Supplementary Information

Temperature-dependent interfacial reactions between sulfide argyrodite solid electrolyte and lithium metal anode

Ye-Eun Park,^a SeoungJae Kang,^a Taehyun Kim,^a Huijeong Oh,^a Kyungsu Kim,^b Woosuk Cho,^b and

Sangryun Kim*a, c

^a.Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.

^{b.}Advanced Batteries Research Center, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Seongnam 13509, Republic of Korea.

^{c.}Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.

*Corresponding author E-mail address: sangryun@gist.ac.kr

Fig. S1 Raman spectra of Li₆PS₅Cl.

Fig. S2 Nyquist plots of Au/Au blocking cells over the temperature range of 25 °C to 120 °C. The impedance was determined by the *x*-axis intercept of the single spike.^{1,2}

Fig. S3 (a) Equivalent circuit model used to fit the EIS data obtained at 30, 80 and 120 °C. (b) Temperaturedependent evolution of impedance fitting parameters. In the low-frequency region, Nyquist plots did not exhibit a complete semicircle due to the presence of an inductive loop.³ Therefore, the trailing region was excluded from the fitting.

Fig. S4 Galvanostatic Li stripping and plating cycling profiles measured under various current densities of (a) 0.2, (b) 1, and (c) 2 mA cm⁻² at 30 °C.

Fig. S5 Galvanostatic Li stripping and plating cycling profiles measured under various current densities of (a) 0.2, (b) 1, and (c) 2 mA cm⁻² at 80 °C.

Fig. S6 Galvanostatic Li stripping and plating cycling profiles measured under various current densities of (a) 0.2, (b) 1, and (c) 2 mA cm⁻² at 120 °C. The inset of Fig. S5c shows a magnified view of the initial cycling region.

Fig. S7 The first charge profile of the $LiNi_{0.9}Co_{0.05}Mn_{0.05}O_2/Li_6PS_5Cl/Li$ cell at 0.1C and 120 °C.

Fig. S8 Cross-sectional SEM image and EDX elemental mapping of P, S, and Cl for the as-prepared Li/ Li₆PS₅Cl interface before Li plating/stripping reactions.

Fig. S9 Cross-sectional SEM images of the Li/Li₆PS₅Cl interface (a, b) before and after Li plating/stripping reactions at (c, d) 30, (e, f) 80, and (g, h) 120 °C. The measurements were conducted after two cycles at a current density of 0.2 mA cm⁻² in multiple measurement regions.

Fig. S10 XPS spectrum of Cl 2p for the Li/Li₆PS₅Cl interface. The measurements were conducted after 20hour reactions of Li₆PS₅Cl with Li metal at 30, 80, and 120 °C.

Fig. S11 (a) CV results at a scan rate of 0.1 mV s^{-1} using a Li/Li₆PS₅Cl/Li symmetric cell at 120 °C, measured every 10 mV. (b) *In-situ* EIS spectra measured at selected potentials (-40, -70, and -100 mV) during the CV test in Fig. S11a, along with the fitted curves using an equivalent circuit consisting of one parallel combination of a constant phase element (CPE) and a resistor.

- B.-A. Mei, J. Lau, T. Lin, S. H. Tolbert, B. S. Dunn and L. Pilon, Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage, J. Phys. Chem. C, 2018, 122, 24499–24511.
- H. Kim, T. Kim, S. Joo, J. Kim, J. Noh, J. Ma, J.-J. Woo, S. Choi, K. Kim, W. Cho, K. Kisu, S. Orimo and S. Kim, Aqueous synthesis of lithium superionic-conducting complex hydride solid electrolytes, *J. Mater. Chem. A*, 2024, **12**, 32132–32139.
- 3. Z. Tan, Z. Wang, S. Zhang, S. Bai, D. Zhang, Y. Jin and S. Xing, Corrosion behavior of X80 pipeline steel local defect pits under static liquid film, *Sci. Rep.*, 2021, **11**, 20755.