Supplementary Information

Silagermylenation of C=O bonds and radical fragmentation of

CO₂-expanded bis(germylene) by a cyclic (alkyl)(amino)carbene

Anna-Lena Thömmes, Robin Völker, Bernd Morgenstern, Michael Zimmer, Dominik Munz, Christopher W. M. Kay, David Scheschkewitz*

Table of contents

1. General considerations	1
2. Synthetic Procedures	2
2.1 Synthesis of oxycarbonyl NHC-bis(germylene) 2a	2
2.2 Synthesis of aminocarbonyl NHC-bis(germylene) 2b	3
2.3 Reaction of NHC-bis(germylene) 2a with CAAC ^{Me}	4
2.4 Synthesis of alkoxylated anilinyl silanes for NMR comparison	5
3. Characterization	7
3.1 X-Ray crystallographic data	7
3.2 NMR spectroscopic data	11
3.3 IR spectroscopic data	22
3.4 DFT calculations	23
References	43

1. General considerations

All manipulations were carried out under a protective atmosphere of argon applying standard Schlenk or glovebox techniques. The glassware was pre-dried in an oven at 125 °C and heated in vacuo prior to use. Solvents were taken from solvent purification systems (Innovative technology PureSolv MD7 or MBraun SPS 5/7; hexane, pentane, thf, benzene). Benzene-d₆ and thf-d₈ were dried over a potassium mirror, degassed through freeze-pump-thaw cycles and condensed under argon prior to use. NHCbis(germylene) 1,^[S1] 1,3-bis(2,6-diisopropyl)imidazol-2-ylidene (NHC)^[S2] and 1-(2,6diisopropylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene (CAAC^{Me})^[S3] were prepared according to published procedures. All other chemicals were obtained commercially and used as received. The NMR spectra were recorded on a Bruker Avance III HD 400 spectrometer at 300 K (¹H: 400.13 MHz, ¹³C: 100.61 MHz, ²⁹Si: 79.49 MHz) or on a Bruker Avance III HD 300 at 300 K (1H: 300.13 MHz, 13C: 75.56 MHz, ²⁹Si: 59.6 MHz). The ¹H and ¹³C{¹H} NMR spectra were referenced to the residual proton and natural abundance ¹³C resonances of the deuterated solvents and chemical shifts were reported relative to SiMe4 (benzene- d_6 : $\delta H = 7.16$ ppm and $\delta C = 128.06$ ppm, thf- d_8 : $\delta H = 1.72$, 3.58 ppm and $\delta C = 67.21$, 25.31 ppm).^[S4] The ²⁹Si NMR chemical shifts were referenced to external SiMe₄. The following abbreviations were used for the multiplicities: s – singlet, d – doublet, t – triplet, sept – septet, m – multiplet, br – prefix broad. IR data of powder samples was acquired on a Bruker Vertex 70 spectrometer in attenuated total reflectance (ATR) mode. X-band continuous wave (cw) EPR spectra were recorded on a Magnettech MiniScope MS 5000 with a microwave frequency of 9.44 GHz using a modulation amplitude of 100 kHz. For leastsquare fitting of the data, the Nelder-Mead method was applied and the spectra were simulated with the Easyspin toolbox (version 6.0.6)^[S5] for Matlab R2024a^[S6] using the resulting fit data. Melting points were determined under argon in sealed NMR tubes. The molten samples were examined by NMR spectroscopy to confirm whether decomposition had occurred upon melting. Elemental analyses were performed in triplicate for each sample using Leco CHN900 analyzer and mean values are reported. Single crystal X-ray diffraction (SC-XRD) was performed on a Bruker D8 Venture diffractometer with a microfocus sealed tube and a Photon II detector. Graphitemonochromated Mo K α radiation (λ = 0.71073 Å) was used. Data were corrected for absorption effects using the multi-scan method. The structures were solved by direct methods using SHELXT^[S7] and refined by full matrix least squares calculations on F2 (SHELXL)^[S8] in the graphical user interface Shelxle.^[S9] Computations were carried out with the Gaussian 16.C01 program package.^[S10] Structural optimizations and frequency analyses were performed at the BP86-D3(BJ)/def2-SVP^[11,12] or the UB3LYP-D3(BJ)/def2-SVP^[12,13] (for paramagnetic compound 3) level of theory, including the D3 dispersion correction by Grimme with Becke-Johnson damping^[S14] and subsequent single-point calculations at the BP86-D3(BJ)/def2-TZVPP^[11,12] or the UB3LYP-D3(BJ)/def2-TZVPP^[12,13] (for paramagnetic compound **3**) level of theory. For the calculations of EPR parameters, the ORCA quantum chemistry program package (version 5.0.4)^[S15] was used at the UB3LYP/def2-TZVPP^[12,13] level of theory. Kohn-Sham orbitals and spin densities were visualized with ChemCraft.^[S16]

2. Synthetic Procedures

2.1 Synthesis of oxycarbonyl NHC-bis(germylene) 2a

NHC-bis(germylene) **1** (261 mg, 212 μ mol, 1 eq.) is suspended in 2.5 mL of benzene. Stirring under CO₂ atmosphere at ambient pressure for 20 minutes results in a colorless solution. The solvent is removed under vacuum to yield NHC-bis(germylene) **2a** (255 mg, 195 μ mol, 92%) as a colorless amorphous powder.

¹**H NMR** (400.13 MHz, 300 K, TMS): δ (thf-d₈) = 7.59 (s, 2H, Ph*H*), 6.86 (s, 4H, Tip*H*), 5.69 (m, 4H, CH(CH₃)₂ of NHC), 3.74 (sept, 4H, CH(CH₃)₂ of Tip), 2.77 (sept, 2H, CH(CH₃)₂ of Tip), 2.52 (s, 12H, N(CH₃)₂), 2.24 (s, 12H, NHC-CCH₃), 1.37 (d, 12H, CH(CH₃)₂ of NHC), 1.19, 1.19 (each d, overall 12H, CH(CH₃)₂ of NHC), 1.11, 1.08 (d, brd, overall 24H, CH(CH₃)₂ of Tip), 0.96 (d, 12H, CH(CH₃)₂ of Tip), 0.41 (s, 12H, Si(CH₃)₂) ppm. δ (C₆D₆) = 8.15, 8.15 (overlapping s, overall 2H, PhH), 7.16 (s, 4H, TipH, overlapping with C₆D₆ peak), 5.93 (m, 4H, CH(CH₃)₂ of NHC), 4.13 (sept, 4H, CH(CH₃)₂ of Tip), 2.91 (sept, 2H, CH(CH₃)₂ of Tip), 2.54, 2.53 (overlapping s, overall 12H, N(CH₃)₂), 1.58 (s, 12H, NHC-CCH₃), 1.44 (d, 12H, CH(CH₃)₂ of NHC), 1.36, 1.34 (each d, overall 12H, CH(CH₃)₂ of NHC), 1.24, 1.21 (each d, overall 24H, CH(CH₃)₂ of Tip), 0.94 (brd, 12H, CH(CH₃)₂ of Tip), 0.88, 0.86, 0.85, 0.84 (each s, overall 12H, Si(CH₃)₂) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 300 K, TMS): δ = 204.89 (CO), 173.44 (NHC-C), 158.19, 154.10 (PhC), 149.41, 146.90, 140.07 (TipC), 129.16 (NHC-CCH₃), 125.48 (PhC), 121.05 (TipC), 52.67 (CH(CH₃)₂ of NHC), 47.15 (N(CH₃)₂), 35.01, 34.74 (CH(CH₃)₂ of NHC), 25.60, 25.22, 24.68, 24.59 (CH(CH₃)₂ of Tip), 21.03, 20.96 (CH(CH₃)₂ of NHC), 9.93 (NHC-CCH₃), 1.40, 1.28 (Si(CH₃)₂) ppm. ²⁹Si{¹H} NMR (79.49 MHz, 300 K, TMS): δ (thf-d₈) = 2.09, 2.05, δ (C₆D₆) = 2.70 ppm. Elemental analysis: Calcd. for (C₇₀H₁₁₄Ge₂N₆O₄Si₂): C, 64.42; H, 8.80; N, 6.44. Found: C, 64.69; H, 7.72; N, 6.10. Mp.: 164°C (under formation of Tip₂Ge=GeTip₂ and unidentified decomposition products). **IR:** v(CO) 1613 cm⁻¹.

In solution, slow decomposition is observed, providing an unidentified mixture of products. A characteristic septet at 4.89 ppm in the ¹H NMR spectrum (in thf-d₈), concomitant with the precipitation of a colorless solid, suggests the formation of poorly soluble NHC–CO₂).^[S17a]

2.2 Synthesis of aminocarbonyl NHC-bis(germylene) 2b

NHC-bis(germylene) **1** (250 mg, 177 μ mol, 1 eq.) is suspended in 4 mL of benzene. Dropwise addition of a solution of ethyl isocyanate in benzene (0.41 M, 0.99 mL, 406 μ mol, 2.3 eq.) results in complete dissolution of the starting material and subsequent precipitation of a colorless solid. After stirring for one hour, the solvent is removed and the residue is washed with 2 mL of pentane to yield NHC-bis(germylene) **2b** as a colorless powder (176 mg, 121 μ mol, 68%). Single crystals of **2b** suitable for SC-XRD anylsis are obtained from a benzene/thf/hexane solution.

¹**H NMR** (400.13 MHz, thf-d₈, 300 K, TMS): δ = 7.41 (s, 2H, Ph*H*), 6.86 (s, 4H, Tip*H*), 5.73 (m, 4H, CH(CH₃)₂ of NHC), 3.86 (brsept, 2H, CH(CH₃)₂ of Tip), 3.69 (app. quint, 4H, NCH₂CH₃), 3.51 to 3.40 (m, 2H, CH(CH₃)₂ of Tip), 2.75 (sept, 2H, CH(CH₃)₂ of Tip), 2.54 (s, 12H, N(CH₃)₂), 2.18 (s, 12H, NHC-CCH₃), 1.44 (d, 12H, CH(CH₃)₂ of NHC), 1.27 (brtr, 6H, NCH₂CH₃), 1.19, 1.18, 1.16 (overlapping d, overall 24H, CH(CH₃)₂ of NHC and CH(CH₃)₂ of Tip), 0.93 (brd, 24H, CH(CH₃)₂ of Tip), 0.53, 0.28 (each s, each 6H, Si(CH₃)₂) ppm. ¹³C{¹H} NMR (100.61 MHz, thf-d₈, 300 K, TMS): δ = 212.19, 211.93 (CO), 172.49 (NHC-C), 156.54, 154.29, 154.24 (PhC), 149.63, 146.66, 139.92 (TipC), 128.64, 128.45 (NHC-CCH₃), 126.33 (PhC), 121.41 (TipC), 53.03 (CH(CH₃)₂ of NHC), 47.39 (N(CH₃)₂), 42.64 (NCH₂CH₃), 34.93, 34.58 (CH(CH₃)₂ of NHC), 25.83, 25.09, 24.51, 24.39 (CH(CH₃)₂ of Tip), 21.34, 21.13, 20.88 (CH(CH₃)₂ of NHC), 18.80 (NCH₂CH₃), 10.22, 8.18 (NHC-CCH₃), 1.44, 0.34, 0.21 (Si(CH₃)₂) ppm. ²⁹Si{¹H} NMR (79.49 MHz, thf-d₈, 300 K, TMS): $\delta = -6.27$, -6.44 ppm. **Elemental analysis:** Calcd. for (C₈₁H₁₃₁Ge₂N₈O₂Si₂): C, 67.07; H, 9.12; N, 7.73. Found: C, 67.13; H, 8.12; N, 7.62. **Mp.:** 110°C (under unselective decomposition to unidentified products). **IR:** v(CO)1548 cm⁻¹.

In solution, slow decomposition is observed, providing an unidentified mixture of products. A septet at 5.00 ppm in the ¹H NMR spectrum (in thf-d₈), concomitant with the precipitation of a colorless solid (characteristic for poorly soluble NHC–heteroallene adducts),^[S17] suggests the formation of NHC–C(O)NEt.

2.3 Reaction of NHC-bis(germylene) 2a with CAAC^{Me}

NHC-bis(germylene) **2a** (100 mg, 75.3 µmol, 0.5 eq.) and CAAC^{Me} (43.0 mg, 151 µmol, 1 eq.) are each dissolved in 2 mL of benzene. The germylene solution is added rapidly to the CAAC^{Me} solution *via* syringe. The resulting intensely red solution is concentrated under vacuum and 4 mL of pentane are added prior to filtration. Off-white crystals of germylene **3** (13 mg, 16.7 µmol, 11%) are grown from the concentrated filtrate at +4°C.

EPR (9.44 GHz, 5 dB, 1.5 G modulation amplitude, 100 kHz modulation frequency, C_6D_6 , 300 K): *g* 2.0035, $A(^{14}N)$ 5.96 G.

Reasonable elemental analysis and IR spectroscopy of **3** were prevented by its highly sensitive nature.

2.4 Synthesis of alkoxylated anilinyl silanes for NMR comparison

 $\begin{array}{c} \mathsf{Me}_{2}\mathsf{N} \\ \overbrace{\mathsf{Ge}=\mathsf{Ge}}^{\mathsf{Vip}} \\ \mathsf{Tip} \\ \mathsf{Me}_{2}\mathsf{N} \\ \mathsf{Me}_{2}\mathsf{N} \\ \mathsf{Si}_{\mathsf{Ge}} \end{array} \xrightarrow{\begin{array}{c} 4 \text{ eq. HexOH,} \\ \mathsf{C}_{6}\mathsf{D}_{6}, \text{ rt} \\ \mathsf{Si}_{\mathsf{OHex}} \\ \mathsf{Si}_{\mathsf{OHex}} \\ \mathsf{Si}_{\mathsf{OHex}} \end{array} + \begin{array}{c} \mathsf{unidentified} \\ \mathsf{decomposition products} \\ \mathsf{Si}_{\mathsf{OHex}} \\ \mathsf{Si}_{\mathsf{OHex}} \\ \mathsf{Si}_{\mathsf{OHex}} \end{array}$

Reaction of a o-anilino disubstituted silyl digermene^[S18] with hexanol

To a solution of digermene **Si**_{Ge} (30.0 mg, 33.0 μ mol, 1 eq.) in 0.5 mL of C₆D₆ in an NMR tube hexanol (16.8 μ L, 134 μ mol, 4 eq.) is added *via* syringe at room temperature. Quantitative conversion to siloxane **Si**_{OHex} is confirmed *via* multinuclear NMR spectroscopy.

¹H NMR (300.13 MHz, C₆D₆, 300 K, TMS): δ = 7.88 (ddd, 1H, Me₂N-Ph*H*), 7.25 (ddd, 1H, Me₂N-Ph*H*), 7.13 (ddd, 2H, Me₂N-Ph*H*, overlapping with peaks of unidentified by-products), 3.71 (t, 2H, OCH₂(CH₂)₄CH₃), 2.46 (s, 6H, N(CH₃)₂), 1.65 (tt, 2H, OCH₂CH₂(CH₂)₃CH₃), 1.44 to 1.12 (m, 6H, O(CH₂)₂(CH₂)₃CH₃ overlapping with peaks of unidentified by-products), 0.89 (t, 3H, O(CH₂)₅CH₃ of HexOH), 0.51 (s, 6H, Si(CH₃)₂) ppm. ¹³C{¹H} NMR (75.47 MHz, C₆D₆, 300 K, TMS): δ = 161.19, 136.58 (PhC_{quart}), 136.20, 131.07, 125.16, 121.30 (PhC), 63.04 (OCH₂(CH₂)₄CH₃ of HexOH), 46.67 (N(CH₃)₂), 33.38 (OCH₂CH₂(CH₂)₃CH₃ of HexOH), 32.13 (O(CH₂)₂CH₂(CH₂)₂CH₃ of HexOH), 14.33 (O(CH₂)₅CH₃ of HexOH), -0.33 (Si(CH₃)₂) ppm. ²⁹Si{¹H} NMR (59.63 MHz, C₆D₆, 300 K, TMS): δ = 3.59 ppm.

In the ²⁹Si-¹H-HMBC NMR spectrum (Figure S19), a cross peak of the ²⁹Si resonance (3.59 ppm) with the ¹H resonance of the OCH₂ group (3.71 ppm) further corroborates the HexO-substitution at silicon.

The reaction of chlorosilane **Sici**^[S19] with hexanol providing the same product according to multinuclear NMR spectroscopy serves as additional proof of the identity of **Sio**_{Hex}:

Chlorosilane **Si**_{CI} (50.0 mg, 234 µmol, 1 eq.) is dissolved in 0.5 mL of C₆D₆ and hexanol (0.05 mL,401 µmol, 1.7 eq.) as well as triethylamine (0.02 mL, 398 µmol, 1.7 eq.) are added *via* syringe. A viscous opaque suspension results which is filtrated and washed with circa 0.3 mL of hexane. All volatile species are removed *in vacuo* and the residue is dissolved in C₆D₆. The formation of siloxane **Si**_{OHex} is confirmed by multinuclear NMR spectroscopy.

Reaction of a silylenephenylene bridged bis(digermene)^[S18] with hexanol

To a solution of bis(digermene) **Bis-Si**_{Ge} (50.0 mg, 26.2 µmol, 1 eq.) in 0.5 mL of C₆D₆ in an NMR tube hexanol (6.6 µL, 52.4 µmol, 2 eq.) is added. Quantitative conversion to the bis(siloxane) **Bis-Si**_{OHex} is confirmed by multinuclear NMR spectroscopy.

¹H NMR (300.13 MHz, C₆D₆, 300 K, TMS): δ = 7.92 (s, 2H, Me₂N-Ph*H*), 3.78 (t, 4H, OCH₂(CH₂)₄CH₃), 2.56 (s, 12H, N(CH₃)₂), 1.83 to 1.67 (m, 4H, OCH₂CH₂(CH₂)₃CH₃ overlapping with peaks of unidentified by-products), 1.55 to 1.23 (m, 12H, O(CH₂)₂(CH₂)₃CH₃ overlapping with peaks of unidentified by-products), 1.21 to 1.17 (m, 4H, O(CH₂)₅CH₃ overlapping with peaks of unidentified by-products), 0.95 to 0.83 (m, 6H, O(CH₂)₅CH₃ overlapping with signals of decomposition products of Tip₂Ge=GeHTip), 0.54 (s, 12H, Si(CH₃)₂) ppm. ¹³C{¹H} NMR (75.47 MHz, C₆D₆, 300 K, TMS): δ = 157.97, 139.91 (PhC_{quart}), 129.30 (PhC), 63.08 (OCH₂(CH₂)₄CH₃), 47.00 (N(CH₃)₂), 34.84, 34.66 (OCH₂CH₂(CH₂)₃CH₃), 26.30, 26.14 (O(CH₂)₂CH₂(CH₂)₂CH₃), 24.22, 24.10 (O(CH₂)₃CH₂CH₂CH₃), 23.19, 23.12 (O(CH₂)₄CH₂CH₃), 14.35, 14.29 (O(CH₂)₅CH₃), -0.32 (Si(CH₃)₂) ppm. ²⁹Si{¹H} NMR (59.63 MHz, C₆D₆, 300 K, TMS): δ = 3.54 ppm.

In the ²⁹Si-¹H-HMBC NMR spectrum (Figure S23), a cross peak of the ²⁹Si resonance (3.54 ppm) with the ¹H resonance of the OCH₂ group (3.76 ppm) further corroborates the HexO-substitution at silicon.

3. Characterization

3.1 X-Ray crystallographic data

Figure S1. Molecular structure of NHC-bis(germylene) **2b** in the solid state. Hydrogen atoms omitted for clarity. Thermal ellipsoids are shown at 50% probability. Selected bond lengths (in Å) and angles (in °): Ge1–C26 2.078(2), Ge1–C10 2.066(2), N2–C10 1.382(3), C10–O1 1.239(2), Si1–O1 2.788(2), C10-Ge1-C26 90.79(8), C26-Ge1-C11 95.31(8), C11-Ge1-C10 109.92(8), Σ° (Ge1) 296.0(2), C9-N2-Si1 123.8(1), C9-N2-C10 119.6(2), C10-N2-Si1 116.6(2), Σ° (N2) 360.0(5), Si1-N2-C10-O1 9.1(2), C11-Ge1-C10-O1 79.3(2), C26-Ge1-C10-O1 4.8(2).

All non H-atoms were located in the electron density maps and refined anisotropically. C-bound H atoms were placed in positions of optimized geometry and treated as riding atoms. Their isotropic displacement parameters were coupled to the corresponding carrier atoms by a factor of 1.2 (CH, CH₂) or 1.5 (CH₃). *Disorder*: two co-crystallized benzene molecules are disordered across two positions each (fvar 2: 0.60/0.40 and fvar 3: 0.78/0.22).

Table S1. Crystal Data and Structure Refinement for NHC-bis(germylene)**2b** (CCDC2427550).[S22]

Identification code	sh5583_a		
Empirical formula	C108 H158 Ge2 N8 O2	Si2	
Formula weight	ormula weight 1801.77		
Temperature	133(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 12.0604(6) Å	$\alpha = 84.472(2)^{\circ}.$	
	b = 12.6790(6) Å	$\beta = 73.288(2)^{\circ}.$	
	c = 19.5103(10) Å	$\gamma = 66.037(2)^{\circ}$.	
Volume	2610.4(2) Å ³		
Ζ	1		
Density (calculated)	1.146 Mg/m ³		
Absorption coefficient	0.649 mm ⁻¹		
F(000)	970		
Crystal size	0.180 x 0.100 x 0.010 mm ³		
Theta range for data collection	1.921 to 27.171°.		
Index ranges	−15≙h≙15, −16≙k≙16, −25≙l≙25		
Reflections collected	ed 95589		
Independent reflections 11547 [R(int) = 0.0796]			
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.7455 and 0.6765		
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	11547 / 606 / 677		
Goodness-of-fit on F ²	1.024		
Final R indices [I>2sigma(I)]	R1 = 0.0401, wR2 = 0.0792		
R indices (all data)	R1 = 0.0614, wR2 = 0.0876		
Extinction coefficient	n/a		
_argest diff. peak and hole 0.345 and -0.552 e.Å ^{-3}			

Figure S2. Molecular structure of germylene radical **3** in the solid state. Hydrogen atoms omitted for clarity. Thermal ellipsoids are shown at 50% probability. Selected bond lengths (in Å) and angles (in °): Ge1–C22 2.094(1), Ge1–O1 1.9528(7), Ge1–O2 2.8139(8), C9–O1 1.339(1), C9–O2 1.238(1), C1–N1 1.376(1), C1–C9 1.441(1), O1-Ge1-C22 91.10(3), O1-Ge1-C33 101.76(4), C33-Ge1-C22 95.37(4), Σ° (Ge1) 288.2(1), Ge1-O1-C9-O2 10.5(1).

All non H-atoms were located in the electron density maps and refined anisotropically. C-bound H atoms were placed in positions of optimized geometry and treated as riding atoms. Their isotropic displacement parameters were coupled to the corresponding carrier atoms by a factor of 1.2 (CH, CH₂) or 1.5 (CH₃).

 Table S2. Crystal Data and Structure Refinement for germylene radical 3 (CCDC 2427551).

Identification code	sh5323_a		
Empirical formula	C56 H83 Ge N3 O2		
Formula weight	902.84		
Temperature	143(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 12.7231(3) Å	$\alpha = 103.0580(10)^{\circ}.$	
	b = 12.9550(3) Å	$\beta = 94.8140(10)^{\circ}.$	
	c = 16.3893(4) Å	$\gamma = 95.9220(10)^{\circ}.$	
Volume	2601.43(11) Å ³		
Z	2		
Density (calculated)	1.153 Mg/m ³		
Absorption coefficient	0.630 mm ^{−1}		
F(000)	976		
Crystal size	0.400 x 0.300 x 0.200 r	nm ³	
Theta range for data collection	2.146 to 28.737°.		
Index ranges	−17≙h≙17, −17≙k≙17, −22≙l≙22		
Reflections collected	114365		
Independent reflections	13482 [R(int) = 0.0358]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.7458 and 0.7150		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	13482 / 0 / 579		
Goodness-of-fit on F ²	1.028		
Final R indices [I>2sigma(I)]	R1 = 0.0260, wR2 = 0.0	0633	
R indices (all data)	R1 = 0.0298, wR2 = 0.0	0656	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.296 and -0.308 e.Å ⁻³	3	

3.2 NMR spectroscopic data

Figure S3. ¹H NMR spectrum of oxycarbonyl substituted NHC-bis(germylene) **2a** in thf- d_8 (*: peaks of NHC-CO₂ resulting from beginning decomposition).

Figure S4. ¹H NMR spectrum of oxycarbonyl substituted NHC-bis(germylene) 2a in C₆D₆.

Figure S5. $^{13}C\{^{1}H\}$ NMR spectrum of oxycarbonyl substituted NHC-bis(germylene) 2a in $C_{6}D_{6}.$

Figure S6. ²⁹Si{¹H} NMR spectrum of a diastereomeric mixture of oxycarbonyl substituted NHC-bis(germylene) **2a** in thf- d_8 and an excerpt from the ²⁹Si NMR spectrum at -60°C.

Figure S7. ²⁹Si{¹H} NMR spectrum of oxycarbonyl substituted NHC-bis(germylene) 2a in C_6D_6 .

Figure S8. ¹H NMR spectrum of aminocarbonyl substituted NHC-bis(germylene) **2b** in thf- d_8 .

Figure S9. ¹H NMR spectra of aminocarbonyl substituted NHC-bis(germylene) **2b** in thf d_8 at different temperatures (*: peaks of products from beginning decomposition, #: peak of residue hexane).

Figure S10. Excerpts of the ¹H NMR spectra of aminocarbonyl substituted NHCbis(germylene) **2b** in thf- d_8 at different temperatures showing the phenylene proton (7.4 ppm at rt), Tip-proton (6.9 ppm at rt) and NHC-methine proton (5.7 ppm at rt) resonances.

Figure S11. ¹³C{¹H} NMR spectrum of aminocarbonyl substituted NHC-bis(germylene) **2b** in thf- d_8 .

Figure S12. ²⁹Si{¹H} NMR spectrum of aminocarbonyl substituted NHC-bis(germylene) **2b** in thf- d_8 .

Figure S13. ²⁹Si{¹H} NMR spectra of aminocarbonyl substituted NHC-bis(germylene) **2b** in thf- d_8 at different temperatures.

High temperature experiments for the determination of the coalescence temperature (> rt) were prevented by the limited stability of NHC-bis(germylene) **2b**. Hence, for the determination of the rotational barrier of the C–N bond, the following approach was used according to reference [S20].

The rate constant k_{298} of the conformational change at a temperature below the coalescence temperature (*i.e.* here at 298 K, where the peaks overlap slightly) is estimated *via*:

$$k_{298} = \frac{\pi}{\sqrt{2}} (\Delta \vartheta_0^2 - \Delta \vartheta_{298}^2)^{1/2}$$

where Δv_0 is the peak separation at slow exchange (*i.e.* at low temperature, here at 213 K) in Hz and Δv_{298} is the peak separation at 298 K.

The Eyring equation^[S21] was used for the determination of the Gibbs free energy barrier ΔG^{\ddagger} of the rotation:

$$\Delta G^{\ddagger} = -RT \left(\ln \frac{k}{T} - \ln \frac{k_{B}}{h} \right)$$

where *R* is the molar gas constant, *T* the temperature, *k* the corresponding rate constant, k_B the Boltzmann constant and *h* the Planck constant.

Figure S14. ¹H NMR spectrum of germylene radical 3 in C₆D₆.

Figure S15. ¹H NMR spectrum of the mother liquor of the reaction of NHCbis(acylgermylene) **2a** with CAAC^{Me} towards germylene radical **3** in C_6D_6 .

Figure S16. ¹H NMR spectrum of a mixture of siloxane **Si_{OHex}** and unidentified byproducts. Only peaks assigned to **Si_{OHex}** are marked.

Figure S17. ¹³C{¹H} NMR spectrum of siloxane SioHex.

Figure S18. ²⁹Si{¹H} NMR spectrum of siloxane SioHex.

Figure S19. ²⁹Si-¹H-HMBC NMR spectrum of siloxane Si_{OHex}.

Figure S20. ¹H NMR spectrum of a mixture of bis(siloxane) **Bis-Si_{OHex}** and unidentified by-products. Only peaks assigned to **Bis-Si_{OHex}** are marked.

Figure S21. ¹³C{¹H} NMR spectrum of a mixture of bis(siloxane) **Bis-Si**_{OHex} and unidentified by-products. Only peaks assigned to **Bis-Si**_{OHex} are marked.

Figure S22. ²⁹Si{¹H} NMR spectrum of bis(siloxane) Bis-Si_{OHex}.

Figure S23. ²⁹Si-¹H-HMBC NMR spectrum of bis(siloxane) Bis-Si_{OHex}.

3.3 IR spectroscopic data

Figure S24. IR spectrum of NHC-bis(germylene) 2a.

Figure S25. IR spectrum of NHC-bis(germylene) 2b.

3.4 DFT calculations

NHC-Bis(carboxylgermylene) 2a

Figure S26. Optimized structure of NHC-bis(germylene) **2a** (Gibbs free energy = -5033900.3832 kcal mol⁻¹). Hydrogen atoms omitted for clarity.

 Table S3. Atomic coordinates of the optimized structure of NHC-bis(germylene) 2a.

4.833945000	-0.217993000	-0.517951000
3.911781000	-1.077225000	1.100097000
6.785158000	-0.783294000	-0.689186000
5.205785000	1.483319000	0.625679000
3.539722000	-0.451258000	2.100210000
7.325420000	-2.016924000	-0.233348000
7.648575000	0.132051000	-1.362361000
6.225585000	1.831993000	1.462198000
4.419923000	2.593001000	0.510904000
1.679639000	-2.532113000	1.318575000
8.713413000	-2.247341000	-0.332947000
6.433512000	-3.090858000	0.386212000
9.026859000	-0.140491000	-1.451206000
7.113719000	1.381512000	-2.070369000
6.097229000	3.170321000	1.860925000
7.120458000	0.811274000	2.063339000
4.949891000	3.652895000	1.254383000
3.053212000	2.503030000	-0.066180000
0.759062000	-0.993756000	0.700191000
1.594964000	-3.052905000	3.122161000
1.158061000	-3.996883000	0.250691000
9.134188000	-3.192081000	0.050541000
9.588355000	-1.312231000	-0.911984000
5.395834000	-2.889917000	0.052546000
6.438784000	-3.006122000	1.923990000
6.780384000	-4.512306000	-0.089586000
9.683144000	0.584572000	-1.962066000
6.023097000	1.443721000	-1.858948000
7.248937000	1.225353000	-3.597632000
7.750681000	2.692368000	-1.579144000
7.067722000	3.899074000	2.732297000
6.947611000	-0.075078000	1.426067000
6.639158000	0.475861000	3.479798000
8.608719000	1.150220000	1.958950000
4.372272000	5.030066000	1.299260000
3.051282000	1.495420000	-0.537598000
2.784171000	3.516141000	-1.178813000
2.016590000	2.478893000	1.058318000
-0.297706000	-0.311349000	1.362692000
	4.833945000 3.911781000 6.785158000 5.205785000 3.539722000 7.325420000 7.648575000 6.225585000 4.419923000 1.679639000 8.713413000 6.433512000 9.026859000 7.113719000 6.097229000 7.120458000 4.949891000 3.053212000 0.759062000 1.594964000 1.158061000 9.134188000 9.588355000 5.395834000 6.438784000 6.780384000 9.683144000 6.023097000 7.248937000 7.248937000 7.50681000 9.639158000 8.608719000 4.372272000 3.051282000 2.784171000 2.016590000 -0.297706000	4.833945000-0.2179930003.911781000-1.0772250006.785158000-0.7832940005.2057850001.4833190003.539722000-0.4512580007.325420000-2.0169240007.6485750000.1320510006.2255850001.8319930004.4199230002.5930010001.679639000-2.5321130008.713413000-2.2473410006.433512000-3.0908580009.026859000-0.1404910007.1137190001.3815120006.0972290003.1703210007.1204580000.8112740004.9498910003.6528950003.0532120002.5030300000.759062000-0.9937560001.594964000-3.0529050001.158061000-3.9968830009.134188000-3.1920810009.588355000-1.3122310005.395834000-2.8899170006.438784000-3.0061220006.780384000-4.5123060009.6831440000.5845720006.0230970001.4437210007.2489370001.2253530007.7506810002.6923680007.0677220003.8990740006.6391580000.4758610008.6087190001.1502200004.3722720005.0300660003.0512820001.4954200002.7841710003.5161410002.016590000-0.311349000

6	1.043963000	-0.649336000	-0.641153000
1	2.017492000	-4.075056000	3.218536000
1	0.541958000	-3.065023000	3.469723000
1	2.175123000	-2.371455000	3.770757000
1	1.197539000	-3.743242000	-0.827588000
1	0.121244000	-4.309077000	0.493070000
1	1.829372000	-4.862563000	0.430593000
6	11.088892000	-1.569055000	-0.970532000
1	7.456246000	-3.198184000	2.328249000
1	5.742296000	-3,749560000	2.365175000
1	6.113569000	-2.006009000	2.270922000
1	6.812532000	-4.570587000	-1.197031000
1	6.017651000	-5.233633000	0.271510000
1	7 763521000	-4 857512000	0 295787000
1	6 798064000	2 091148000	-4 128081000
1	6 740204000	0 302899000	-3 944206000
1	8 314632000	1 157563000	-3 903452000
1	8 845775000	2 710855000	-1 765526000
1	7 580616000	2.710000000	-0.402763000
1	7.303010000	2.037732000	2 106026000
1	7.311239000	3.303174000	-2.100920000
1	0.040403000	4.049402000	2.230491000
1	7.200370000	3.304003000	3.004277000
1	0.000029000	4.898435000	2.986763000
1	7.216281000	-0.385943000	3.8/12//000
1	5.565789000	0.200613000	3.453888000
1	6.777354000	1.321762000	4.185220000
1	8.875224000	1.44/991000	0.926914000
1	9.190000000	0.235846000	2.191372000
1	8.930419000	1.940613000	2.665478000
1	4.912218000	5.642465000	2.046217000
1	3.300542000	5.025048000	1.581425000
1	4.456415000	5.546503000	0.319871000
1	3.606560000	3.516397000	-1.922546000
1	2.641707000	4.549840000	-0.804800000
1	1.855128000	3.214538000	-1.704326000
1	1.914714000	3.459657000	1.567351000
1	2.295003000	1.707257000	1.800922000
1	1.029379000	2.206227000	0.642285000
7	-0.553525000	-0.578844000	2.738737000
6	-1.043392000	0.650453000	0.643109000
6	0.297880000	0.312143000	-1.360981000
1	1.852614000	-1.184660000	-1.162377000
1	11.263939000	-2.566023000	-0.507245000
6	11.866797000	-0.527002000	-0.142987000
6	11.605030000	-1.631870000	-2.420911000
6	0.496468000	-0.087251000	3.636232000
6	-1.879589000	-0.249842000	3.240698000
6	-0 758523000	0 994944000	-0 698282000
1	-1 851978000	1 185827000	1 164392000
7	0.553340000	0.578818000	-2 737122000
1	12 956173000	-0 743721000	-0 144876000
1	11 510/10000	-0 5119/0000	0.144070000
1	11 726344000	0.011340000	-0.555672000
1	11.720344000	0.434700000	2 026957000
1	11.47 1320000	-0.037300000	2.930037000
1	12 697412000	-2.390103000	-3.007263000
1	1 400 40 7000	-1.0/92/3000	-2.44900000
1	1.499497000	-0.203/52000	3.204939000
1	0.43114/000	-0.599215000	4.01933/000
1	0.39194/000	1.01464/000	3.014/58000
1	-2.6/023/000	-0.587936000	2.541705000
1	-2.033872000	0.848980000	3.402864000

1	-2.031352000	-0.749992000	4.220270000
14	-1.679408000	2.533327000	-1.315909000
6	-0.497667000	0.089158000	-3.634359000
6	1.878730000	0.248413000	-3.239728000
6	-1.591110000	3.056076000	-3.118772000
6	-1.159712000	3.997105000	-0.245680000
1	-1 500330000	0 268584000	-3 202580000
1	-0 432178000	0.601588000	-4 617225000
1	-0.30/628000	-1 012761000	-3 81365/000
1	2 670141000	0.585775000	2 5/1216000
1	2.070141000	0.303773000	2 4010710000
1	2.031730000	-0.000010000	-3.401071000
1 C	2.030459000	0.746233000	-4.219404000
0	-3.911692000	1.077514000	-1.099841000
1	-2.010732000	4.079429000	-3.214877000
1	-0.537402000	3.065707000	-3.464375000
1	-2.171643000	2.376721000	-3.769230000
1	-1.201224000	3.742573000	0.832315000
1	-0.122409000	4.309445000	-0.485807000
1	-1.830637000	4.862991000	-0.426027000
32	-4.834482000	0.218495000	0.517893000
8	-3.539265000	0.451501000	-2.099781000
6	-6.785985000	0.783345000	0.687844000
6	-5.205322000	-1.483503000	-0.625084000
6	-7.326339000	2.016578000	0.231078000
6	-7.649588000	-0.132004000	1.360763000
7	-6.224486000	-1.832901000	-1.462094000
7	-4 419009000	-2 592787000	-0 509592000
6	-8 714474000	2 246607000	0.329639000
6	-6 434456000	3 090493000	-0 388537000
6	-9 028016000	0.000400000	1 448576000
6	-7.11/830000	-1 38106/000	2 0605/5000
6	-6.00530000	-3 171332000	-1 860213000
6	7 110450000	0.912797000	2 06/120000
6	-7.119459000	-0.012707000	1 25201000
6	-4.940150000	-3.033191000	-1.252910000
4	-3.032777000	-2.502507000	0.000490000
l C	-9.135296000	3.191003000	-0.034655000
0	-9.569520000	1.311493000	0.906503000
1	-5.396791000	2.889616000	-0.054807000
6	-6.439710000	3.005585000	-1.926297000
6	-6.781426000	4.511927000	0.087244000
1	-9.684409000	-0.584919000	1.959296000
1	-6.024152000	-1.443297000	1.858518000
6	-7.250525000	-1.224079000	3.596691000
6	-7.751526000	-2.692206000	1.578754000
6	-7.064984000	-3.900825000	-2.731966000
1	-6.947537000	0.073832000	-1.426993000
6	-6.637335000	-0.477548000	-3.480352000
6	-8.607587000	-1.152600000	-1.960707000
6	-4.370013000	-5.030174000	-1.296769000
1	-3.051397000	-1.494493000	0.539499000
6	-2.784431000	-3.514993000	1.181677000
6	-2.015231000	-2.478432000	-1.055134000
6	-11.090175000	1.567898000	0.965904000
1	-7.457185000	3,197496000	-2.330590000
1	-5.743301000	3,749034000	-2.367591000
	-6 114403000	2 005446000	-2 273071000
1	-6 813520000	4 570163000	1 194692000
1	-6 018763000	5 232320000	-0 272872000
1	-0.010703000	1 857075000	-0.20002000
1 1	6 700967000	2 090506000	4 4 2 7 7 7 7 0 0 0
1	-0.19900/000 6744044000	-2.009090000	4.12////000
I.	-0.741814000	-0.301460000	3.942001000

1	-8.316311000	-1.156014000	3.902127000
1	-8.846669000	-2.710758000	1.764828000
1	-7.590147000	-2.838024000	0.492474000
1	-7.312151000	-3.564729000	2.107039000
1	-8.044297000	-4.050666000	-2.231129000
1	-7.256708000	-3.367497000	-3.684715000
1	-6.663082000	-4.900472000	-2.984961000
1	-7.214599000	0.383882000	-3.872443000
1	-5.564119000	-0.201760000	-3.453764000
1	-6.774682000	-1.323708000	-4.185621000
1	-8.874674000	-1.450040000	-0.928723000
1	-9.189277000	-0.238728000	-2.194069000
1	-8.928235000	-1.943548000	-2.667093000
1	-4.908859000	-5.642965000	-2.044200000
1	-3.297970000	-5.024842000	-1.577699000
1	-4.455105000	-5.546364000	-0.317326000
1	-3.607355000	-3.515140000	1.924816000
1	-2.641514000	-4.548790000	0.808107000
1	-1.855811000	-3.213068000	1.707762000
1	-1.912580000	-3.459432000	-1.563567000
1	-2.293218000	-1.707288000	-1.798409000
1	-1.028503000	-2.205190000	-0.638367000
1	-11.265207000	2.564520000	0.501868000
6	-11.867252000	0.525098000	0.138539000
6	-11.607266000	1.631498000	2.415914000
1	-12.956688000	0.741525000	0.139581000
1	-11.519197000	0.509448000	-0.914650000
1	-11.726802000	-0.496389000	0.551975000
1	-11.473597000	0.657387000	2.932571000
1	-11.061059000	2.398360000	3.002145000
1	-12.689744000	1.878580000	2.443694000
8	3.323472000	-2.277574000	0.798113000
8	-3.323824000	2.278128000	-0.797880000

NHC-Bis(amidylgermylene) 2b

Figure S27. Optimized structure of NHC-bis(germylene) **2b** (Gibbs free energy = -5107565.0053 kcal mol⁻¹). Hydrogen atoms omitted for clarity.

Figure S28. Selected occupied frontier orbitals of NHC-bis(germylene) **2b** (contour value 0.036). Hydrogen atoms omitted for clarity.

Figure S29. Selected unoccupied frontier orbitals of NHC-bis(germylene) **2b** (contour value 0.036). Hydrogen atoms omitted for clarity.

Table S4. Atomic coordinates of the optimized structure of NHC-bis(germylene) 2b.

32	-6.273820000	-0.348762000	-1.161343000
6	-4.687336000	0.449637000	-0.072057000
6	-8.015865000	0.724223000	-0.821219000
6	-6.662360000	-1.639973000	0.432719000
8	-4.281762000	-0.105973000	0.973021000
7	-3.918239000	1.467258000	-0.608255000
6	-8.146852000	2.076430000	-0.389051000
6	-9.220220000	-0.002669000	-1.082994000
7	-7.190580000	-1.410055000	1.668469000
7	-6.552782000	-2.996983000	0.326172000
14	-2.558165000	2.044620000	0.449723000
6	-4.176530000	1.973208000	-1.959295000
6	-9.426883000	2.639311000	-0.196673000
6	-6.945637000	2.983101000	-0.133330000
6	-10.477718000	0.593901000	-0.869220000
6	-9.220520000	-1.443506000	-1.602834000
6	-7.427348000	-2.616189000	2.338345000
6	-7.336565000	-0.044477000	2.228357000
6	-7.012972000	-3.626862000	1.487391000
6	-5.879191000	-3.628606000	-0.830786000
6	-1.147531000	0.795483000	0.296023000
6	-3.232057000	2.447426000	2.165412000
6	-1.979248000	3.660608000	-0.352608000
6	-3.288316000	1.328727000	-3.026797000
1	-4.056826000	3.075916000	-1.969030000
1	-5.242800000	1.779306000	-2.208250000
1	-9.508642000	3.685184000	0.146355000
6	-10.609018000	1.917219000	-0.414225000
1	-6.042062000	2.349748000	-0.183352000
6	-6.954544000	3.631428000	1.262770000
6	-6.831885000	4.059370000	-1.230852000
1	-11.387434000	0.000887000	-1.063615000
1	-8.159012000	-1.743936000	-1.742524000
6	-9.879329000	-1.541661000	-2.990702000
6	-9.859598000	-2.419686000	-0.599133000
6	-8.073244000	-2.745177000	3.679886000

1	-7.027118000	0.595810000	1.383274000
6	-6.341582000	0.192873000	3.368877000
6	-8.792102000	0.297619000	2.554193000
6	-7.067398000	-5.104655000	1.702122000
1	-5.805546000	-2.784775000	-1.557193000
6	-6.709364000	-4.734798000	-1.486332000
6	-4,453651000	-4.037400000	-0.448607000
6	0.098565000	1 067394000	0 909842000
6	-1 230124000	-0 287697000	-0.601019000
1	-4 257874000	2 856738000	2 060565000
1	-2 5051/3000	3 211227000	2.655255000
1	3 202/0/00	1 5/85/8000	2.00020000
1	-3.292494000	2 512288000	1 399079000
1	-1.010924000	4.062222000	-1.300070000
1	-1.142399000	4.003333000	0.255255000
1	-2.790145000	4.419406000	-0.370364000
1	-3.476463000	0.235592000	-3.070444000
1	-2.212008000	1.483878000	-2.80/615000
1	-3.505049000	1.755135000	-4.028560000
6	-11.974827000	2.535353000	-0.146525000
1	-7.823972000	4.307242000	1.405662000
1	-6.037703000	4.239302000	1.414369000
1	-6.986799000	2.868106000	2.066047000
1	-6.813521000	3.603117000	-2.241037000
1	-5.906768000	4.661421000	-1.104869000
1	-7.696596000	4.756447000	-1.197072000
1	-9.817668000	-2.578151000	-3.386255000
1	-9.375664000	-0.866935000	-3.712467000
1	-10.952948000	-1.258907000	-2.956299000
1	-10.936002000	-2.193331000	-0.443700000
1	-9.362801000	-2.368294000	0.390364000
1	-9.793077000	-3.468034000	-0.962033000
1	-9.154743000	-2,496443000	3.642855000
1	-7 606922000	-2 087332000	4 438544000
1	-7.985321000	-3 787812000	4 040699000
1	-6.345606000	1 270215000	3 632081000
1	-5 325234000	-0.073204000	3 020810000
1	-6 590700000	-0.372151000	4 290047000
1	-9 447335000	0.087601000	1 685992000
1	-9.4473530000 8 866357000	1 382802000	2 765110000
1	0.17260/000	0.242601000	2.703119000
1	7 288/16000	-0.243001000 5 320444000	2 764006000
1	-7.200410000	-5.520444000	2.704900000
1	-0.100000000	-5.599903000	1.400009000
1	-7.009731000	-3.300972000	1.093300000
1	-7.751994000	-4.390374000	-1.053707000
1	-0.730492000	-5.673773000	-0.898938000
1	-6.269528000	-4.9/4/36000	-2.475373000
1	-4.434898000	-4.853523000	0.303482000
1	-3.911566000	-3.164814000	-0.032808000
1	-3.911482000	-4.394622000	-1.346866000
7	0.146888000	2.139623000	1.872804000
6	1.229876000	0.287952000	0.601096000
6	-0.098823000	-1.067158000	-0.909737000
1	-2.192303000	-0.501599000	-1.089898000
1	-11.797865000	3.595892000	0.142430000
6	-12.674469000	1.840024000	1.038478000
6	-12.866041000	2.535788000	-1.402816000
6	-0.115754000	1.677649000	3.235665000
6	1.331515000	2.981606000	1.799530000
6	1.147276000	-0.795219000	-0.295959000
1	2.192065000	0.501869000	1.089945000
7	-0.147164000	-2.139424000	-1.872684000

1	-13.646005000	2.324669000	1.273483000
1	-12.042087000	1.870693000	1.949451000
1	-12.877284000	0.772270000	0.808385000
1	-13.093701000	1.500419000	-1.734310000
1	-12.368086000	3.054877000	-2.247062000
1	-13.834204000	3.042942000	-1.205435000
1	-1.019228000	1.039536000	3.248894000
1	-0.292726000	2.546852000	3.904629000
1	0.735314000	1.081089000	3.657150000
1	1.495266000	3.303328000	0.752455000
1	2.269224000	2.483338000	2.159839000
1	1.178692000	3.887702000	2.424419000
14	2.558000000	-2.044207000	-0.449999000
6	0.114866000	-1.677362000	-3.235635000
6	-1.331583000	-2.981673000	-1.798999000
7	3.918086000	-1.467001000	0.608056000
6	3.231753000	-2.446371000	-2.165894000
6	1.979420000	-3.660521000	0.351912000
1	1.018249000	-1.039126000	-3.249199000
1	0.291700000	-2.546525000	-3.904687000
1	-0.736448000	-1.080912000	-3.656779000
1	-1.494898000	-3.303445000	-0.751868000
1	-2.269523000	-2.483596000	-2.158965000
1	-1.178787000	-3.887728000	-2.423952000
6	4,176296000	-1.973113000	1,959052000
6	4 687257000	-0 449340000	0.072046000
1	4 257744000	-2 855334000	-2 061382000
1	2 595002000	-3 210281000	-2 655780000
1	3 291712000	-1 547316000	-2 805857000
1	1 610817000	-3 513512000	1 387329000
1	1 143047000	-4 063431000	-0 254182000
1	2 790584000	-4 419032000	0.369723000
6	3 288018000	-1 328769000	3 026579000
1	4 056597000	-3 075824000	1 968655000
1	5 242550000	-1 779228000	2 208102000
32	6 273922000	0.348653000	1 161382000
8	4 281658000	0 106609000	-0.972842000
1	3 476178000	-0 235644000	3 070415000
1	2 211721000	-1 483859000	2 807309000
1	3 504680000	-1 755337000	4 028289000
6	8 015827000	-0 724510000	0.821077000
6	6 662643000	1 6/0007000	-0.432450000
6	8 1/6622000	-2 076676000	0.388600000
6	9 220202000	0.002167000	1 082948000
7	7 190802000	1 410334000	-1 668258000
7	6 553115000	2 997092000	-0.325713000
6	9.426577000	-2 630702000	0.10622/000
6	6 9/5297000	-2.033702000	0.130224000
6	10 /77703000	0 50/5/5000	0.860075000
6	0.477703000	1 112025000	1 603002000
6	9.220793000 7.427853000	2 616567000	2 337850000
6	7 336650000	2.010307000	2.337039000
6	7.012517000	2 627122000	-2.220300000
6	5 870512000	3 622607000	- 1.4007 00000 0 83130000
1	0.50210000	3.02000/000	0.031302000
і А	9.000190000 10 609914000		-0.14090/000
1	6 044004000	-1.311003000	0.4130/4000
і С	0.041004000	-2.349003000	0.102040000
0 G	0.904202000	-3.031219000	-1.203441000
0 1	0.031334000	-4.039389000	1.230101000
1	11.38/504000		1.003502000
Т	8.159327000	1.743464000	1.742784000

6	9.879686000	1.540820000	2.990842000
6	9.859962000	2.419152000	0.599398000
6	8.074002000	2.745736000	-3.679260000
1	7.027212000	-0.595556000	-1.383381000
6	6.341583000	-0.192271000	-3.368883000
6	8.792138000	-0.297348000	-2.554352000
6	7.068222000	5.104961000	-1.701179000
1	5,805842000	2,784700000	1.557620000
6	6,709703000	4,734721000	1,486948000
6	4,453979000	4.037458000	0.449153000
6	11 974536000	-2 536101000	0 146089000
1	7 823557000	-4 307113000	-1 406401000
1	6.037288000	-4 238942000	-1 415215000
1	6 986612000	-2 867750000	-2 066572000
1	6 812015000	-2.007700000	2 2/0366000
1	5 906166000	-3.003510000	1 103022000
1	7 605070000	4 756756000	1.106280000
1	0.818208000	2 577278000	3 386505000
1	9.010200000	2.377270000	3.300303000
1	9.373934000	1 25700000	2 056360000
1	10.955202000	1.207909000	2.950500000
1	10.930327000	2.192032000	0.443092000
1	9.303110000	2.307903000	-0.390062000
1	9.793612000	3.467466000	0.962430000
1	9.155487000	2.496958000	-3.642057000
1	7.607805000	2.088022000	-4.438110000
1	7.986189000	3.788430000	-4.039929000
1	6.345596000	-1.269549000	-3.632352000
1	5.325262000	0.073742000	-3.020688000
1	6.590623000	0.372970000	-4.289938000
1	9.447485000	-0.087304000	-1.686241000
1	8.866309000	-1.382556000	-2.765171000
1	9.173558000	0.243774000	-3.443482000
1	7.289349000	5.320930000	-2.763904000
1	6.107783000	5.600397000	-1.455054000
1	7.860604000	5.589009000	-1.092204000
1	7.752309000	4.398442000	1.654421000
1	6.730906000	5.673725000	0.899599000
1	6.269826000	4.974627000	2.475978000
1	4.435234000	4.853693000	-0.302813000
1	3.911921000	3.164931000	0.033199000
1	3.911779000	4.394543000	1.347448000
1	11.797413000	-3.596536000	-0.143148000
6	12.674375000	-1.840587000	-1.038688000
6	12.865669000	-2.537008000	1.402439000
1	13.645837000	-2.325345000	-1.273761000
1	12.042043000	-1.870903000	-1.949710000
1	12.877370000	-0.772930000	-0.808306000
1	13.093462000	-1.501761000	1.734223000
1	12.367575000	-3.056243000	2.246514000
1	13.833766000	-3.044260000	1.204989000

Table	S5.	Reaction	enthalpies	determined	with	DFT	calculations	at	the	BP86-
D3(BJ)	/def2	-TZVPP//B	P86-D3(BJ)	/def2-SVP lev	vel of	theory	<i>'</i> .			_

Reaction	Δ G (kcal mol ^{−1})
1 + CO ₂ → 2a	-5.996
1 + CO ₂ → 2a-iso	5.391
1 + ^{<i>Et</i>} NCO → 2b	-18.87

Scheme S1. Structure of the constitutional isomer **2a-iso** with Ge–O and Si–C bonds, which is not formed in the reaction of NHC-bis(germylene) **1** with CO₂ (π = 2,5-(*N*,*N*,*N*',*N*'-tetramethyldiamino)-*p*-phenylene, Tip = 2,4,6-triisopropylphenyl, NHC = 1,3-diisopropylimidazol-4,5-dimethyl-2-ylidene).

Figure S30. Optimized structure of germylenyl ester **2a-iso** (Gibbs free energy = -5033888.9967 kcal mol⁻¹). Hydrogen atoms omitted for clarity.

Table S6. Atomic coordinates of the optimized structure of the germylenyl ester 2a-iso.

32	4.457169000	-0.579419000	-0.590818000
6	6.357476000	-1.319876000	-0.870392000
6	5.184676000	1.358504000	-0.129430000
6	6.908592000	-2.415555000	-0.152824000
6	7.144487000	-0.707428000	-1.886947000
7	6.251637000	1.760851000	0.618635000
7	4.609008000	2.502949000	-0.599544000
14	2.086071000	-0.506696000	3.114783000
6	8.260005000	-2.767810000	-0.359517000
6	6.075532000	-3.234461000	0.832132000

6	8.481364000	-1.102299000	-2.082520000
6	6.550750000	0.340807000	-2.832859000
6	6.364010000	3.156630000	0.608154000
6	7.075056000	0.808943000	1.405445000
6	5.320863000	3.629848000	-0.170872000
6	3.330938000	2.485489000	-1.354858000
6	0.892982000	0.340497000	1.899216000
6	3.114476000	0.697723000	4.144609000
6	1.196406000	-1.782820000	4.185690000
1	8.697484000	-3.595268000	0.224994000
6	9.072622000	-2.110779000	-1.298740000
1	5.009343000	-2.970647000	0.678684000
6	6.416599000	-2.898086000	2.295585000
6	6,191480000	-4.747062000	0.567608000
1	9 080114000	-0 608718000	-2 866981000
1	5 502175000	0.529457000	-2 508794000
6	6 460575000	-0 208579000	-4 269538000
6	7 294396000	1 686719000	-2 788425000
6	7 451357000	3 936769000	1 273494000
1	6 702286000	-0 175118000	1.072/15000
6	6 772726000	0.0327/2000	2 000428000
6	8 561580000	0.952742000	2.900420000
6	5.010050000	5.041142000	0.550064000
1	2 1 2 9 2 7 2 0 0 0	1 207242000	-0.559904000
I G	3.120272000	2 09/101000	-1.40040000
0	3.470692000	3.064191000	-2.730723000
0	2.100021000	3.075296000	-0.527662000
0	0.013707000	1.338001000	2.371500000
0	0.805952000	-0.046225000	0.544267000
1	3.979492000	0.169444000	4.59/45/000
1	2.505096000	1.144851000	4.953672000
1	3.507980000	1.513112000	3.504897000
1	0.805171000	-2.592998000	3.537663000
1	0.356055000	-1.325011000	4.745690000
1	1.895843000	-2.238177000	4.917881000
6	10.537939000	-2.489559000	-1.4/3369000
1	7.485133000	-3.106360000	2.521533000
1	5.795171000	-3.501577000	2.990481000
1	6.211093000	-1.831977000	2.510972000
1	5.967294000	-4.986583000	-0.492249000
1	5.470734000	-5.301803000	1.204057000
1	7.205909000	-5.139303000	0.795483000
1	5.961597000	0.519176000	-4.944789000
1	5.884972000	-1.155965000	-4.293043000
1	7.469535000	-0.417497000	-4.683602000
1	8.344531000	1.576672000	-3.132313000
1	7.320225000	2.104121000	-1.762366000
1	6.808008000	2.434764000	-3.450258000
1	8.422987000	3.826188000	0.747856000
1	7.605973000	3.627360000	2.325577000
1	7.195028000	5.013466000	1.275728000
1	7.308478000	0.130166000	3.445931000
1	5.688761000	0.798454000	3.071914000
1	7.095435000	1.902849000	3.331111000
1	8.702279000	0.820525000	-0.051192000
1	9.057789000	-0.027065000	1.473377000
1	9.076417000	1.762264000	1.447665000
1	5.625801000	5.736214000	0.051999000
1	3.954984000	5.304892000	-0.408674000
1	5.264932000	5.239169000	-1.624940000
1	4.330686000	2.638031000	-3,295371000
1	3.596638000	4.185150000	-2.743039000

1	2.552053000	2.862735000	-3.335910000
1	2.295856000	4.164942000	-0.354630000
1	2.100970000	2.561615000	0.449933000
1	1.231138000	2.912264000	-1.061172000
7	0.018217000	1.652544000	3.783372000
6	-0.851947000	1.987240000	1.471479000
6	-0.119225000	0.547830000	-0.345243000
1	1.434801000	-0.874170000	0.186801000
1	10.741621000	-3.324078000	-0.765461000
6	11.465784000	-1.318652000	-1.093652000
6	10.834529000	-3.001923000	-2.895700000
6	0.443733000	3.018223000	4.071769000
6	-1.237560000	1.304379000	4.446037000
6	-0.912569000	1.647033000	0.103252000
1	-1.507604000	2,788627000	1.853136000
7	-0.275635000	0.061973000	-1.667856000
1	12.534503000	-1.611675000	-1.169003000
1	11.273756000	-0.975556000	-0.056352000
1	11.307017000	-0.449994000	-1.767794000
1	10 664020000	-2 207030000	-3 652617000
1	10 179968000	-3 858299000	-3 156934000
1	11 891168000	-3 330907000	-2 989520000
1	1 415523000	3 216789000	3 577159000
1	0 581393000	3 143952000	5 167259000
1	-0 284781000	3 799986000	3 730875000
1	-0.204701000	0.240550000	1 223687000
1	2 107145000	1 026272000	4.223007000
1	-2.107143000	1.930273000	5 545751000
1	1 002272000	2 920066000	0.022062000
14 6	-1.993372000	2.020900000	-0.933902000
6	-1.399032000		-1.902030000
6	1 010057000	-0.763700000	-2.203030000
0	-1.910957000	2.014040000	-2.012003000
0	-1.510926000	4.396493000	-0.500307000
1	-2.393000000	0.095672000	-1.460165000
1	-1.788885000	-0.476391000	-3.056273000
1	-1.686998000	-1.544607000	-1.012270000
1	1.76210000	-0.336069000	-1.997651000
1	0.774565000	-1.821209000	-1.779243000
1	0.649784000	-0.871400000	-3.302092000
1	-2.226313000	3.561042000	-3.298957000
1	-0.875800000	2.373603000	-3.128312000
1	-2.571246000	1.807298000	-3.180480000
1	-1.606020000	4.779462000	0.588303000
1	-0.469762000	4.826307000	-0.809767000
1	-2.191134000	5.307747000	-1.01/095000
32	-5.213369000	0.365922000	1.042988000
6	-7.152392000	0.280008000	0.343464000
6	-4.650793000	-1.340159000	-0.093368000
6	-7.809405000	1.341009000	-0.335439000
6	-7.875194000	-0.923646000	0.583643000
7	-4.882207000	-1.684221000	-1.393800000
7	-3.825179000	-2.305935000	0.403209000
6	-9.092782000	1.124404000	-0.882732000
6	-7.168915000	2.719871000	-0.482370000
6	-9.161937000	-1.096850000	0.040583000
6	-7.314115000	-2.025170000	1.488491000
6	-4.200123000	-2.863314000	-1.720253000
6	-5.738186000	-0.871852000	-2.295241000
6	-3.521852000	-3.255822000	-0.577344000
6	-3.298951000	-2.246610000	1.791132000
1	-9.586579000	1.938725000	-1.440453000

6	-9.776969000	-0.093319000	-0.731633000
1	-6.284286000	2.754101000	0.185285000
6	-6.669801000	2.974928000	-1.916228000
6	-8.110466000	3.844070000	-0.011657000
1	-9.702326000	-2.041053000	0.225149000
1	-6.289345000	-1.717261000	1.795838000
6	-8,137134000	-2.130789000	2,787151000
6	-7 192869000	-3 388392000	0 786148000
6	-4 236733000	-3 543843000	-3 049984000
1	-6 151860000	-0 102027000	-1 619043000
6 6	4 016794000	-0.102927000	2 262757000
6	-4.910704000 6.025664000	-0.140003000	2 84505000
0	-0.923004000	-1.007030000	-2.845095000
0	-2.628562000	-4.438347000	-0.386042000
1	-3.909591000	-1.438660000	2.252329000
6	-3.554963000	-3.536165000	2.575450000
6	-1.848522000	-1.765021000	1.801655000
6	-11.146901000	-0.310562000	-1.362016000
1	-7.507151000	2.949841000	-2.647203000
1	-6.181411000	3.969810000	-1.990365000
1	-5.922273000	2.214645000	-2.212474000
1	-8.478499000	3.652662000	1.017204000
1	-7.574259000	4.816115000	-0.007999000
1	-8.996701000	3.955384000	-0.672713000
1	-7.690818000	-2.872700000	3.483300000
1	-8.182535000	-1.151413000	3.304891000
1	-9 180143000	-2 448300000	2 576201000
1	-8 185638000	-3 760991000	0 456542000
1	-6 541697000	-3 331347000	-0 108777000
1	-6 766521000	-4 152925000	1 470185000
1	-5 100522000	-4.067596000	-3 226755000
1	-0.199022000	-2 835182000	-3.887206000
1	-3.432573000	-2.000102000	-3.10/108000
1	5 500295000	-4.302337000	2 05/195000
1	-3.390203000	0.304301000	2 975542000
1	4.101330000	0.494225000	4 071592000
1	-4.413290000	-0.037039000	-4.071362000
1	-7.43/0/0000	-2.192339000	-2.020007000
1	-7.043004000	-0.954527000	-3.295056000
1	-0.038930000	-2.397540000	-3.627761000
1	-2.370588000	-4.874850000	-1.369848000
1	-1.678770000	-4.163900000	0.114455000
1	-3.108079000	-5.238417000	0.215720000
1	-4.602635000	-3.877032000	2.452247000
1	-2.876841000	-4.361952000	2.284515000
1	-3.385582000	-3.338483000	3.652902000
1	-1.156508000	-2.451509000	1.273798000
1	-1.770393000	-0.767656000	1.328214000
1	-1.488028000	-1.672295000	2.844517000
1	-11.412337000	0.633110000	-1.889382000
6	-11.107022000	-1.437223000	-2.413091000
6	-12.232490000	-0.572326000	-0.300444000
1	-12.093729000	-1.560691000	-2,907914000
1	-10 351411000	-1 226835000	-3 197597000
1	-10 841387000	-2 409382000	-1 945650000
1	-12 032300000	-1 513333000	0 254769000
1	-12.002000000	0.251144000	0.441352000
1	-13 23/002000	-0 667820000	-0.760080000
і 0	-13.234803000 2 974656000	2 1206220000	1 20/222000
0	2.0/4000000	-2.409030000	1.304222000
0	3.2098/3000	-1.422070000	1.034000000
0	4.203903000		1.395252000
Ø	-4.141778000	3.202048000	0.785004000
Ø	-4.255716000	1.319447000	-0.406818000

Figure S31. Optimized structure of NHC-bis(germylene) **1** (Gibbs free energy = -4797087.9210 kcal mol⁻¹). Hydrogen atoms omitted for clarity.

Table S7. Atomic coordinates of the optimized structure of NHC-bis(germylene) 1.

32	4.509271000	0.464519000	-1.074076000
6	6.503024000	0.496047000	-0.552665000
6	4.053644000	-1.198573000	0.085880000
14	3.041977000	1.921093000	0.269773000
6	3.235208000	2.609209000	2.044878000
6	1.386951000	0.982612000	0.055536000
6	2.834987000	3.515944000	-0.776593000
7	4.475145000	-1.561991000	1.337717000
6	4.026631000	-2.849445000	1.655887000
6	5.228996000	-0.641716000	2.226952000
7	3.320868000	-2.259917000	-0.375138000
6	3.290522000	-3.290645000	0.569012000
6	2.672946000	-2.261390000	-1.712113000
7	1.147855000	0.094990000	2.383370000
6	0.536681000	1.042935000	3.312285000
6	0.658496000	0.255107000	1.027455000
6	1.049691000	-1.274529000	2.880709000
6	7.171560000	1.592441000	0.066443000
6	7.297048000	-0.628679000	-0.931277000
6	8.540957000	1.500072000	0.389192000
6	6.447083000	2.909299000	0.307140000
6	9.307099000	0.362567000	0.085187000
6	8.666567000	-0.680952000	-0.603959000
6	10.772317000	0.267031000	0.489755000
6	6.719962000	-1.804291000	-1.719442000
6	6.548496000	3.797005000	-0.949298000
6	6.885422000	3.667061000	1.567643000
6	6.751320000	-3.125188000	-0.930841000
6	7.405237000	-1.948922000	-3.090428000
6	4.275531000	-3.561407000	2.945779000
6	2.546521000	-4.578160000	0.420336000
6	6.673752000	-1.090764000	2.461363000
6	4.455533000	-0.360807000	3.518234000
6	3.396753000	-3.181635000	-2.700630000
6	1.171838000	-2.534962000	-1.621486000
6	0.832391000	1.033499000	-1.246160000
6	-0.397319000	0.435397000	-1.603875000
6	-1.137224000	-0.284245000	-0.619598000

6	-0.578791000	-0.323059000	0.676605000
6	11.696769000	0.069132000	-0.726434000
6	10.985409000	-0.839025000	1.542530000
1	9.038758000	2.346516000	0.890619000
1	9.248570000	-1.573230000	-0.890805000
1	5.375520000	2.645146000	0.430182000
1	6.220330000	4.537795000	1.747273000
1	7.918881000	4.065055000	1.480558000
1	6.849128000	3.016733000	2.466244000
1	5.984298000	4.745347000	-0.820201000
1	6.142117000	3.272449000	-1.837995000
1	7.608372000	4.053328000	-1.162892000
1	5 657457000	-1 552460000	-1 923729000
1	6 924174000	-2 750578000	-3 691589000
1	8 479660000	-2 210636000	-2 986097000
1	7 342379000	-1 001927000	-3 664079000
1	6 280011000	-3.047403000	-1 510003000
1	6 211/63000	-3.947493000	0.032575000
1	7 702069000	-3.030319000	0.032373000
1	7.793900000	-3.434795000	-0.704063000
1	5.259865000	0.294040000	1.634026000
1	7.219330000	-0.278283000	2.981377000
1	7.195080000	-1.2/480/000	1.504145000
1	6.741183000	-1.999194000	3.094551000
1	4.919375000	0.503509000	4.034061000
1	4.474786000	-1.214897000	4.223775000
1	3.404993000	-0.104033000	3.275510000
1	4.071547000	-4.642547000	2.822440000
1	3.618419000	-3.191971000	3.761484000
1	5.323420000	-3.455302000	3.285776000
1	2.877351000	-5.292484000	1.198508000
1	2.718998000	-5.053536000	-0.565084000
1	1.450817000	-4.441856000	0.538097000
1	2.820560000	-1.212189000	-2.051986000
1	2.910442000	-3.098704000	-3.693559000
1	3 353029000	-4 247317000	-2 395757000
1	4 457894000	-2 892760000	-2 817401000
1	0.674116000	-2 172285000	-2 542503000
1	0 719710000	-1 988934000	-0 774191000
1	0.030220000	-3 613880000	-1 52228/000
1	1 802078000	4 040156000	-0.508063000
1	2 922719000	2 210060000	1 966220000
1	2.623716000	3.310009000	-1.000330000
1	3.077430000	4.211001000	-0.362901000
1	2.410003000	3.334337000	2.244051000
1	4.191474000	3.159991000	2.147936000
1	3.196404000	1.824242000	2.818278000
1	1.382937000	1.592974000	-2.015185000
1	-1.135475000	-0.860872000	1.461002000
1	1.493337000	-1.969206000	2.140711000
1	0.003431000	-1.611479000	3.098061000
1	1.623475000	-1.364364000	3.828211000
1	0.659249000	2.074753000	2.932000000
1	1.040092000	0.983546000	4.301442000
1	-0.558570000	0.854654000	3.468023000
1	11.040509000	1.238483000	0.962979000
1	12.764317000	0.061416000	-0.419959000
1	11.555491000	0.877614000	-1.472481000
1	10.341186000	-0.674591000	2.430600000
1	10.731176000	-1.837045000	1.126059000
1	12.042577000	-0.874371000	1.882016000
1	11 489229000	-0.895823000	-1 235802000
14	-2 699836000	-1 383933000	-0 815802000
			0.010002000

7	-0.880616000	0.545886000	-2.937302000
6	-2.140658000	1.258797000	-3.079420000
6	0.073841000	0.899067000	-3.972854000
1	0.990883000	0.284793000	-3.877973000
1	0.381243000	1.977682000	-3.957661000
1	-0.380222000	0.698917000	-4.966211000
1	-2.008907000	2.371681000	-3.022231000
1	-2.609109000	1.021679000	-4.057946000
1	-2.839797000	0.965246000	-2.275669000
6	-2.185374000	-3.061601000	-0.044369000
6	-3.049792000	-1.814818000	-2.650185000
1	-3.440862000	-2.851441000	-2.709854000
1	-3.789451000	-1.151606000	-3.136151000
1	-2.105461000	-1.753999000	-3.229298000
1	-1.859080000	-2.949637000	1.009278000
1	-1.352104000	-3.514322000	-0.621893000
1	-3.035116000	-3.773391000	-0.057624000
32	-4.142927000	-0.286264000	0.838713000
6	-4 335575000	1 441459000	-0 296291000
6	-6 142307000	-0 764750000	0.827498000
6	-6 978868000	0.060750000	1 640479000
6	-6 749722000	-1 878316000	0 175515000
6	-8 361133000	-0 201959000	1 737899000
6	-8 13/002000	-2 105/11/000	0.20/711000
6	-8 967659000	-1 271101000	1 060838000
1	-8 995350000	0.457155000	2 355580000
1	-8.570024000	-2 966404000	-0.231802000
7	-3.657612000	2.508685000	-0.231002000
7	-5.007012000	2.330003000	-1 312150000
6	-5.201210000	2 650077000	-1.312139000
6	-4.103089000 5.094096000	3.050977000	1 629254000
6	2 572280000	5.129422000	-1.030234000
1	-3.372300000	5.047671000	1 222567000
1	-4.202022000	5.719020000	-1.332307000
1	-3.471090000	5.439452000	0.244790000
l C	-2.3///02000 E.967949000	0.120307000	-1.272002000
0	-5.867818000	3.836638000	-2.69/324000
1	-0.941304000 E 70E444000	3.307342000	-2.071102000
1	-5.795441000	4.931142000	-2.547344000
1	-5.491700000	3.618968000	-3.719316000
0	-0.003241000	0.774461000	-1.992331000
1	-5.722869000	-0.179313000	-1.544943000
6	-5.807619000	0.714577000	-3.503367000
0	-7.547669000	0.947744000	-1.658867000
1	-7.712275000	0.966783000	-0.566646000
1	-7.975659000	1.867048000	-2.108754000
1	-8.110199000	0.081398000	-2.059744000
1	-6.275943000	1.554838000	-4.052222000
1	-6.248510000	-0.221812000	-3.90021/000
1	-4.725915000	0.701128000	-3.732394000
6	-2.625030000	2.671374000	1.057580000
1	-2.473632000	1.604110000	1.327858000
6	-3.158442000	3.389132000	2.301163000
6	-1.293089000	3.223637000	0.549796000
1	-0.986845000	2.727273000	-0.390243000
1	-1.304835000	4.320768000	0.399290000
1	-0.506710000	2.998868000	1.295201000
1	-3.376879000	4.460737000	2.114839000
1	-2.398014000	3.335473000	3.106081000
1	-4.080503000	2.900335000	2.669954000
6	-6.435091000	1.263447000	2.414719000
1	-5.325748000	1.215541000	2.328043000

6	-6.760364000	1.182994000	3.916247000
6	-6.896766000	2.600787000	1.806688000
1	-6.586878000	2.696133000	0.746927000
1	-8.003273000	2.697822000	1.841623000
1	-6.468536000	3.461839000	2.363055000
1	-7.851865000	1.253323000	4.110268000
1	-6.272163000	2.014170000	4.468694000
1	-6.401558000	0.225987000	4.346868000
6	-5.937761000	-2.876827000	-0.641558000
1	-4.935286000	-2.418273000	-0.776523000
6	-6.513474000	-3.137606000	-2.042910000
6	-5.746222000	-4.188625000	0.141555000
1	-5.275691000	-3.996361000	1.127061000
1	-6.722296000	-4.686081000	0.327773000
1	-5.103818000	-4.901910000	-0.417954000
1	-7.502294000	-3.641495000	-2.000934000
1	-5.835509000	-3.791327000	-2.630530000
1	-6.644151000	-2.192392000	-2.608938000
6	-10.470349000	-1.506380000	1.140703000
1	-10.878953000	-0.746350000	1.844153000
6	-10.808203000	-2.897777000	1.708788000
6	-11.140039000	-1.281122000	-0.229611000
1	-10.922555000	-0.264990000	-0.618230000
1	-10.767852000	-2.012495000	-0.978410000
1	-12.242619000	-1.398625000	-0.163281000
1	-10.440066000	-3.704843000	1.040371000
1	-11.905727000	-3.029017000	1.816844000
1	-10.341067000	-3.048453000	2,703389000

Figure S32. Optimized structure of Et NCO (Gibbs free energy = -155229.1075 kcal mol⁻¹).

Table S8. Atomic coordinates of the optimized structure of ^{Et}NCO.

6	-1.223249000	0.081888000	0.013500000
8	-2.296363000	-0.423519000	-0.046745000
7	-0.193252000	0.712526000	0.135146000
6	1.228266000	0.629727000	-0.087488000
1	1.458584000	1.056188000	-1.090406000
1	1.725987000	1.297177000	0.648406000
6	1.785809000	-0.792202000	0.025502000
1	1.327459000	-1.460226000	-0.732890000
1	1.583262000	-1.218411000	1.029259000
1	2.883412000	-0.790743000	-0.135512000

Figure S33. Optimized structure of CO_2 (Gibbs free energy = -118403.2332 kcal mol⁻¹).

Table S9. Atomic coordinates of the optimized structure of CO₂.

6	0.000000000	0.000000000	0.000000000
8	0.000000000	0.000000000	1.175202000
8	0.000000000	0.000000000	-1.175202000

Germylene radical 3

Figure S34. Optimized structure of germylene radical 3. Hydrogen atoms omitted for clarity.

Table S10. Atomic coordinates of the optimized structure of germylene radical 3.

32	1.146128000	0.111771000	-1.586309000
8	-0.020748000	-1.116680000	-0.557868000
6	3.008907000	-0.474674000	-0.863791000
6	0.919388000	1.571835000	-0.057362000
6	-1.258155000	-0.675912000	-0.368038000
8	-1.571850000	0.508928000	-0.588798000
7	-3.501253000	-1.307810000	0.441407000
6	-2.207016000	-1.649840000	0.110125000
6	-4.167051000	-0.103781000	0.035745000
6	-4.223192000	-2.437582000	1.101089000
7	1.186038000	1.485181000	1.267031000
6	0.967062000	2.717423000	1.889220000
6	1.533783000	0.206126000	1.924611000
7	0.515054000	2.844437000	-0.277958000
6	0.540421000	3.577287000	0.909884000
6	-0.022063000	3.281822000	-1.586687000
6	-1.968684000	-3.138755000	0.296576000
6	-1.449156000	-3.791425000	-0.998732000
6	-0.979125000	-3.432097000	1.441193000
6	-3.398511000	-3.649357000	0.617592000
6	-5.684126000	-2.523590000	0.657880000
6	-4.180188000	-2.303569000	2.633242000
6	-4.291762000	0.979213000	0.931192000
6	-4.695445000	-0.026459000	-1.274116000

6	-5.405050000	1.122859000	-1.641338000
6	-4.429162000	-1.102332000	-2.317048000
6	-5.583595000	2.176949000	-0.747614000
6	-5.018071000	2.105527000	0.522709000
6	-3.557150000	1.019496000	2.261782000
6	-4.489528000	1.286706000	3.450453000
6	-2,419914000	2.052370000	2,204563000
6	-3 344170000	-0 627347000	-3 300069000
6	-5 693286000	-1 544427000	-3.066318000
6	1 214825000	3 005705000	3 331503000
6	0 2035/6000	5 025235000	1 031227000
6	0.200040000	0.288770000	2 822257000
6	0.099040000	-0.200779000	2.022237000
6	2.030371000	2 409014000	1 522610000
6	-1.555251000	J.490914000	-1.002019000
0	0.704002000	4.401933000	-2.100003000
0	4.010214000	0.316426000	-0.695466000
6	3.378310000	-1.775200000	-0.424470000
6	4.671685000	-2.011361000	0.056462000
6	2.404301000	-2.943078000	-0.535854000
6	5.649657000	-1.010009000	0.091970000
6	5.306066000	0.241951000	-0.412861000
6	7.031932000	-1.275730000	0.663138000
6	3.775318000	1.913570000	-1.471738000
6	3.997574000	3.024335000	-0.435703000
6	4.619892000	2.147902000	-2.733170000
6	2.661871000	-4.095420000	0.439047000
6	2.374602000	-3.456707000	-1.985871000
6	7.762338000	-2.399539000	-0.086066000
6	6.963447000	-1.565382000	2.170714000
1	-3.856878000	-4.044716000	-0.301608000
1	-3.395431000	-4.463606000	1.356620000
1	-6.244885000	-1.623305000	0.948001000
1	-6.157030000	-3,392591000	1,140275000
1	-5.772387000	-2.647958000	-0.428499000
1	-3.152914000	-2.173852000	2,999122000
1	-4 597443000	-3 210672000	3 097343000
1	-4 777808000	-1 447636000	2 972123000
1	-2 126524000	-3 580605000	-1 840740000
1	-1.384788000	-4 885459000	-0.875198000
1	-0 457087000	-3 405927000	-1 259779000
1	-0.002373000	-2 983811000	1 221706000
1	-0.842579000	-4 519323000	1 560899000
1	-0.042070000	-3 026083000	2 300278000
1	-5.817/21000	1 108162000	-2 6/0621000
1	6 1/6638000	3 0635/0000	1 0/0706000
1	-5 121011000	2 951678000	1 205708000
1	-3.121911000	2.931070000	2 406746000
1	-3.007943000	0.030700000	2.400740000
1	-2.013037000	3.073094000	2.075525000
1	-1.754738000	1.833464000	1.360930000
1	-1.832249000	2.035443000	3.136501000
1	-4.929361000	2.295574000	3.397338000
1	-3.935982000	1.218/99000	4.401146000
1	-5.322516000	0.567839000	3.488180000
1	-4.029485000	-1.980915000	-1.794283000
1	-3.716921000	0.210081000	-3.912926000
1	-3.053480000	-1.442323000	-3.982916000
1	-2.451712000	-0.275572000	-2.765868000
1	-6.104052000	-0.732516000	-3.687047000
1	-6.487381000	-1.867348000	-2.375255000
1	-5.463474000	-2.384590000	-3.741106000
1	0.815017000	3.995717000	3.586775000

1	2.289953000	3.009754000	3.571555000
1	0.730638000	2.274099000	3.992501000
1	0.965012000	5.666444000	0.559085000
1	0.146439000	5.306511000	2.090829000
1	-0.765293000	5.264983000	0.572405000
1	1.608183000	-0.496304000	1.092572000
1	0.265564000	0.325965000	3.724083000
1	0.626940000	-1.313821000	3.149395000
1	-0.549022000	-0.313501000	2.270137000
1	3.664780000	0.619035000	1.913352000
1	3.183983000	-0.778234000	2.887868000
1	2.902876000	0.858466000	3.520064000
1	0.153880000	2.411486000	-2.234886000
1	0.446540000	4.612004000	-3.214679000
1	1.836745000	4.270287000	-2.158591000
1	0.561356000	5.401994000	-1.632389000
1	-1.814723000	4.376129000	-0.929896000
1	-2.029222000	2.605240000	-1.132050000
1	-1.906659000	3.670892000	-2.554697000
1	4.931674000	-3.009312000	0.412389000
1	6.066942000	1.027946000	-0.425822000
1	2.726374000	1.976084000	-1.796880000
1	3.754178000	4.013199000	-0.857488000
1	5.048463000	3.057356000	-0.107277000
1	3.373636000	2.872884000	0.456481000
1	4.388664000	3.127724000	-3.183433000
1	4.423117000	1.368763000	-3.485080000
1	5.697453000	2.129670000	-2.504525000
1	1.406401000	-2.550168000	-0.316529000
1	2.732616000	-3.739117000	1.479302000
1	3.588884000	-4.644653000	0.207047000
1	1.835113000	-4.821286000	0.388134000
1	2.099305000	-2.654157000	-2.687410000
1	1.642633000	-4.272892000	-2.100641000
1	3.364708000	-3.838593000	-2.285770000
1	7.618864000	-0.350388000	0.528777000
1	7.971813000	-1.699868000	2.595725000
1	6.390021000	-2.485541000	2.369390000
1	6.468911000	-0.742273000	2.709830000
1	7.829264000	-2.179951000	-1.162749000
1	7.236002000	-3.361245000	0.026140000
1	8.784931000	-2.532791000	0.303499000

References

- [S1] A.-L. Thömmes, B. Morgenstern, M. Zimmer, D. M. Andrada, D. Scheschkewitz, *Chem. Eur. J.* **2023**, 29, e202301273.
- [S2] N. Kuhn, T. Kratz, *Synthesis* **1993**, *1993*, 561.
- [S3] Synthesized via a procedure described in a) C. Müller, D. M. Andrada, I.-A. Bischoff, M. Zimmer, V. Huch, N. Steinbrück, A. Schäfer, Organometallics 2019, 38, 1052. This procedure is a modified version of the original synthesis described in b) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705-5709; Angew. Chem. 2005, 117, 5851-5855. The chloride anion of the iminium salt was exchanged by tetrafluoroborate for purification purposes according to c) C. M. Weinstein, G. P. Junor, D. R. Tolentino, R. Jazzar, M. Melaimi, G. Bertrand, J. Am. Chem. Soc. 2018, 140, 9255.
- [S4] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176.
- [S5] S. Stoll, A. Schweiger, *J. Magn. Reson.* **2006**, *178*, 42.
- [S6] The Mathworks Inc. (2024), version R2024a 24.1.0.2537033, Natick, Massachusetts.
- [S7] G. M. Sheldrick, *Acta Crystallogr. A* **2008**, *64*, 112.
- [S8] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
- [S9] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281.
- [S10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT, **2016**.
- [S11] a) J. P. Perdew, Phys. Rev. B 1986, 33, 8822; b) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [S12] a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; b) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829; c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297; d) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057.
- [S13] a) C. Lee, W. Yang, and R. G. Parr, *Phys. Rev. B* 1988, 37, 785; b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648.
- [S14] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- [S15] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, *J. Chem. Phys.* **2020**, *152*, 224108.
- [S16] Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

- [S17] a) B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. Chem. 2009, 74, 7935; b) X. Wang, J. Zhang, L. Wang, L. Deng, Organometallics 2015, 34, 2775.
- [S18] L. Klemmer, A.-L. Thömmes, M. Zimmer, V. Huch, B. Morgenstern, D. Scheschkewitz, *Nat. Chem.* **2020**, *13*, 373.
- [S19] K. Chernichenko, B. Kótai, M. Nieger, S. Heikkinen, I. Pápai, T. Repo, *Dalton Trans.* **2017**, *46*, 2263.
- [S20] F. P. Gasparro, N. H. Kolodny, J. Chem. Educ. 1977, 54, 258.
- [S21] H. Eyring, *Chem. Rev.* **1935**, *17*, 65.
- [S22] Deposition numbers CCDC 2427550 (**2b**) and 2427551 (**3**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe <u>Access Structures</u> service.