Supplementary Information for

Boosting the growth kinetics of extra-large pore zeolite ZEO-1

Haijun Yu^{1,2§}, Wenjing Zhang^{1§}, Yiqing Sun², Guangying Fu², Doudou Cai², Nourrdine Chaouati³, Pinard Ludovic³, Mohammad Fahda³, Feng Shao^{1*}, Peng Lu^{2*}, Valentin Valtchev^{2, 3*}

¹Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.

²The ZeoMat Group, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Laoshan District, CN-266101 Qingdao, China.

³Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, F-14000 Caen, France.

co-first authors

E-mails: valentin.valtchev@ensicaen.fr, lupeng@qibebt.ac.cn, feng.shao@ouc.edu.cn

Fig. S1. Liquid phase $^1\!H$ NMR (a) and $^{13}\!C$ NMR (b) spectra of TCyMP+ in CDCl_3.

Fig. S2. The variation of crystallinity (%) with the F/SiO_2 ratio calculated by XRD peak area method (black square) and micropore volume method (red dot).

Fig. S3. PXRD patterns of products obtained with a gel F/SiO_2 ratio of 0.05 (a), 0.10 (b), 0.15 (c), 0.20 (d), 0.25 (e), 0.30 (f), 0.50 (g) and 0.70 (h) using HF as fluoride source.

Fig. S4. PXRD patterns of as-made (a) and calcined (b) ZEO-1 zeolites obtained with different F/SiO_2 ratios using NH₄F as the fluoride source. The gel molar composition is 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:x NH₄F:10 H₂O, x = 0.1-0.5.

Fig. S5. PXRD patterns of products obtained with a gel F/SiO_2 ratio of 0.10 (a), 0.20 (b), 0.30 (c) and 0.50 (d) using NH₄F as fluoride source. The asterisk symbols (*) indicate quartz phase.

Fig. S6. PXRD patterns of ZEO-1 zeolites obtained using HF (a, c) and in OH⁻ medium (b, d). The gel molar composition is $1.0 \text{ SiO}_2:0.5 \text{ SDAOH}:0.02 \text{ Al}_2\text{O}_3:x \text{ HF}:10 \text{ H}_2\text{O}, x = 0 \text{ or } 0.2$. The asterisk symbols (*) indicate quartz phase.

Fig. S7. Particle size distribution of ZEO-1 zeolites obtained with F/SiO_2 ratios of 0 (a), 0.05 (b), 0.10 (c), 0.15 (d), 0.20 (e), 0.25 (f), 0.30 (g) and 0.50 (h) using HF as fluoride source. The gel molar composition is 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:x HF:10 H₂O, x = 0-0.5.

Fig. S8. SEM images of ZEO-1 zeolites obtained with a F/SiO_2 of 0.10 (a), 0.20 (b), and 0.30 (c) using NH₄F as fluoride source. The gel molar composition is 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:*x* NH₄F:10 H₂O, *x* = 0.1-0.3.

Fig. S9. (a) ³¹P and (b) ¹³C MAS solid state nuclear magnetic resonance (NMR) analysis of asmade ZEO-1 zeolite with a gel molar composition of 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:*x* HF:10 H_2O , *x* = 0.05-0.5. The gray lines are the liquid NMR spectra of pristine OSDA.

Fig. S10. ¹⁹F MAS NMR spectra of as-made ZEO-1 zeolites obtained with a gel molar ratio of 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:x HF:10 H₂O, x = 0-0.5.

Fig. S11. Ar adsorption-desorption isotherms (a) and corresponding (d) pore size distribution calculated using on NLDFT method of the calcined and NH₄Cl washed ZEO-1 zeolites. The gel molar composition is 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:x NH₄F:10 H₂O, x =0.10-0.30.

Fig. S12. DTBPy-FTIR spectra of P-free ZEO-1 zeolite with a gel molar ratio of $1.0 \text{ SiO}_2:0.5$ SDAOH: $0.02 \text{ Al}_2\text{O}_3:0.2 \text{ HF}:10 \text{ H}_2\text{O}.$

Fig. S13. SEM images of as-made ZEO-1 zeolites obtained with H_2O/SiO_2 of 10 at $F/SiO_2 = 0.20$ after heating for 36 h (a), 42 h (b), 54 h (c).

Fig. S14. PXRD patterns of zeolites obtained with a gel molar ratio of 1.0 SiO₂:0.5 SDAOH:0.02 Al₂O₃:0.2 HF:5 H₂O at 175 °C (a). Crystallization kinetics curves of ZEO-1 zeolite with different temperature (b).

Fig. S15. PXRD patterns of zeolite after calcination obtained with a gel molar ratio of 1.0 $SiO_2:0.5$ SDAOH:0.02 Al₂O₃:0.2 HF:5 H₂O.

Fig. S16. FTIR spectra (KBr pellets) of as-made products with H_2O/SiO_2 of 5 (a) and 10 (b) at F/SiO_2 of 0.20.

Fig. S17. PXRD patterns of zeolite obtained with a gel molar ratio of $1.0 \text{ SiO}_2:0.5 \text{ SDAOH}:0.02$ Al₂O₃:0.2 HCl:5 H₂O.

Fig. S18. Schematic representation of reaction mechanism of acid catalysed phenol alkylation

by tert-butanol.

Sample (F/SiO ₂)	$S_{BET}(m^2\!/g)^{[a]}$	$V_{micropore} (\pm SD \ cm^{3/}g)^{[b]}$
0.15	863.6	0.28±0.007
0.20	847.0	0.29±0.01
0.10 ^[c]	709.1	0.24±0.01
0.20 ^[c]	791.7	0.28±0.005

Table S1. Textural properties of calcined and NH₄Cl-washed ZEO-1 zeolites.

^[a]Apparent surface area calculated using the Roquerol BET criteria. ^[b]The micropore volume was obtained by Ar@87K adsorption using *t*-plot method. ^[c]The sample synthesized using NH₄F.

Table S2. Compa	rison of P content before ar	nd after treatment.	
Zeolite	P content (%)		
ZEO-1	$\frac{\text{Untreated}}{2.67 \pm 0.06}$	$\frac{1 \text{ reated}}{0.07 \pm 0.06}$	

Sample	Peak area		Adsorbed ammonia (µmol/g catalyst)				
	Peak1	Peak2	Peak area ratio	-	Weak acid	Medium- strong acid	Total mole
F/SiO ₂ =0.5, H ₂ O/SiO ₂ =10	6477	17226	27:73	_	96.02	255.33	351.35
F/SiO ₂ =0.2, H ₂ O/SiO ₂ =10	4533	15645	22:78		49.51	170.87	220.38
F/SiO ₂ =0.2, H ₂ O/SiO ₂ =5	14602	37702	28:72		151.51	391.20	542.71

Table S3. Acid sites concentration and strength for P-free ZEO-1 zeolites.

Zeolite	USY	Beta	*ZEO-1 _{LCS}	ZEO-15	ZEO-1 ₁₀
2,6-DiTBP	0.80	0.00	0.00	0.46	0.45
2,5-DiTBP	0.00	0.00	0.00	0.24	0.24
2,4,6-TriTBP	0.00	0.00	0.00	0.14	0.11

Table S4. Selectivity to minor products (wt.%).

*The sample was synthesized by Laboratoire Catalyse et Spectrochimie.