (3.12 × 1015

1.57 × 1017
× |j|) = 0.020 × | - 233.22| =  4.66 Pt sites per cm2

 10 mV = Pt/CeO2 - OV (active sites) 1.14 Pt sites per cm2

 30 mV =   sites per cm2Pt/CeO2 - OV (active sites) 5.63 𝑃𝑡

 50 mV =   sites per cm2Pt/CeO2 - OV (active sites) 10.68 𝑃𝑡

10 mV=  Pt sites per cm2Pt/C (active sites) 0.40

30 mV =  Pt sites per cm2Pt/C (active sites) 2.86

50 mV =  Pt sites per cm2Pt/C (active sites) 4.66

0.5 M H2SO4: When the overpotential is 10 mV, 30 mV and 50 mV, the current density 

of  are 11.07 mA cm-2, 56.25 mA cm-2 and 106.80 mA cm-2, TOF=1.14 H2 Pt/CeO2 - OV

s-1, 5.63 H2 s-1 and 10.68 H2 s-1. Similarly, the current density of  at 10 mV, 30 mV Pt/C
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and 50 mV are 20.06 mA cm-2, 143.13 mA cm-2and 233.22 mA cm-2 and TOF = 0.40 

H2 s-1, 2.86 H2 s-1 and 4.66 H2 s-1.
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Figure S1. The cyclic voltammetry (CV) plots with different scan rates of (a) CeO2 and 

(b) Pt/CeO2-Ov in 0.5 M H2SO4.
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Figure S2. LSV curves before and after poisoning tests with 5 mM KSCN in 0.5 M 

H2SO4.



9

Figure S3. CV curves of (a) Pt/CeO2-Ov, (b) CeO2 and (c) Pt/C at the potential 0.05 to 

1.20 V under Ar.
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Figure S4. Dry cell simulation derived overall water splitting in 0.5 M H2SO4.
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Figure S5. Wind energy derived overall water splitting in 0.5 M H2SO4.
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Figure S6. Solar energy derived overall water splitting in 0.5 M H2SO4.
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Table S1. The variation of oxygen vacancies is illustrated through XPS spectra of O 1s

catalysts wt %

CeO2 43.86 %

Pt/CeO2-Ov 48.44 %
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Table S2. Comparison of the hydrogen evolution reaction (HER) activity of the 

Pt/CeO2-Ov with other previously reported electrocatalysts in 0.5 M H2SO4.

Catalysts
Overpotential 

(mV)@ 10 mA cm-2
Tafel slope (mV dec-1) References

Pt/CeO2-Ov 10 25.6 This work

PtCo@PtSn 21 19 3

Pt2Ir/G 29 26 4

Pt/CP 30 68 5

Pt NC 38 31 6

PtNPs@MXene/PPy 40 44 7

Pt/RuOx-PA 41 31 8

Pt/CNT 44 27 9

Pt/GNPs 54 37 10

Pt1/Fe2O3 60 40 11

Pt VN 82 59 12
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Table S3. Comparison of the overall water splitting activity of the RuO2||Pt/CeO2-OV 

with other previously reported electrocatalysts in 0.5 M H2SO4.

Catalysts
Cell voltage (V)@ 

10 mA cm-2
References

RuO2||Pt/CeO2-OV 1.57 This work

Ir-doped WO3||Ir-doped WO3 1.56 13

RhCu NTs/CP||RhCu NTs/CP 1.64 14

NC-CNT/CoP||NC-CNT/CoP 1.66 15

Mo-Co9S8@C||Mo-Co9S8@C 1.68 16

Pt/C||Ir/C 1.69 17

Co-MoS2||Co-MoS2 1.90 18
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