Supporting Information

Ligand tuned catalytic activity of Ruthenium-imidazolyl amine complexes for reversible formic acid dehydrogenation and CO₂ hydrogenation to formic acid

Khanindra Kalita, Sanjeev Kushwaha and Sanjay K. Singh*

Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India

E-mail: <u>sksingh@iiti.ac.in</u>

Description	Page no.
General procedure for calculation of TON and TOF in FA dehydrogenation	S5
Table S1 Catalytic FA dehydrogenation in water over in situ Ru/Ln catalysts	S6
Fig. S1 GC-TCD analysis of the (a) evolved gas (H ₂ :CO ₂ \approx 1:1) for the catalytic	S7
FA dehydrogenation over in situ Ru/L7 catalyst (Analysis is performed using	
Argon as the carrier gas). Reaction conditions: FA (0.4 M, 2.5 mL in water), SF	
(0.25 mmol), in situ Ru/L7 catalyst (Ru : 10 μ mol, L7 : 20 μ mol) at 90 °C. (b)	
Pure mixture of gas containing H ₂ , CO, CH ₄ , CO ₂ .	
Fig. S2 Cyclic voltammograms for (a) Ru (b) Ru/L3 (c) Ru/L6 (d) Ru/L7 (e)	S8
Ru/L8 and (f) Ru/L9 catalysts in acetonitrile with 0.1 M NBu ₄ PF ₆ as supporting	
electrolyte at a scan rate of 0.1 Vs ⁻¹ .	
Table S2. Electrochemical data extracted from cyclic voltammograms of Ru	S9
Ru/L3, Ru/L6, Ru/L7, Ru/L8 and Ru/L9 complexes	
Table S3 Kinetics parameters for FA dehydrogenation over Ru/L7 catalyst in	S10
water.	
Fig. S3 (a) Temperature dependent FA dehydrogenation over in situ Ru/L7	S11
catalyst and (b) the corresponding Arrhenius plot was based on the initial rate at	
3 min for FA dehydrogenation. Reaction conditions: FA (0.4 M, 2.5 mL in	
water), SF (0.25 mmol), in situ Ru/L7 catalyst (Ru: 10 μ mol, L7: 20 μ mol),	
50°C – 90 °C.	
Table S4 Activation energies (E _a) for FA dehydrogenation in water over various	S12
literature known catalysts	
Table S5. Determination of activation parameters for FA dehydrogenation over	S13
Ru/L7 catalyst in water	
Fig. S4 Eyring plot for FA dehydrogenation. Reaction conditions: FA (0.4 M,	S14
2.5 mL in water), SF (0.25 mmol), in situ Ru/L7 catalyst (Ru: 10 μ mol, L7: 20	
μ mol), 50°C – 90 °C, where e. u. is the energy unit for $\frac{\Delta S^{\neq}}{R}$ value.	
Fig. S5 Recyclability plot for catalytic FA dehydrogenation over in situ Ru/L7	S15
catalyst. Reaction conditions: FA (0.4 M, 25 mL in water), SF (2.5 mmol), in situ	
Ru/L7 catalyst (Ru: 10 μ mol, L7: 20 μ mol) at 90°C. FA (380 μ L) was added	
after each catalytic run. GC-TCD analysis after 80 catalytic runs (inset).	

Table of content

Fig. S6 Minor $Ru/(Ln)_2$ species observed after 70 catalytic runs for FA	S16
dehydrogenation over Ru/L7 catalyst.	
Table S6 Upscaling the catalytic FA dehydrogenation over in situ Ru/L7 catalyst	S17
Fig. S7 Gas evolution plot for upscaling the catalytic FA dehydrogenation over	S18
in situ Ru/L7 catalyst (Ru: 10 μ mol, L7: 20 μ mol) at 90°C. Reaction conditions:	
10 fold: FA (0.4 M, 25 mL in water), SF (2.5 mmol); 20 fold: FA (0.4 M, 50 mL	
in water), SF (5 mmol); 30 fold: FA (0.4 M, 75 mL in water), SF (7.5 mmol); and	
50 fold: FA (0.4 M, 125 mL in water), SF (12.5 mmol).	
Fig. S8 Long-term stability of the catalytic FA dehydrogenation over in	S19
situ Ru/L7 catalyst in water at 90 °C, FA (380 μ L) was added after days 15, 36	
and 60 days in the same reaction mixture. Reaction conditions: FA (0.4 M, 25 mL $$	
in water), SF (2.5 mmol), Ru/L7 catalyst (Ru: 10 μ mol, L7: 20 μ mol) at 90°C.	
Fig. S9 ¹ H NMR of reaction aliquot of the catalytic FA dehydrogenation over <i>in</i>	S20
situ Ru/L7 catalyst in a high pressure reactor (Closed system) GC-TCD analysis	
of the evolved gas (inset) Reaction conditions: FA (0.4 M, 25 mL in water), SF	
(2.5 mmol), <i>in situ</i> Ru / L7 catalyst (Ru : 10 μmol, L7 : 20 μmol), at 90 °C.	
Fig. S10 Control Hg(0) poisoning experiment, with and without a large excess of	S21
elemental Hg(0). Reaction conditions: FA (0.4 M, 2.5 mL in water), in situ Ru/L7	
catalyst (Ru : 10 µmol, L7 : 20 µmol), SF (0.25 mmol), 90 °C.	
Fig. S11 Mass analysis of various species formed during the <i>in situ</i> generation	S22
of Ru/L7 catalyst. Reaction conditions: Ru (10 μ mol), L7 (20 μ mol), H ₂ O (2.5	
mL), 90 °C, 1.5 h.	
Fig. S12 Formation Ru-formato species Ru/L7-B. (a) Reaction conditions: Ru	S23
(10 μ mol), L7 (20 μ mol), FA (1 mmol), H ₂ O (2.5 mL), 90 °C, 15 min. (b)	
Reaction conditions: Ru (10 μ mol), L7 (20 μ mol), FA (1 mmol), SF (0.25 mmol),	
H ₂ O (2.5 mL), 90 °C, 2 min. Where Ru : $[(\eta^6-C_{10}H_{14})RuCl_2]_2$.	
Fig. S13 (a) Mass analysis of Ru hydrido species Ru/L7-C. (b) Temperature	S24
dependent ¹ H NMR analysis in D ₂ O. Reaction conditions: Ru (10 μ mol), L7 (20	
μmol), SF (1 mmol), D ₂ O (2.5 mL), at 40, 50, 70, 90 °C for 10 min each.	
Fig. S14 Mass investigation of the reaction mixture of <i>in situ</i> Ru (10 μ mol), L7	S25
(20 μ mol), treated with SF (1 mmol) in water (2.5 mL) stirred at 90 °C for 10	
min in step 1, and further with 1 M HCl (1 mL) in the step 2.	
Table S7 Single crystal X-ray refinement data for Ru/L7	S26

Table S8 Selected bond lengths (Å) for Ru/L7	S27
Table S9 Selected bond angles (°) for Ru/L7	S28-S30
Fig. S15 UV-vis spectra of (a) aqueous solution of Ru/L7 (black line), (b)	S31
aqueous solution of $\mathbf{Ru}/\mathbf{L7}$ with the addition of SF (red line), and (c) after adding	
aqueous HCl to an aqueous solution of $\mathbf{Ru}/\mathbf{L7}$ with the addition of SF (blue line).	
Fig. S16 UV-vis spectra of aqueous solution of Ru/Ln upon the addition of SF.	S32
Fig. S17 Ru-hydride formation rate based on the change in absorption at 400 nm	S33
for Ru/Ln complexes in the presence of SF.	
Table S10 Ru-hydride formation rates for Ru/Ln catalysts in the presence of SF	S34
Fig. S18 CO ₂ capture and hydrogenation. Dehydrogenation of FA, Reaction	S35
conditions: Reaction conditions: FA (0.4 M, 25 mL in water), SF (2.5 mmol), in	
<i>situ</i> Ru / L7 catalyst (Ru : 10 μ mol, L7 : 20 μ mol) at 90 °C. CO ₂ captured (a) ¹³ C	
NMR of CO ₂ captured reaction aliquot (5 mL of 2 M KOH), GC TCD analysis	
of effluent gas (inset). Hydrogenation of bicarbonate, Reaction conditions: in	
<i>situ</i> Ru/L7 catalyst (Ru: 10 μ mol, L7: 20 μ mol), H ₂ (20 bar), 80 °C, 48 h. (b)	
1 H (inset) and 13 C NMR (in D ₂ O) of reutilization of captured CO ₂ reaction aliquot	
(hydrogenation of HCO ₃ ⁻)	
Fig. S19 ¹ H NMR spectrum (in DMSO-d ₆) for generation of Ru-hydrido species	S36
and Ru-formato species involved in CO_2 hydrogenation. Reaction conditions: (a)	
Ru/L7 (0.02 mmol) in DMSO (1.5 mL). (b) <i>ex situ</i> Ru/L7 (0.02 mmol) in DMSO	
(1.5 mL), H ₂ (20 bar), 80 °C, 2.5 h. (c) ex situ Ru/L7 (0.02 mmol) in DMSO (1.5	
mL), H ₂ (10 bar), CO ₂ (10 bar), 80 °C, 2.5 h.	
General Procedure for the Synthesis of Ligands (L2 -L9)	S37-S39
Characterization of ligand L2-L9 and metal complex (Ru/L7)	S40-S54
Table S11 Comparative catalytic activity of previous literature work and the	S55-S56
current work for formic acid dehydrogenation.	
References	S57-S58

General procedure for TON and TOF calculation in FA dehydrogenation.

The turnover number (TON) was calculated by the following equation:

$$TON = \frac{V_{corrected}}{\left(V_{m,H_{2},25\,°C} + V_{m,CO_{2},25\,°C}\right) \times n_{catalyst}} = \frac{Substrate}{Catalyst} \times \frac{Conversion (\%)}{100}$$

where, $V_{measured}$ and V_{blank} are the volume of gas measured in the catalytic reaction and blank reaction, $V_{corrected} = V_{measured} - V_{blank}$, V_m are the molar volume of H₂ and CO₂, respectively, and $n_{catalyst}$ is the molar amount of catalyst. To account for temperature changes that can affect the measurements of evolved gas volume, a blank reaction without any catalyst was performed. The blank volume (V_{blank}) was observed to be constant over the course of the reaction and was used to correct all the measured gas volumes ($V_{measured}$) generated during FA dehydrogenation. The turnover frequency (TOF) was calculated by the following equation:

$$\mathbf{TOF} = \frac{\mathbf{TON}}{\mathbf{Time}}$$

where time is in hour.

For example, for entry 12 (Table 1) the dehydrogenation of an aqueous solution of FA (1 mmol, 0.4 M in water) with SF (0.25 mmol) at 90 °C, over *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), in the first 3 min 49 mL gas was released with complete conversion of FA. Therefore, the TON and TOF for this reaction can be calculated as follows:

$$TON = \frac{1 \text{ mmol}}{0.01 \text{ mmol}} \times \frac{49 \text{ mL}}{49 \text{ mL}} = 100$$
$$TOF = \frac{100}{3 \text{ min}} \times 60 \text{ min} = 2000 \text{ h}^{-1}$$

Entry	Catalysts	Volume	Time (min)	TON	TOF (h ⁻¹)
		of gas			
		(mL)			
1	Ru	35	390	71	193
2	Ru/L1	28	244	57	122
3	Ru/L2	26	167	53	131
4	Ru/L3	38	187	78	196
5	Ru/L4	34	176	69	81
6	Ru/L5	30	127	61	131
7	Ru/L6	49	27	100	322
8	Ru/L7	49	12	100	587
9	Ru/L8	49	19	100	322
10	Ru/L9	46	15	95	261

Table S1 Catalytic FA dehydrogenation in water over in-situ Ru/Ln catalysts

Reaction condition: FA (0.4 M, 2.5 mL in water), *in situ* **Ru/Ln** catalysts (**Ru**: 10 μ mol, **Ln**: 20 μ mol) at 90 °C. TON and TOF values were estimated, respectively at the end of the reaction and initial 3 min. Ru: [(η^6 -C₁₀H₁₄)RuCl₂]₂ and Ln: **L1-L9**.

Fig. S1 GC-TCD analysis of the (a) evolved gas (H₂:CO₂ \approx 1:1) for the catalytic FA dehydrogenation over *in situ* **Ru/L7** catalyst (Analysis is performed using Argon as the carrier gas). No CO traces (inset). Reaction conditions: FA (0.4 M, 2.5 mL in water), SF (0.25 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol) at 90 °C. (b) Pure mixture of gas containing H₂, CO, CH₄, CO₂.

Fig. S2 Cyclic voltammograms for catalysts (1mM) (a) **Ru** (b) **Ru/L3** (c) **Ru/L6** (d) **Ru/L7** (e) **Ru/L8** and (f) **Ru/L9** in acetonitrile with 0.1 M NBu₄PF₆ as supporting electrolyte at a scan rate of 0.1 Vs⁻¹.

Table S2 Electrochemical data extracted from cyclic voltammograms of Ru, Ru/L3, Ru/L6,Ru/L7, Ru/L8 and Ru/L9 complexes

Temperature (K)	$1/T \ge 10^3 (K^{-1})$	k (s ⁻¹)	$\ln[k] (s^{-1})$
363	2.75	0.555556	-0.58779
353	2.83	0.253889	-1.37086
343	2.91	0.108889	-2.21743
333	3.00	0.054167	-2.91569
323	3.09	0.022778	-3.78197

 Table S3 Kinetics parameter for FA dehydrogenation over Ru/L7 in water

Fig. S3 (a) Temperature dependent FA dehydrogenation over *in situ* **Ru/L7** catalyst and (b) the corresponding Arrhenius plot was based on the initial rate at 3 min for FA dehydrogenation. Reaction conditions: FA (0.4 M, 2.5 mL in water), SF (0.25 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), 50°C – 90 °C.

Estimation of activation energy (Ea) using Arrhenius plot:

We know the Arrhenius equation as $k = Ae^{-Ea/RT}$

 $\ln k = \ln A + (-E_a/R)1/T$, where E_a is the activation energy and R is molar gas constant (1.987 cal K⁻¹ mol⁻¹) and T is temperature in Kelvin (323 K – 363 K)

From the Arrhenius plot (Fig. S3): Slope = -9.29985 ± 0.23939

As from $\ln[k]$ vs. 1/T plot, we got slope = $-E_a / R = -9.29985 \pm 0.23939$

Therefore, $E_a{=}18.48\pm0.48~k~cal~mol^{-1}$

Catalysts	Reaction conditions	E _a (kcalmol ⁻¹)	Ref.
H ₂ N H ₂ O H ₂ N N H ₂ O H ₂ N	HCOOH (1 mol/L M, 2.5 mL), H ₂ O, 50-80 °C, 10 min	19.45	S1
[Cp*Ir(pyrimidylimidazoline)H ₂ O] SO ₄	HCOOH (1 M, 10 mL), H ₂ O, 45-70 °C, 0.17 h	18.69	S2
[Cp*Ir(THBPM)(H ₂ O)]SO ₄ where THBPM: 2,2',6,6'-tetrahydroxyl- 4,4'-bipyrimidine	1 M HCOOH/HCOONa (1:1, 10 mL), H ₂ O, 50- 80 °C, 0.08 h	18.26	S3
O ₃ SO II. NH	HCOOH (4 mmol), H ₂ O (1.3 mL), 60-90 °C, 5 min	18.49	S4
	HCOOH (0.4 M, 2.5 mL), HCOONa (0.25 mmol), H ₂ O, 50-90 °C, 3 min	18.48	This work

Table S4 Activation energies (E_a) for FA dehydrogenation in water over variousliterature known catalysts

T (K)	$(1/T) \ge 10^3 (K^{-1})$	k (s ⁻¹)	$k/T (s^{-1} K^{-1})$	[k/T x c], where c =	ln[k/T x c] (e. u.)
				\mathbf{h}/\mathbf{k}' , (\mathbf{h} = Planck's	
				constant and $\mathbf{k}' =$	
				Boltzmann's constant)	
363	2.75	0.555556	0.00153	7.3309 x 10 ⁻¹⁴	-30.2441
353	2.83	0.253889	0.000719	3.4451 x 10 ⁻¹⁴	-30.9992
343	2.91	0.108889	0.000317	1.5206 x 10 ⁻¹⁴	-31.8171
333	3.00	0.054167	0.000163	7.7916 x 10 ⁻¹⁵	-32.4857
323	3.09	0.022778	0.0000705	3.3779 x 10 ⁻¹⁵	-33.3215

 Table S5. Determination of activation parameters for FA dehydrogenation over Ru/L7

 catalyst in water

Fig. S4 Eyring plot for FA dehydrogenation. Reaction conditions: FA (0.4 M, 2.5 mL in water), SF (0.25 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), 50°C – 90 °C, where e. u. is the energy unit for $\frac{\Delta S^{\neq}}{R}$ value.

Estimation of activation parameters using Eyring plot:

We know the Eyring equation as $k = \frac{k'T}{h}e^{-\frac{\Delta H^{\neq}}{RT}}e^{\frac{\Delta S^{\neq}}{R}}$

So,
$$\frac{k}{T}\frac{h}{k'} = e^{-\frac{\Delta H^{\neq}}{RT}} e^{\frac{\Delta S^{\neq}}{R}}$$

Now
$$\ln\left(\frac{k}{T}\frac{h}{k'}\right) = -\frac{\Delta H^{\neq}}{RT} + \frac{\Delta S^{\neq}}{R}$$

Considering $\frac{h}{k'}$ as constant c = 4.79 x 10⁻¹¹ s K, where h=Planck's constant and k' =Bolzman's constant

Therefore
$$\ln\left(\frac{k}{T} \times c\right) = -\frac{\Delta H^{\neq}}{RT} + \frac{\Delta S^{\neq}}{R}$$

Now from the Eyring plot (**Fig. S4**) $\ln\left(\frac{k}{T} \times c\right)$ vs. 1/T, we got slope $-\frac{\Delta H^{\neq}}{R} = -8.97933 \pm 0.24469$

Therefore, $\Delta H^{\neq} = 17.84 \pm 0.49 \text{ kcalmol}^{-1}$

Again, we got intercept as $\frac{\Delta S^{\neq}}{R} = -5.58978 \pm 0.71414$

Therefore, $\Delta S^{\neq} = -11.11 \pm 1.42 \text{ calK}^{-1} \text{mol}^{-1}$

And
$$\Delta G^{\neq} = \Delta H^{\neq} - T \Delta S^{\neq}$$

Therefore, at 298 K $\Delta G^{\neq} = 21.15 \pm 0.65 \text{ kcalmol}^{-1}$

Fig. S5 Recyclability plot for catalytic FA dehydrogenation over *in situ* **Ru/L7** catalyst. Reaction conditions: FA (0.4 M, 25 mL in water), SF (2.5 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol) at 90°C. FA (380 μ L) was added after each catalytic run. GC-TCD analysis after 80 catalytic runs (inset).

Fig. S6 Minor **Ru**/(**Ln**)₂ species observed after 70 catalytic runs for FA dehydrogenation over **Ru**/**L7** catalyst.

Entry	FA (mmol)	Volume o	f Time (min)	TON	TOF (h^{-1})
		gas (mL)			
1 ^a	1	49	3	100	2000
2 ^b	10	489	60	1000	1078
3°	20	979	280	2000	530
4 ^d	30	1469	520	3000	471
5 ^e	50	2448	780	5000	451

Table S6 Upscaling the catalytic FA dehydrogenation over *in situ* Ru/L7 catalyst

Reaction conditions: ^aFA (0.4 M, 2.5 mL in water), ^bFA (0.4 M, 25 mL in water), ^cFA (0.4 M, 50 mL in water), ^dFA (0.4 M, 75 mL in water), ^eFA (0.4 M, 120 mL in water), with SF (0.25 equiv. of FA), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol) at 90°C. TON are calculated the end of the reaction. ^aTOF (initial 3 min). ^{b-e}TOF (initial 10 min).

Fig. S7 Gas evolution plot for upscaling the catalytic FA dehydrogenation over *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol) at 90°C. Reaction conditions: 10 fold: FA (0.4 M, 25 mL in water), SF (2.5 mmol); 20 fold: FA (0.4 M, 50 mL in water), SF (5 mmol); 30 fold: FA (0.4 M, 75 mL in water), SF (7.5 mmol); and 50 fold: FA (0.4 M, 125 mL in water), SF (12.5 mmol).

Fig. S8 Long-term stability of the catalytic FA dehydrogenation over *in situ* **Ru/L7** catalyst in water at 90 °C, FA (380 μ L) was added after days 15, 36 and 60 days in the same reaction mixture. Reaction conditions: FA (0.4 M, 25 mL in water), SF (2.5 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol) at 90°C.

Fig. S9 ¹H NMR of reaction aliquot of the catalytic FA dehydrogenation over *in situ* **Ru/L7** catalyst in a high pressure reactor (Closed system) GC-TCD analysis of the evolved gas (inset) Reaction conditions: FA (0.4 M, 25 mL in water), SF (2.5 mmol), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), at 90 °C. NMR yield is calculated by using sodium acetate (0.05 mmol) as internal standard.

Fig. S10 Control Hg(0) poisoning experiment, with and without a large excess of elemental Hg(0). Reaction conditions: FA (0.4 M, 2.5 mL in water), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), SF (0.25 mmol), 90 °C.

Fig. S11 Mass analysis of various species formed during the *in situ* generation of **Ru/L7** catalyst. Reaction conditions: **Ru** (10 μ mol), **L7** (20 μ mol), H₂O (2.5 mL), 90 °C, 1.5 h.

Fig. S12 Formation Ru-formato species **Ru/L7-B**. (a) Reaction conditions: **Ru** (10 μ mol), **L7** (20 μ mol), FA (1 mmol), H₂O (2.5 mL), 90 °C, 15 min. (b) Reaction conditions: **Ru** (10 μ mol), **L7** (20 μ mol), FA (1 mmol), SF (0.25 mmol), H₂O (2.5 mL), 90 °C, 2 min.

Fig. S13 (a) Mass analysis of Ru hydrido species **Ru/L7-C**. (b) Temperature dependent ¹H NMR analysis in D₂O. Reaction conditions: **Ru** (10 μ mol), **L7** (20 μ mol), SF (1 mmol), D₂O (2.5 mL), at 40, 50, 70 and 90 °C for 10 min each.

Fig. S14 Mass investigation of the reaction mixture of *in situ* **Ru** (10 μ mol), **L7** (20 μ mol), treated with SF (1 mmol) in water (2.5 mL) stirred at 90 °C for 10 min in step 1, and further with 1 M HCl (1 mL) in the step 2.

Identification Code	Ru/L7
Formula	C ₁₇ H ₂₇ N ₃ RuCl ₂
Molecular weight	445.39
Crystal system	triclinic
Space group	P -1
Temperature/K	296
Wavelength	0.71073
a/Å	8.4626(4)
b/Å	8.6713(4)
c/Å	13.9310(7)
$\alpha^{\prime\circ}$	95.566(1)
β/°	102.413(1)
$\gamma^{/\circ}$	92.563(1)
V/ Å ³	991.41(8)
Ζ	2
Density/gcm ⁻¹	1.492
Absorption Coefficient	9.258
Absorption Correction	spherical harmonics- Frame scaling
F(000)	456.0
Total no of reflections	4915
Reflections, I>2o(I)	4629
Max. 20/°	28.278
Ranges (h, k, l)	$-11 \leq h \leq \! 10$
	$-9 \le k \le 11$
	$-18 \le 1 \le 18$
Complete to 2θ (%)	99.7
Refinement method	'SHELXL 2014/7 (Sheldrick, 2015)
$Goof(F^2)$	1.039
R indices $[I>2\sigma(I)]$	0.0228
R Indices (all data)	0.0246

Table S7 Single crystal X-ray refinement data for $\ensuremath{\text{Ru}/\text{L7}}$

Ru1 Cl1	2.4182(5)
Rul N1	2.0773(15)
Ru1 N2	2.1949(15)
Ru1 C2	2.2107(18)
Ru1 C3	2.1771(17)
Ru1 C4	2.1699(18)
Ru1 C5	2.2017(17)
Rul C6	2.1754(18)
Ru1 C7	2.1956(18)
N1 C11	1.385(2)
N1 C13	1.328(2)
N2 C14	1.490(2)
N2 C15	1.506(2)
N3 C12	1.380(2)
N3 C13	1.338(2)
C1 C2	1.497(3)
C2 C3	1.411(3)
C2 C7	1.432(3)
C3 C4	1.427(3)
C4 C5	1.409(2)
C5 C6	1.434(3)
C5 C8	1.517(3)
C6 C7	1.403(3)
C8 C9	1.532(3)
C8 C10	1.521(3)
C11 C12	1.363(3)
C13 C14	1.488(3)
C15 C16	1.517(3)
C15 C17	1.525(3)

Table S8 Selected bond lengths (Å) for complex Ru/L7

N1 Ru1 Cl1	84.30(4)
N1 Ru1 N2	75.16(6)
N1 Ru1 C2	126.10(6)
N1 Ru1 C3	98.32(6)
N1 Ru1 C4	93.77(6)
N1 Ru1 C5	115.32(6)
N1 Ru1 C6	152.12(7)
N1 Ru1 C7	164.00(7)
N2 Ru1 Cl1	87.99(4)
N2 Ru1 C2	93.16(6)
N2 Ru1 C5	169.48(6)
N2 Ru1 C7	101.76(7)
C2 Ru1 Cl1	148.81(5)
C3 Ru1 Cl1	159.91(5)
C3 Ru1 N2	111.98(6)
C3 Ru1 C2	37.51(7)
C3 Ru1 C5	68.76(7)
C3 Ru1 C7	67.93(7)
C4 Ru1 Cl1	121.83(5)
C4 Ru1 N2	147.46(6)
C4 Ru1 C2	68.46(7)
C4 Ru1 C3	38.33(7)
C4 Ru1 C5	37.60(6)
C4 Ru1 C6	68.11(7)
C4 Ru1 C7	80.45(7)
C5 Ru1 Cl1	92.03(5)
C5 Ru1 C2	81.39(7)
C6 Ru1 Cl1	87.71(5)
C6 Ru1 N2	131.28(6)
C6 Ru1 C2	68.29(7)
C6 Ru1 C3	80.72(7)
	•

Table S9 Selected bond angles (°) for Ru/L7

	C6 Ru1 C5	38.25(7)
	C6 Ru1 C7	37.45(7)
	C7 Ru1 Cl1	111.46(5)
	C7 Ru1 C2	37.91(7)
	C7 Ru1 C5	68.46(7)
	C11 N1 Ru1	136.52(12)
	C13 N1 Ru1	115.85(12)
	C13 N1 C11	106.74(15)
	C14 N2 Ru1	109.76(11)
	C14 N2 C15	113.39(15)
	C15 N2 Ru1	120.95(11)
	C13 N3 C12	107.88(15)
	C1 C2 Ru1	130.85(13)
	C3 C2 Ru1	69.95(10)
	C3 C2 C1	120.92(17)
	C3 C2 C7	118.49(17)
	C7 C2 Ru1	70.47(11)
	C7 C2 C1	120.58(17)
	C2 C3 Ru1	72.54(10)
	C2 C3 C4	120.54(16)
	C4 C3 Ru1	70.56(10)
	C3 C4 Ru1	71.11(10)
	C5 C4 Ru1	72.43(10)
	C5 C4 C3	121.35(16)
	C4 C5 Ru1	69.98(10)
	C4 C5 C6	117.69(16)
	C4 C5 C8	122.48(16)
	C6 C5 Ru1	69.88(10)
	C6 C5 C8	119.79(16)
	C8 C5 Ru1	129.71(12)
	C5 C6 Ru1	71.87(10)
	C7 C6 Ru1	72.06(10)
	C7 C6 C5	121.33(17)
1		

C2 C7 Ru1	71.62(10)
C6 C7 Ru1	70.49(11)
C6 C7 C2	120.57(17)
C5 C8 C9	108.91(16)
C5 C8 C10	113.66(16)
C10 C8 C9	111.5(2)
C12 C11 N1	108.40(16)
C11 C12 N3	106.43(16)
N1 C13 N3	110.55(16)
N1 C13 C14	119.90(16)
N3 C13 C14	129.56(16)
C13 C14 N2	105.87(14)
N2 C15 C16	112.86(17)
N2 C15 C17	111.72(15)
C16 C15 C17	111.35(17)

Fig. S15 UV-vis spectra of (a) aqueous solution of **Ru/L7** (black line), (b) aqueous solution of **Ru/L7** with the addition of SF (red line), and (c) after adding aqueous HCl to an aqueous solution of **Ru/L7** with the addition of SF (blue line).

Fig. S16 UV-vis spectra of aqueous solution of Ru/Ln upon the addition of SF.

Fig. S17 Ru-hydride formation rate based on the change in absorption at 400 nm for **Ru/Ln** complexes in the presence of SF.

Catalysts	Hydride formation rate						
	(v _{Ru-H} x 10 ⁻³ µmol s ⁻¹)						
Ru/L3	1.3						
Ru/L6	5.9						
Ru/L7	8.0						
Ru/L8	4.0						
Ru/L9	2.9						

Table S10 Ru-hydride formation rates for Ru/Ln catalysts in the presence of SF

CO₂ capture and hydrogenation

Fig. S18 CO₂ capture and hydrogenation. **Dehydrogenation** of FA, Reaction conditions: Reaction conditions: FA (0.4 M, 25 mL in water), *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), SF (2.5 mmol), 90 °C. **CO**₂ **captured** (a) ¹³C NMR of CO₂ captured reaction aliquot (5 mL of 2 M KOH), GC TCD analysis of effluent gas (inset). **Hydrogenation** of bicarbonate, Reaction conditions: *in situ* **Ru/L7** catalyst (**Ru**: 10 μ mol, **L7**: 20 μ mol), H₂ (20 bar), 80 °C, 48 h. (b) ¹H (inset) and ¹³C NMR (in D₂O) of reutilization of captured CO₂ reaction aliquot (hydrogenation of HCO₃⁻).

Fig. S19 ¹H NMR spectrum (in DMSO-d₆) for generation of Ru-hydrido species and Ruformato species involved in CO₂ hydrogenation. Reaction conditions: (a) *ex situ* **Ru/L7** (0.02 mmol) in DMSO (1.5 mL). (b) **Ru/L7** (0.02 mmol) in DMSO (1.5 mL), H₂ (20 bar), 80 °C, 2.5 h. (c) *ex situ* **Ru/L7** (0.02 mmol) in DMSO (1.5 mL), H₂ (10 bar), CO₂ (10 bar), 80 °C, 2.5 h.

General Procedure for the Synthesis of Ligands (L2 -L9)

L2

Ligand L2 is synthesized by reducing 2-thiophenecarboxaldehyde (5 mmol, 0.5 mL) with NaBH₄ (7 mmol, 265 mg) in 15 mL of methanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3×15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (70% yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.27-7.26 (d, J = 5 Hz, 1H), 6.99-6.97 (m, 2H), 4.78 (s, 2H), 2.35 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 144.18, 127.07, 125.80, 125.69, 60.14.

L3

Ligand L3 is synthesized by reducing 2-imdazolecarboxaldehyde (5 mmol, 480 mg) with NaBH₄ (2.5 mmol, 95 mg) in 15 mL of ethanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure then the product is recrystallized with diethyl ether in methanol to obtain the desired pure product (72% yield). ¹H NMR: (500 MHz, DMSO-d₆) δ (ppm) 11.86 (s, 1H), 6.90 (s, 2H), 5.29 (s, 1H), 4.44 (s, 2H); ¹³C NMR (125 MHz, DMSO-d₆) δ 147.95, 122.04, 57.03.

L4

Ligand L4 is synthesized by condensation of furfural (5 mmol, 0.414 mL) with n-propylamine (25 mmol, 2.1 mL) for 12h, followed by reduction with NaBH₄ (5.1 mmol, 193 mg) in 15 mL of ethanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (75 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) δ 7.36 (s, 1H), 6.31(s, 1H), 6.18 (s, 1H), 3.78 (s, 2H), 2.60-2.57 (t, *J*₁ =10 Hz, *J*₂ = 5 Hz, 2H), 1.80 (s, 1H), 1.54-1.49 (m, 2H), 0.93-0.90 (t, *J*₁ = 10 Hz, *J*₂ = 5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 153.94, 141.71, 110.04, 106.77, 50.98, 46.13, 22.99, 11.70. HRMS calcd for [M + H]⁺ [C₈H₁₃NO] 140.1070, observed 140.1098

L5

Ligand L5 is synthesized by condensation of 2-thiophenecarboxaldehyde (5 mmol, 0.5 mL) with npropylamine (25 mmol, 2.1 mL) for 12 h, followed by reduction with NaBH₄ (5.1 mmol, 193 mg) in 15 mL of ethanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (75 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.22-7.21 (d, *J* = 5 Hz,1H), 6.96-6.94 (m, 2 H), 4.00 (s, 2H), 2.65-2.63 (t, *J* = 5 Hz, 2 H), 1.70 (s, 1H), 1.58-1.51 (m, 2H), 0.95-0.92 (t, *J*₁ = 10 Hz, *J*₂ = 5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 143.91, 126.31, 124.54, 123.99, 50.72, 48.05, 22.75, 11.46. HRMS calcd for [M + H]⁺ [C₈H₁₃NS] 156.0841, observed 156.0851.

L6

Ligand L6 is synthesized by condensation of with 2-imidazolecarboxaldehyde (4 mmol, 384.24 mg) with n-propylamine (20 mmol, 1.6 mL) for 12 h, followed by reduction with NaBH₄ (2.5 mmol, 95 mg) in 25 mL of methanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (78 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.96 (s, 2H), 3.89 (s, 2H), 2.61-2.58 (t, *J*₁ = 5 Hz, *J*₂ = 10 Hz, 2H), 1.54-1.48 (m, 2H), 0.92-0.89 (t, *J*₁ = 10 Hz, *J*₂ = 5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 147.22, 122.01, 51.71, 47.24, 23.12, 11.87. HRMS calcd for [M + H]⁺ [C₇H₁₃N₃] 140.1182, observed 140.1199.

L7

Ligand L7 is synthesized by condensation of with 2-imidazolecarboxaldehyde (4 mmol, 384.24 mg) with iso-propylamine (20 mmol, 1.7 mL) for 12 h, followed by reduction with NaBH₄ (2.5 mmol, 95 mg) in 25 mL of methanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (80 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) δ 6.95 (s, 2H), 3.89 (s, 2H), 2.87-2.81 (m, 1H), 1.08-1.07 (d, *J* = 5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 146.90, 121.41, 48.57, 44.51, 22.38. HRMS calcd for [M + H]⁺ [C₇H₁₃N₃] 140.1182, observed 140.1198.

L8

Ligand L8 is synthesized by condensation of with 2-imidazolecarboxaldehyde (4 mmol, 384.24 mg) with n-butylamine (10 mmol, 0.98 mL) for 12 h, followed by reduction with NaBH₄ (2.5 mmol, 95 mg) in 25 mL of methanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (73 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.97 (s, 2H), 3.90 (s, 2H), 2.65-2.62 (t, *J*₁ = 10 Hz, *J*₂ = 5 Hz, 2 H), 1.50-1.44 (m, 2H), 1.37-1.30 (m, 2H), 0.91-0.89 (t, *J* = 5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 146.96, 122.07, 49.52, 47.21, 32.02, 31.14, 20.55, 14.12. HRMS calcd for [M + H]⁺ [C₈H₁₅N₃] 154.1339, observed 154.1351.

L9

Ligand L9 is synthesized by condensation of with 2-imidazolecarboxaldehyde (4 mmol, 384.24 mg) with iso-butylamine (15 mmol, 1 mL) for 12 h, followed by reduction with NaBH₄ (2.5 mmol, 95 mg) in 10 mL of ethanol at room temperature for 2 h. Completion of the reaction is monitored by thin layer chromatography. Further, all the volatiles are removed under reduced pressure, followed by extraction with dichloromethane (3 × 15 mL)/water. Then, the organic layer is dried over anhydrous Na₂SO₄, and further the solvent was evaporated under reduced pressure to get the desired oily product (76 % yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.95 (s, 2H), 5.64 (s, 2H), 3.87 (s, 2H) 2.43-2.42 (d, *J* = 5 Hz, 2 H), 1.77-1.69 (m, 1H), 0.89-0.87 (d, *J* = 10 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 147.12, 121.99, 57.71, 47.27, 28.32, 20.74. HRMS calcd for [M + H]⁺ [C₈H₁₅N₃] 154.1339, observed 154.1352.

Synthesis of $[(\eta^6-C_{10}H_{14})Ru(L7)CI]^+(Ru/L7)$

Ex situ **Ru/L7** catalyst is synthesized by treating $[(\eta^6-C_{10}H_{14})RuCl_2]_2$ (0.05 mmol, 30.6 mg) and **L7** (0.12 mmol, 16.7 mg) in acetonitrile (15 mL) under reflux for 12 h. The volume of the reaction mixture is reduced to 1 mL under reduced pressure, followed by precipitation with excess of diethyl ether to obtain yellow solid. The identity of the synthesised *ex situ* complex is confirmed by NMR, HRMS and single-crystal X-ray diffraction. ¹H NMR (400 MHz, DMSO-d_6): δ (ppm) 13.04 (s, NH), 7.63 (s, 1H), 7.31 (s, 1H), 5.88-5.87 (d, *J* = 4 Hz, 2H)), 5.69-5.68 (d, *J* = 4 Hz, 2H),), 3.70-3.65 (m, 1H), 3.26-3.19 (m, 2H), 2.85-2.79 (m, 1H), 2.05 (s, 3H), 1.18-1.16 (d, *J* = 8 Hz, 3H), 1.14-1.12 (d, *J* = 8 Hz, 3H), 0.94-0.91 (m, 6H); ¹³C NMR (100 MHz, DMSO-d_6): δ (ppm) 149.33, 128.61, 118.57, 104.27, 82.86, 81.85, 81.31, 80.42, 50.33, 30.28, 27.71, 20.88, 19.79, 17.40, 13.83. HRMS calcd for [M]⁺ [C₁₇H₂₇N₃RuCl] 410.0933, observed 410.0944.

Characterization of ligand L2-L9 and metal complexes (Ru/L7)

Chromatogram SKS-KK-97R4 D:\October 2024\SKS-KK-97R4__16-10-2024_61.qgd

Spectrum

Fig. S20 GC-MS data of L2

Fig. S22 ¹³C NMR of L2

177172

100.00

Fig. S23 GC-MS data of L3

Fig. S27 ¹H NMR of L4

Fig.S28 ¹³C NMR of L4

Fig. S29 HR-MS spectrum of L5

Fig. S31 ¹³C NMR of L5

Fig. S33 ¹H NMR of L6

Fig. S41 HR-MS spectrum of L9

Fig. S43 ¹³C NMR of L9

Fig. S45 ¹H NMR of Ru/L7

Fig. S46 ¹³C NMR of Ru/L7

Table S11 Comparative catalytic activity of previous literature work and the current work for formic acid dehydrogenation.

Catalyst	Substrate	Solvent	T (°C)	t (h)	TON	TOF(h ⁻¹)	Ref.
	HCOOH/ HCOONa	H ₂ O	90	80	76,840	2000	This work
$H \qquad in situ catalyst$ $H \qquad H \qquad free for the second secon$	HCOOH/ HCOONa	H ₂ O	90	0.33	8830	1545	\$5
	HCOOH/ HCOONa	H ₂ O	90	1.56	500	296	S6
	HCOOH/ HCOONa	H ₂ O	90	0.25	6050	1548	S7
	HCOOH/ HCOONa	H ₂ O	90	0.25	2248	940	S8
$[RuCl_2(C_{10}H_{14})]_2$	HCOOH	HexNMe ₂	40	3	30	10	S9
$[RuCl_2(PPh_3)_3]$	HCOOH/ NEt ₃	DMF	40	0.3	891	2688	S10
$[RuCl_2(C_6H_6)]_2/DPPE$	HCOOH	Me ₂ NHex	80	NA	NA	47970	S11
$[RuCl_2(C_6H_6)]_2/DPPE$	НСООН	DMOA	25	1080	>100000 0	1000	S12
[(PNP ³)Ru(H)Cl(CO)]	HCOOH / NHex ₃	DMF	90	3	706500	256000	S13
[(PNNNP ²)RuH ₂ (CO)]	HCOOH/ NEt ₃	DMSO	90	150	1100000	7300	S14

References

- S1 H. Kawanami, M. Iguchi and Y. Himeda, Ligand Design for Catalytic Dehydrogenation of Formic Acid to Produce High-pressure Hydrogen Gas under Base-free Conditions, *Inorg. Chem.*, 2020, **59**, 4191–4199.
- S2 W. H. Wang, M. Z. Ertem, S. Xu, N. Onishi, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman, E. Fujita and Y. Himeda, Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH, ACS Catal., 2015, 5, 5496–5504.
- S3 W.-H. Wang, S. Xu, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman, E. Fujita and Y. Himeda, Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight, *ChemSusChem*, 2014, 7, 1976–1983.
- S4 L. Guo, Z. Li, M. Cordier, R. Marchal, B. L. Guennic and C. Fischmeister, Noninnocent Ligands for Efficient Dehydrogenation of Aqueous and Neat Formic Acid under Base-Free Conditions, ACS Catal., 2023, 13, 13626–13637.
- S5 S. Patra, H. Deka and S. K. Singh, Bis-Imidazole Methane Ligated Ruthenium(II) Complexes: Synthesis, Characterization, and Catalytic Activity for Hydrogen Production from Formic Acid in Water, *Inorg. Chem.*, 2021, **60**, 14275–14285.
- S. Kushwaha, J. Parthiban and S. K. Singh, Ruthenium-Catalyzed Formic Acid/Formate Dehydrogenation and Carbon Dioxide/(bi)carbonate Hydrogenation in Water, Organometallics, 2023, 42, 3066–3076.
- S7 S. Patra and S. K. Singh, Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water, *Inorg. Chem.*, 2020, 59, 4234–4243.
- S8 S. Patra, M. K. Awasthi, R. K. Rai, H. Deka, S. M. Mobin and S. K. Singh, Dehydrogenation of Formic Acid Catalyzed by Water-Soluble Ruthenium Complexes: X-ray Crystal Structure of a Diruthenium Complex, *Eur. J. Inorg. Chem.*, 2019, 2019, 1046–1053.
- S9 B. Loges, A. Boddien, H. Junge and M. Beller, Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2 Fuel Cells, Angew. Chem. Int. Ed., 2008, 47, 3962–3965.
- S10 C. Fellay, P. J. Dyson and G. Laurenczy, A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst, *Angew. Chem. Int. Ed.*, 2008, 47, 3966–3968.

- S11 A. Boddien, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, G. Laurenczy and M. Beller, Towards the development of a hydrogen battery, *Energy Environ. Sci.*, 2012, 5, 8907– 8911.
- S12 P. Sponholz, D. Mellmann, H. Junge and M. Beller, Towards a Practical Setup for Hydrogen Production from Formic Acid, *ChemSusChem*, 2013, 6, 1172–1176.
- S13 G. A. Filonenko, R. Van Putten, E. N. Schulpen, E. J. Hensen and E. A. Pidko, Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst, *ChemCatChem*, 2014, 6, 1526–1530.
- S14 Y. Pan, C. L. Pan, Y. Zhang, H. Li, S. Min, X. Guo, B. Zheng, H. Chen, A. Anders, Z. Lai, J. Zheng and K.-W. Huang, Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN³-Pincer Ligand, *Chem. Asian J.*, 2016, 11, 1357–1360.
- S15 C. Guan, D.-D. Zhang, Y. Pan, M. J. Ajitha, J. Hu, H. Li, C. Yao, M.-H. Huang, S. Min, J. Zheng, Y. Himeda, H. Kawanami and K. W. Huang, Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand, *Inorg. Chem.*, 2017, 56, 438–445.
- S16 P. Knörr, N. Lentz and M. Albrecht, Efficient additive-free formic acid dehydrogenation with a NNN–ruthenium complex, *Catal. Sci. Technol.*, 2023, **13**, 5625-5631.
- S17 P. Aufricht, V. Nori, B. Rabell, L. Piccirilli, S. Koranchalil, R. W. Larsen, M. T. Nielsen and M. Nielsen, Formic acid dehydrogenation catalysed by a novel amino-di(N-heterocyclic carbene) based Ru-CNC pincer complex, *Chem. Commun.*, 2025, **61**, 3986-398.
- S18 Y. Himeda, S. Miyazawa and T. Hirose, Interconversion between Formic Acid and H₂/CO₂
 Using Rhodium and Ruthenium Catalysts for CO₂ Fixation and H₂ Storage, *ChemSusChem*.
 2011, 4, 487-493.
- S19 R. Verron, E. Puig, P. Sutra, A. Igau and C. Fischmeister, Base-Free Reversible Hydrogen Storage Using a Tethered π-Coordinated-Phenoxy Ruthenium-Dimer Precatalyst, ACS Catal. 2023, 13, 5787–5794.