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1. Experimental Procedures 

Materials and Physical measurements

All the reagents and solvents were commercially available and used as received. FT-IR data were 

recorded on a Vector27 Bruker Spectrophotometer with KBr pellets in the 4000-400 cm−1 region. 

Elemental analyses for C, H, and N were recorded on a Perkin-Elmer 240C analyzer. The PXRD 

data were collected on a Bruker Advance D8 diffractometer with Cu radiation (λ = 1.54056 Å) at 

room temperature. TGA data were obtained on a STA 449C thermal analysis system under N2 

atmosphere. X-Ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo 

Fisher Scientific ESCALAB Xi+ system with an Al Kα source. UV-Vis-NIR Diffuse reflectance 

spectra (DRS) were recorded using a UV–Vis–NIR spectrophotometer equipped with an integrating 

sphere, and BaSO4 powder was used as the reference for the baseline correction.

Photothermal conversion: 270 mg of DyCo-1, YbCo-2 and DyZn-3 thin round layer (thickness 

of 1.5 mm) with the largest possible surface area (diameter of 1.5 cm) placed on a tripod at a distance 

of 20 cm from the 1064 nm laser (0.3 W cm-2). The infrared camera was used to capture the infrared 

videos of DyCo-1, YbCo-2 and DyZn-3 samples when the illumination was on/off. The infrared 

photos and real-time temperatures were extracted from the video.

DyCo-1-loaded polyethylene terephthalate (PET) sample was put on a plastic evaporating dish 

filled with pure water, surrounded by thermally insulating foam. Sunlight was simulated by a Xenon 

lamp with an optical filter (AM 1.5 G) and used to irradiate the sample under 0.1 W cm-2 power 

density. The mass change of the water was recorded by an electronic balance (accuracy of 0.00001 

g). The IR camera was used to measure the temperature.

Synthesis of bisNITCH2bz

Ligand bisNITCH2bz was synthesized according to the previous method.S1

Synthesis of DyCo-1, YbCo-2, DyZn-3 and GdCo-4

Ln(hfac)32H2O (0.01 mmol) and M(hfac)22H2O (0.01 mmol) was suspended in 25 mL of n-

hexane to reflux for 5 hours until most of them dissolved, and a solution of bisNITCH2bz (0.01 

mmol) in 6 mL of CHCl3 or CH2Cl2 was introduced with stirring. After 30 min, the resulting blue 

solution was filtered, and the above filtrate store in the refrigerator (0-5 ℃) to generate blue crystals.
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DyCo-1: Yield 80%. C47H37CoDyF30N8O14 (1729.22 g/mol) (without solvent molecules): calcd. C 

32.64, H 2.15, N 6.48; found. C 32.62, H 2.11, N 6.46; FT-IR (KBr): 3147(w), 1652(s), 1502 (m), 

1364 (m), 1261 (s), 1203 (s), 1147 (s), 800 (m), 665 (m), 582 (m) cm–1.

YbCo-2: Yield 83%. C47H37CoYbF30N8O14 (1739.76 g/mol) (without solvent molecules): calcd. C 

32.44, H 2.14, N 6.44; found. C 32.41, H 2.17, N 6.42; FT-IR (KBr): 3145(w), 1654(s), 1501 (m), 

1366 (m), 1260 (s), 1200 (s), 1143 (s), 801 (m), 667 (m), 583 (m) cm–1.

DyZn-3: Yield 81%. C47H37ZnDyF30N8O14 (1735.70 g/mol) (without solvent molecules): calcd. C 

32.52, H 2.14, N 6.45; found. C 32.56, H 2.17, N 6.43; FT-IR (KBr): 3145(w), 1652(s), 1502 (m), 

1364 (m), 1263 (s), 1200 (s), 1147 (s), 801 (m), 669 (m), 581 (m) cm–1.

GdCo-4: Yield 80%. C47H37CoGdF30N8O14 (1723.97 g/mol) (without solvent molecules): calcd. C 

32.74, H 2.16, N 6.49; found. C 32.70, H 2.15, N 6.46; FT-IR (KBr): 3148(w), 1652(s), 1501 (m), 

1364 (m), 1265 (s), 1200 (s), 1147 (s), 801 (m), 669 (m), 583 (m) cm–1.

The peak observed at about 1502 cm-1 (m, νC=N) is attributed nitronyl nitroxide ligand. Peaks at 

about 1265 cm-1 (s), 1200 cm-1 (s) and 1147 cm-1 (νC-F) are attributed to the coligand hfac-. 

X-ray Crystallography

Single-crystal structure investigations were performed on a Rigaku Saturn diffractometer equipped 

with a CCD area detector and graphite-monochromated Mo/Kα radiation (λ = 0.71073 Å) at 150 K 

or 100 K. Empirical absorption corrections based on symmetry equivalent reflections were applied. 

The structure solution was done with direct methods using SHELXS-2014S2, and structure 

refinements were performed by a full-matrix least-squares procedure using SHELXL-2014S3. 

Anisotropic thermal parameters were assigned to all non-hydrogen atoms. Hydrogen atoms were 

placed in calculated, ideal positions and were refined isotropically as riding on their respective C 

atoms. For YbCo-2 and GdCo-4, the SQUEEZE option in PLATONS4 was used to remove the 

disordered solvent water molecules. CCDC 2419394-2419397 contain the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre.



SUPPORTING INFORMATION

S5

2. Supporting Tables

Table S1. The crystal data and refinement details of 1 and 2.

Complex 1 2

Empirical formula C101H89Cl3Co2Dy2F60N16O28 C95H75Cl3Co2Yb2F60N16O28

Mr 3664.0 3598.91

T (K) 150.0 100.15

Crystal system monoclinic monoclinic

Space group P21/c P21/c

a /Å 17.1476(5) 16.9980(4)

b /Å 22.0824(7) 22.0568(4)

c /Å 19.8106(6) 19.4263(4)

α /º 90 90

β /º 108.3030(10) 106.823(2)

γ /º 90 90

V /Å3 7122.0(4) 6971.6(3)

Z 4 4

Dcalcd /g cm-3 1.764 1.771

θ /º 2.502-52.772 6.744-60.848

F(000) 3732 3648

Reflections collected 64388 62116

Unique reflns/Rint 14586/0.0638 21122/0.0367

GOF (F2) 1.041 1.036

R1, wR2 (I > 2σ(I)) 0.0672, 0.1957 0.0572, 0.1629

R1, wR2 (all data) 0.0772, 0.2023 0.0760, 0.1795
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Table S2. The crystal data and refinement details of 3 and 4.

Complex 3 4

Empirical formula C96H78Cl4Zn2Dy2F60N16O28 C101H89Cl3Co2Gd2F60N16O28

Mr 3641.27 3653.50

T (K) 150.0 100.15

Crystal system monoclinic monoclinic

Space group P21/n P21/c

a /Å 19.843(3) 17.2859(3)

b /Å 12.246(2) 21.9920(4)

c /Å 29.537(5) 19.1401(4)

α /º 90 90

β /º 103.231(6) 106.412(2)

γ /º 90 90

V /Å3 6987.2(19) 6979.7(2)

Z 4 4

Dcalcd /g cm-3 1.811 1.754

θ /º 2.796-53.242 7.104-61.292

F(000) 3748.0 3624

Reflections 

collected

96805 47969

Unique reflns/Rint 14676/0.0859 21578/0.0480

GOF (F2) 0.950 0.961

R1, wR2 (I > 2σ(I)) 0.0934, 0.2404 0.0554, 0.1521

R1, wR2 (all data) 0.1048, 0.2480 0.0807, 0.1729
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Table S3. The important bond lengths [Å] and angles [] for 1 and 2.

Complex 1 2

Ln-O(rad) 2.337(4), 2.339(5) 2.286(4), 2.301(4)

Ln-O(hfac) 2.340(5)-2.386(5) 2.294(4)-2.343(4)

Co-N 2.165(5), 2.112(5) 2.154(4), 2.108(4)

Co-O(hfac) 2.043(5)-2.106(5) 2.042(4)-2.101(4)

O(rad)-Ln-O(rad) 138.30(18) 137.14(15)

N-Co-N 97.9(2) 97.47(17)

Table S4. The important bond lengths [Å] and angles [] for 3 and 4.

Complex 3 4

Ln-O(rad) 2.337(6), 2.288(6) 2.341(3), 2.367(3)

Ln-O(hfac) 2.322(6)-2.375(6) 2.371(3)-2.394(3)

Zn(Co)-N 2.104(7), 2.126(8) 2.141(4), 2.100(4)

Zn(Co)-O(hfac) 2.054(7)-2.129(7) 2.045(3)-2.100(3)

O(rad)-Ln-O(rad) 137.5(2) 139.33(12)

N-Zn(Co)-N 96.5(3) 96.93(14)

Table S5. SHAPE analysis of LnIII ion for complexes 1-4.

SAPR-8 TDD-8 BTPR-8

1-Dy 2.231 0.257 2.518

2-Yb 2.101 0.252 2.458

3-Dy 1.538 0.327 2.154

4-Gd 2.079 0.381 2.225

SAPR-8 (D4d): Square antiprism;  TDD-8 (D2d): Triangular dodecahedron; BTPR-8 (C2v): 
Biaugmented trigonal prism
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3. Supporting Figures

Fig. S1. Coordination environment of the DyIII ion in compound DyCo-1.

Fig. S2. Molecular packing along the a-axis direction for DyCo-1. Free solvent molecules, H and F 
atoms have been omitted.
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Fig. S3. Molecular structure for YbCo-2. Free solvent molecules, H and F atoms have been omitted.

Fig. S4. Coordination environment of the YbIII ion in compound YbCo-2.
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Fig. S5. Molecular packing along the a-axis direction for YbCo-2. Free solvent molecules, H and 
F atoms have been omitted.

Fig. S6. Molecular structure for DyZn-3. Free solvent molecules, H and F atoms have been omitted.
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Fig. S7. Coordination environment of the DyIII ion in compound DyZn-3.

Fig. S8. Molecular packing along the a-axis direction for DyZn-3. Free solvent molecules, H and F 
atoms have been omitted.



SUPPORTING INFORMATION

S12

Fig. S9. Molecular structure for GdCo-4. Free solvent molecules, H and F atoms have been omitted.

Fig. S10. Coordination environment of the GdIII ion in compound GdCo-4.
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Fig. S11. Molecular packing along the a-axis direction for GdCo-4. Free solvent molecules, H and 
F atoms have been omitted.
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Fig. S12. Infrared spectra of complexes DyCo-1, YbCo-2, DyZn-3 and GdCo-4.
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Fig. S13. Thermogravimetric curves of DyCo-1 in N2 atmosphere.
Thermogravimetric analysis was conducted from room temperature to 800 °C under N2 atmosphere. A plateau up to 

ca. 172 °C, then, DyCo-1 began to decompose. Since the CHCl3 solvent is extremely volatile and has been volatilized 

before the thermogravimetric test, no weight loss was detected.
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Fig. S14. Thermogravimetric curves of YbCo-2 in N2 atmosphere.
Thermogravimetric analysis was conducted from room temperature to 800 °C under N2 atmosphere. A plateau up to 

ca. 177 °C, then, YbCo-2 began to decompose. Since the CHCl3 solvent is extremely volatile and has been volatilized 

before the thermogravimetric test, no weight loss was detected.
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Fig. S15. Thermogravimetric curves of DyZn-3 in N2 atmosphere.
Thermogravimetric analysis was conducted from room temperature to 800 °C under N2 atmosphere. A plateau up to 

ca. 150 °C, then, DyZn-3 began to decompose. Since the CH2Cl2 solvent is extremely volatile and has been 

volatilized before the thermogravimetric test, no weight loss was detected.
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Fig. S16. Thermogravimetric curves of GdCo-4 in N2 atmosphere.
Thermogravimetric analysis was conducted from room temperature to 800 °C under N2 atmosphere. A plateau up to 

ca. 184 °C, then, GdCo-4 began to decompose. Since the CHCl3 solvent is extremely volatile and has been 

volatilized before the thermogravimetric test, no weight loss was detected.
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Fig. S17. PXRD patterns of DyCo-1 theoretical parameter, before and after the photothermal water 
evaporation.
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Fig. S18. PXRD patterns of YbCo-2 theoretical parameter, before and after the photothermal test.
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Fig. S19. PXRD patterns of DyZn-3 theoretical parameter, before and after the photothermal test.
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Fig. S20. Powder X-ray diffraction patterns of GdCo-4.
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Fig. S21. IR thermal images of YbCo-2 under on and off irradiation of 1064 nm (0.3 W cm−2) laser.
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Fig. S22. IR thermal images of DyZn-3 under on and off irradiation of 1064 nm (0.3 W cm−2) laser.
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Fig. S23. The temperature increment of lanthanide-functional ligand photothermal materials 
normalized by one unit sunlight.
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Fig. S24. XPS spectra of DyCo-1 before and after the photothermal test.
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Fig. S25. XPS spectra of YbCo-2 before and after the photothermal test.
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Fig. 26. XPS spectra of DyZn-3 before and after the photothermal test.

4. Photothermal conversion efficiency calculation 

The conversion efficiency was determined according to previous methodS16. Details are as follows: 

Based on the total energy balance for this system:

where mi (0.270 g) and Cp,i (0.8 J (g℃) -1) are the mass and heat capacity of system components, 

respectively. Qs is the photothermal heat energy input by irradiating NIR laser to samples, and Qloss 

is thermal energy lost to the surroundings. When the temperature is maximum, the system is in 

balance.



SUPPORTING INFORMATION

S22

where h is heat transfer coefficient, S is the surface area of the container, ΔTmax is the maximum 

temperature change. The photothermal conversion efficiency η is calculated from the following 

equation:

𝜂 =  
ℎ𝑆∆𝑇𝑚𝑎𝑥

𝐼(1 ‒ 10
‒ 𝐴1064)

where I is the laser power (power density, 0.3 W cm-2) and A1064 is the absorbance of the sample 

(0.27 g) at the wavelength of 1064 nm (DyCo-1: A’1064 = 0.241; YbCo-2: A’1064 = 0.166; DyZn-3: 

A’1064 = 0.063; m’: 0.027 g). In order to obtain the hS, a dimensionless driving force temperature, θ 

is introduced as follows:

where T is the temperature of sample, Tmax is the maximum system temperature, and Tsurr is the 

initial temperature.

The sample system time constant τs:

thus 

when the laser is off, Qs = 0, therefore ,and 

so hS could be calculated from the slope of cooling time vs lnθ.

The detailed calculation results of each parameter are shown in the following table.

Table S6. The detailed calculation results of photothermal conversion efficiency η.

A Tsurr / ℃ Tmax / ℃ τs / S hS η

DyCo-1 2.41 24.2 96.3 68.87 0.00313 75.5%

YbCo-2 1.66 20.2 90.0 69.8 0.00302 71.9%

DyZn-3 0.63 23.8 61.2 61.23 0.00352 57.3%
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Table S7. Photothermal property in this work compared with previous reported solid 
lanthanide/transition metal-based materials.

Samples Light source
Light 

Intensity

Added 

temperature

Normalized 

temperature raise 

in 0.1 W cm-2

η Ref

DyCo-
bisNITCH2bz

1064 nm laser 0.3 W cm-2 72.0 °C in 4 min 24.0 °C in 4 min 75.5 %

YbCo-
bisNITCH2bz

1064 nm laser 0.3 W cm-2 67.8 °C in 5 min 22.6 °C in 5 min 71.9 %

DyZn-
bisNITCH2bz

1064 nm laser 0.3 W cm-2 37.4 °C in 5 min 12.4 °C in 5 min 57.3 %

This 

work

Dy-BPyNIT 1064 nm laser 0.1 W cm-2 20.0 °C in 3 min 20.0 °C in 3 min 74.1 % [S5]

Dy-

NITPzCH2IM
1064 nm laser 0.1 W cm-2 19.6 °C in 5 min 19.6 °C in 5 min 56.9 % [S5]

YbL@MSN 690 nm laser 0.7 W cm-2
23.0 ℃ in 900 s 3.28 ℃ in 900 s 45 % [S6]

La-MV-

MOF(film)
808 nm laser 2 W cm-2 121.9 °C in 200 s 6.08 °C in 200 s 77 % [S7]

La-MV-

MOF(cryst)
808 nm laser 2 W cm-2 88 °C in 10 s 4.4 °C in 10 s -- [S7]

Ag(TEPE)](AC) 808 nm laser 1 W cm-2 134.7 ℃ in 30 s 13.4 ℃ in 30 s 51.8 % [S8]

Ag(TEPE)](NC) 808 nm laser 1 W cm-2 87.2 ℃ in 40 s 8.7 ℃ in 40 s 36.2 % [S8]

Dy-2D-MOF 1 sun light 0.1 W cm-2 34.7 °C in 4 min 34.7 °C in 4 min -- [S9]

Dy-m-TTFTB 808 nm laser 0.1 W cm-2 9.7 °C in 15 s 9.7 °C in 15 s -- [S10]

I3
-Dy-m-TTFTB 808 nm laser 0.1 W cm-2 33.6 °C in 15 s 33.6 °C in 15 s -- [S10]

S&I/LDH 808 nm laser 0.5 W cm-2 8.8 °C in 3 min 1.76 °C in 3 min -- [S11]

EuTTA-350 420-2500 nm 0.1 W cm-2 47 °C in 480 s 47 °C in 480 s -- [S12]

HKUST-1  300-650 nm 0.5 W cm-2 99.3 °C in 30 min 19.86 °C in 30 min 33.6 % [S13]

UiO-66  300-650 nm 0.5 W cm-2 31.8 °C in 30 min 6.36 °C in 30 min 5 % [S13]

UiO-66-NH2  300-650 nm 0.5 W cm-2 123.6 °C in 30 min 24.72 °C in 30 min 59.3 % [S13]

ZIF-8  300-650 nm 0.5 W cm-2 44.4 °C in 30 min 8.88 °C in 30 min 0.3 % [S13]

ZIF-67  300-650 nm 0.5 W cm-2 101.3 °C in 30 min 20.26 °C in 30 min 50 % [S13]

Fe-MIL-NH2  300-650 nm 0.5 W cm-2 115.8 °C in 30 min 23.16 °C in 30 min 86.6 % [S13]

IR-MOF-3  300-650 nm 0.5 W cm-2 92.2 °C in 30 min 18.44 °C in 30 min 25.8 % [S13]

CPO-27-Mg  300-650 nm 0.5 W cm-2 111.7 °C in 30 min 22.34 °C in 30 min 21.6 % [S13]

THPTS-Pb 1064 nm laser 0.8 W cm-2 64 °C in 180 s 8 °C in 180 s 15.2 % [S14]

Ag-2D-CPs 800 nm laser 0.5 W cm-2 24.5 °C in 3 min 4.9 °C in 3 min 22.1 % [S15]

Assumption of the added temperature is in direct proportion to light intensity for approximate comparison. This 

column will give the value of the normalized temperature raise for these materials irradiated with the light of 0.1 W 
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cm−2. The raised temperatures were recorded when samples reached the steady-state, in which the temperature hardly 

raises by further illumination. η: photothermal conversion efficiency

5. Solar-driven water evaporation efficiency calculation

The efficiency (η) was calculated based on the following equationS17:

η = mhLV/CoptP0

where m refers to the mass flux (evaporation rate) of water, hLV refers to the total liquid-vapor phase-

change enthalpy (i.e., the sensible heat and the enthalpy of evaporation hLV = Q + Δℎvap), Q is the 

energy consumption to heat the system from the initial temperature T0 to the final temperature T, 

Δℎvap is the latent heat of evaporation of water. And t is the normalized irradiation time (3600 s), P0 

is the normalized solar irradiation value of 1 kW m−2, and Copt represents the optical concentration.

Q = Cliquid × (T − T0)

Δℎvap = Q1 + Δℎ100 + Q2

Q1 = Cliquid × (100℃− T)

Q2 = Cvapor × (T – 100℃)

In the experiment, Cliquid, the specific heat capacity of water is a constant of 4.18 J g−1 ℃−1. Cvapor, 

the specific heat capacity of vapor is a constant of 1.865 J g−1 ℃−1. Δℎ100 is the latent heat of 

evaporation of water at 100 ℃, taken to be 2260 kJ kg−1.

The surface temperature of DyCo-1-loaded PET was 42.8 ℃ (T) during the evaporation process. 

According to the above formulas,

Q = Cliquid × (T − T0) = 4.18 × (42.8 – 23.2) = 81.93 kJ kg−1

Δℎvap = Q1 + Δℎ100 + Q2 = 4.18 × (100 – 42.8) + 2260 + 1.865 × (42.8 − 100) = 2392.41 

kJ kg−1

ΔℎLV = Q + Δℎvap = 81.93 + 2392.41 = 2474.34 kJ kg−1
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m = 0.7728 kg m−2 h−1

t = 3600 s

P0 = 1 kW m−2 

Copt = 1

η = mhLV/CoptP0 = 53.1 %
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