Supporting Information

Deep-Ultraviolet Nonlinear-Optical Crystals LiBePO₄ and BeP₂O₆ by

Ionic Potential Modulation towards Uniform Arrangement of PO₄

Groups

Xia Zhang,^a Jian-Qiang Shen,^a Hong-Xiao Lv,^b Peng-Hui Guo,^a Yi-Gang Chen,^{*a} Chun-Li Hu^{*c}, Xian-Ming Zhang^{*a,b}

^aKey Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China;

^bCollege of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China.

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Table of Contents

Table S1 Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)for LiBePO4 and BeP2O6.

Table S2 Selected bond lengths (Å) and angles (deg) for LiBePO₄ and BeP₂O₆.

Table S3 Applicability of ionic potential modulation strategy in known alkali/alkaline

 earth metal NLO materials.

Fig. S1 Crystal structures of Cs₄LiBe₄P₇O_{24.}

Fig. S2 Powder XRD patterns of LiBePO₄ before and after melting.

Fig. S3 Powder XRD patterns of BeP₂O₆ before and after melting.

Fig. S4 High-resolution XPS spectra of LiBePO₄ and BeP₂O₆.

Fig. S5 TG and DSC curves of LiBePO₄ and BeP₂O₆.

Fig. S6. IR spectra of LiBePO₄ and BeP₂O₆.

Fig. S7 Birefringence measurements of LiBePO₄ and BeP₂O₆.

Fig. S8 Arrangement uniformity change of the PO_4 surrounding Cs^+ , Li^+ and Be^{2+} in $Cs_4LiBe_4P_7O_{24}$.

Fig. S9 Arrangement uniformity change of the PO_4 surrounding Li^+ and Be^{2+} in LiBePO₄.

References.

Table S1 Atomic coordinates and equivalent isotropic displacement parameters (Å²) for (a) LiBePO₄ and (b) BeP₂O₆. U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	x/a	y/b	z/c	U(eq)	BVS
Lil	3550(4)	8010(4)	4712(3)	18.8(8)	0.87
Li2	5972(3)	574(4)	4711(3)	21.2(10)	0.81
Li3	5740(3)	5297(4)	4773(3)	15.8(8)	0.88
Li4	6134(3)	1757(4)	7247(3)	14.5(8)	0.96
Li5	3160(3)	12849(4)	4741(3)	16.0(8)	0.88
Li6	3639(3)	-767(4)	7250(3)	14.3(8)	0.97
Li7	6412(3)	7020(4)	7251(3)	13.8(8)	0.98
Li8	8918(3)	-483(4)	7256(3)	16.0(8)	0.96
Bel	2888.8(18)	5611(3)	5375.6(18)	7.7(5)	2.07
Be2	5441.2(18)	629(3)	2819.5(19)	7.1(5)	2.08
Be3	5414.6(18)	-1901(3)	5368.2(19)	7.0(5)	2.07
Be4	2931.4(19)	3114(3)	2832.2(19)	7.9(5)	2.11
Be5	5087.2(19)	2806(3)	5351.2(19)	7.3(5)	2.08
Be6	2625.4(19)	10273(3)	5350.0(18)	7.1(5)	2.04
Be7	5721.0(18)	5337(3)	2847.9(19)	6.9(5)	2.09
Be8	3226.5(18)	7853(3)	2833.7(19)	7.1(5)	2.09
P1	4470.4(3)	321.5(6)	5970.0(3)	4.65(12)	5.32

(a) LiBePO₄

P2	1955.5(3)	7836.8(6)	5972.0(3)	4.60(12)	5.35
Р3	4760.6(3)	5644.0(6)	5977.8(3)	4.64(12)	5.31
P4	5107.6(3)	7832.5(6)	3473.0(3)	4.27(12)	5.33
P5	7272.7(3)	-1876.7(6)	5971.4(3)	4.50(12)	5.28
P6	4817.5(3)	3085.6(6)	3461.8(3)	4.37(12)	5.27
P7	2591.9(3)	10310.0(6)	3472.2(3)	4.34(11)	5.23
P8	2330.4(3)	5604.7(6)	3466.8(3)	4.37(12)	5.40
O1	1081.1(9)	7456.1(15)	6082.1(9)	7.7(3)	2.00
O2	5466.5(9)	6831.8(15)	6106.2(9)	7.6(3)	2.03
O3	3845.5(9)	6356.4(15)	5607.5(9)	7.4(3)	2.00
O4	6363.5(9)	-1144.9(15)	5608.2(9)	7.6(3)	1.99
05	2797.1(10)	11946.3(15)	3547.5(10)	8.1(3)	2.03
O6	2265.4(10)	4451.1(14)	2747.1(9)	7.3(3)	2.00
07	3251.6(10)	9545.6(14)	3131.6(9)	7.4(3)	1.95
O8	4368.3(10)	1878.4(14)	5591.3(9)	7.4(3)	1.97
O9	2704.0(10)	7763.7(16)	6892.1(9)	8.0(3)	2.06
O10	3609.0(9)	-86.7(15)	6099.3(9)	7.4(3)	2.01
O11	4768.9(10)	1951.2(14)	2736.0(9)	7.4(3)	2.01
012	5754.7(9)	7040.4(14)	3129.5(9)	7.4(3)	1.96
O13	2571.0(11)	4835.3(13)	4382.1(10)	7.4(3)	1.95
O14	7358.5(11)	-3008.2(15)	5297.2(10)	8.5(3)	2.00
015	5228.7(10)	248.9(15)	6886.3(9)	7.9(3)	2.07

017	5083.3(11)				
		2305.8(14)	4371.7(10)	8.2(3)	1.97
O18	7982.6(9)	-698.4(14)	6098.6(9)	7.6(3)	2.03
019	4643.4(10)	-743.9(15)	5306.9(10)	8.2(3)	1.97
O20	5183.0(11)	7254.8(15)	4401.8(10)	7.9(3)	1.98
O21	1661.8(9)	9948.0(14)	2800.0(9)	7.6(3)	2.03
O22	5337.2(10)	9460.2(15)	3556.7(10)	8.0(3)	1.98
O23	1885.1(10)	9382.8(14)	5583.0(9)	7.0(3)	2.02
O24	1419.5(9)	6346.8(14)	3165.4(9)	8.3(3)	1.93
O25	2709.0(10)	9730.7(14)	4407.9(10)	7.7(3)	1.99
O26	3903.6(9)	3806.1(14)	3159.6(9)	8.2(3)	1.96
O27	3013.7(10)	6804.2(16)	3560.1(10)	8.4(3)	1.96
O28	4850.8(10)	4523.7(15)	5301.9(10)	8.8(3)	1.99
O29	7419.6(10)	-2589.0(16)	6879.1(10)	8.2(3)	2.05
O30	2117.2(10)	6745.6(15)	5321.0(10)	8.9(3)	1.99
O31	4910.8(10)	4928.4(16)	6885.9(9)	8.3(3)	2.05
032	4174.2(9)	7493.5(14)	2794.1(9)	8.2(3)	2.00
	018 019 020 021 022 023 024 025 026 027 028 029 030 031 032	O187982.6(9)O194643.4(10)O205183.0(11)O211661.8(9)O225337.2(10)O231885.1(10)O241419.5(9)O252709.0(10)O263903.6(9)O273013.7(10)O284850.8(10)O297419.6(10)O302117.2(10)O314910.8(10)O324174.2(9)	O18 $7982.6(9)$ $-698.4(14)$ $O19$ $4643.4(10)$ $-743.9(15)$ $O20$ $5183.0(11)$ $7254.8(15)$ $O21$ $1661.8(9)$ $9948.0(14)$ $O22$ $5337.2(10)$ $9460.2(15)$ $O23$ $1885.1(10)$ $9382.8(14)$ $O24$ $1419.5(9)$ $6346.8(14)$ $O25$ $2709.0(10)$ $9730.7(14)$ $O26$ $3903.6(9)$ $3806.1(14)$ $O27$ $3013.7(10)$ $6804.2(16)$ $O28$ $4850.8(10)$ $4523.7(15)$ $O29$ $7419.6(10)$ $-2589.0(16)$ $O30$ $2117.2(10)$ $6745.6(15)$ $O31$ $4910.8(10)$ $4928.4(16)$ $O32$ $4174.2(9)$ $7493.5(14)$	O18 $7982.6(9)$ $-698.4(14)$ $6098.6(9)$ $O19$ $4643.4(10)$ $-743.9(15)$ $5306.9(10)$ $O20$ $5183.0(11)$ $7254.8(15)$ $4401.8(10)$ $O21$ $1661.8(9)$ $9948.0(14)$ $2800.0(9)$ $O22$ $5337.2(10)$ $9460.2(15)$ $3556.7(10)$ $O23$ $1885.1(10)$ $9382.8(14)$ $5583.0(9)$ $O24$ $1419.5(9)$ $6346.8(14)$ $3165.4(9)$ $O25$ $2709.0(10)$ $9730.7(14)$ $4407.9(10)$ $O26$ $3903.6(9)$ $3806.1(14)$ $3159.6(9)$ $O27$ $3013.7(10)$ $6804.2(16)$ $3560.1(10)$ $O29$ $7419.6(10)$ $-2589.0(16)$ $6879.1(10)$ $O30$ $2117.2(10)$ $6745.6(15)$ $5321.0(10)$ $O31$ $4910.8(10)$ $4928.4(16)$ $6885.9(9)$ $O32$ $4174.2(9)$ $7493.5(14)$ $2794.1(9)$	O18 7982.6(9) -698.4(14) 6098.6(9) 7.6(3) O19 4643.4(10) -743.9(15) 5306.9(10) 8.2(3) O20 5183.0(11) 7254.8(15) 4401.8(10) 7.9(3) O21 1661.8(9) 9948.0(14) 2800.0(9) 7.6(3) O22 5337.2(10) 9460.2(15) 3556.7(10) 8.0(3) O23 1885.1(10) 9382.8(14) 5583.0(9) 7.0(3) O24 1419.5(9) 6346.8(14) 3165.4(9) 8.3(3) O25 2709.0(10) 9730.7(14) 4407.9(10) 7.7(3) O26 3903.6(9) 3806.1(14) 3159.6(9) 8.2(3) O27 3013.7(10) 6804.2(16) 3560.1(10) 8.4(3) O29 7419.6(10) -2589.0(16) 6879.1(10) 8.2(3) O30 2117.2(10) 6745.6(15) 5321.0(10) 8.9(3) O31 4910.8(10) 4928.4(16) 6885.9(9) 8.3(3) O32 4174.2(9) 7493.5(14) 2794.1(9) 8.2(3)

Atom	x/a	y/b	z/c	U(eq)	BVS
Bel	6779(7)	388(7)	6830(4)	15.5(10)	2.21
Be2	6770(7)	601(6)	1799(4)	12.0(10)	2.22
Be3	-1171(7)	4990(7)	5820(4)	15.5(11)	2.20
Be4	1429(7)	10018(6)	9147(4)	14.6(10)	2.20
P1	6133.8(14)	3024.3(13)	3273.8(7)	12.1(2)	5.32
P2	5902.1(14)	2531.5(15)	5353.0(7)	18.0(3)	5.35
P3	1744.6(14)	2667.1(12)	5552.6(7)	13.0(2)	5.31
P4	988.3(14)	375.7(13)	7072.1(7)	12.6(3)	5.33
P5	6011.5(14)	2992.0(13)	8205.6(7)	12.5(2)	5.28
P6	9147.5(14)	5161.3(13)	7965.9(7)	12.5(3)	5.27
P7	8501.1(14)	7514.4(13)	9418.5(7)	12.5(2)	5.23
P8	4401.9(14)	7795.4(13)	9716.2(7)	13.8(2)	5.40
01	6872(5)	1850(4)	2623(3)	32.5(9)	2.04
02	4417(5)	3834(4)	2970(3)	32.1(9)	2.08
03	7795(4)	4195(4)	3521(2)	23.6(7)	2.06
O4	5850(5)	2215(5)	4256(2)	31.5(9)	2.09
05	7138(6)	3816(5)	5595(3)	46.6(13)	2.10
O6	6220(6)	983(5)	5784(2)	37.2(10)	2.10
07	3884(5)	3113(5)	5579(3)	35.6(9)	2.13
08	1357(6)	1538(4)	4801(2)	30.5(8)	2.22

(b) **BeP**₂**O**₆

09	748(5)	4163(4)	5523(2)	28.1(8)	2.11
O10	1456(6)	1966(4)	6572(2)	33.9(9)	2.02
011	-1002(5)	-17(5)	6919(3)	29.1(8)	2.11
012	1738(4)	506(4)	8053(2)	19.6(6)	2.18
013	6133(5)	1678(4)	7550(2)	29.5(8)	2.10
O14	4640(4)	4207(4)	7956(3)	26.6(8)	2.08
015	8056(4)	3692(4)	8346(3)	27.8(8)	2.15
O16	8790(5)	5387(4)	6943(2)	21.9(7)	2.20
017	8104(5)	6532(4)	8488(2)	27.1(8)	2.09
O18	11095(4)	4960(4)	8334(2)	19.1(7)	2.19
O19	9764(5)	8781(4)	9187(3)	28.5(8)	2.02
O20	9049(5)	6509(4)	10224(2)	25.4(7)	2.21
O21	6517(4)	8272(4)	9570(3)	24.1(7)	2.27
022	5623(5)	2283(4)	9210(2)	28.6(8)	2.15
023	3936(5)	6382(4)	9177(2)	26.0(8)	2.22
O24	3321(4)	9237(4)	9583(2)	24.1(7)	2.06

Atom-Atom	Length/Å	Atom-Atom	Length/Å
P1-O8	1.532(1)	Be5–O1	1.644(3)
P1-O10	1.541(2)	Be5–O17	1.627(3)
P1015	1.530(2)	Be5–O28	1.613(3)
P1019	1.540(2)	Be5–O8	1.606(3)
P2O1	1.541(2)	Be6–O10 ^{#3}	1.644(3)
Р2-09	1.527(2)	Be6-O14#13	1.626(3)
P2-O23	1.532(1)	Be6–O23	1.611(3)
P2-O30	1.532(2)	Be6–O25	1.637(3)
Р3-О2	1.542(2)	Be7–O21 ^{#11}	1.606(3)
Р3-О3	1.535(1)	Be7-O31#4	1.634(3)
P3–O28	1.534(1)	Be7–O12	1.618(3)
P3-O31	1.526(2)	Be7–O16	1.628(3)
P4012	1.539(1)	Be8–O29 ^{#5}	1.624(3)
P4O20	1.535(2)	Be8–O27	1.638(3)
P4022	1.529(1)	Be8–O28	1.624(3)
P4-O32	1.541(1)	Be8–O32	1.606(3)
P504	1.534(1)	Li1-019 ^{#3}	2.035(5)
P5014	1.536(2)	Li1–O25	2.028(4)
P5018	1.541(1)	Li1–O27	2.045(5)
P5-O29	1.525(2)	Li1–O3	2.014(4)
P6011	1.535(1)	Li2-022#1	2.025(5)
P6016	1.534(2)	Li2-O30#11	2.062(5)
P6017	1.530(2)	Li2–017	2.081(5)
P6026	1.537(2)	Li2–O4	2.065(4)

Table S2 Selected bond distances (Å) and angles (deg) for (a) $LiBePO_4$ and (b) BeP_2O_6 .

(a) LiBePO₄

Р7-О5	1.529(1)	Li3-O23 ^{#11}	2.022(4)
Р707	1.542(2)	Li3-O16	2.027(4)
P7–O21	1.538(1)	Li3–O20	1.997(4)
Р7-О25	1.529(2)	Li3-O28	2.056(5)
P8–O6	1.535(1)	Li4–O1 ^{#11}	1.938(4)
P8013	1.537(2)	Li4-06 ^{#12}	2.047(4)
P8–O24	1.542(2)	Li4–O12 ^{#9}	2.056(4)
P8–O27	1.533(2)	Li4-015	1.947(4)
Be1#11-O18	1.631(3)	Li5-08#3	2.134(5)
Be1-O13	1.638(3)	Li5–O13 ^{#3}	2.037(4)
Be1-O30	1.610(3)	Li5-O14#13	1.993(5)
Be1-O30	1.618(3)	Li5-O18#13	2.648(4)
Be2-O15#7	1.614(3)	Li6-O10	1.924(4)
Be2-O22 ^{#1}	1.645(3)	Li6-07 ^{#9}	2.070(4)
Be2-O24#11	1.624(3)	Li6–O9 ^{#1}	1.956(4)
Be2-011	1.606(3)	Li6-O11#10	2.031(4)
Be3–O2	1.633(3)	Li7–O2	1.917(4)
Be3–O4	1.609(3)	Li7–O29 ^{#3}	1.977(4)
Be3019	1.620(3)	Li7-O21#14	1.978(4)
Be3–O20	1.640(3)	Li7-O24#14	2.086(4)
Be4–O6	1.609(3)	Li8–O18	1.925(5)
Be4–O5 ^{#1}	1.637(3)	Li8-O26 ^{#12}	2.112(4)
Be409#4	1.620(3)	Li8–O31 ^{#11}	1.956(4)
Be4026	1.607(3)	Li8-032#12	2.009(4)
Atom-Atom-Atom	Angle/deg	Atom-Atom-Atom	Angle/deg
O8-P1-O10	107.83(8)	O15-P1-O8	110.45(8)
O15-P1-O10	108.57(8)	O29-P5-O14	110.76(8)

O15-P1-O19	109.93(9)	O29-P5-O18	109.06(8)
O9-P2-O1	109.09(8)	O11-P6-O26	106.18(8)
O9-P2-O23	110.13(8)	O16-P6-O11	114.46(8)
O9-P2-O30	110.3(9)	O16-P6-O26	106.75(8)
O23-P2-O1	108.7(8)	O17-P6-O11	108.58(8)
O23-P2-O30	109.43(8)	O17-P6-O16	107.4(9)
O30-P2-O1	109.17(8)	O17-P6-O26	113.62(9)
O3-P3-O2	109.01(8)	O5-P7-O7	108.09(8)
O28-P3-O2	107.67(8)	O5-P7-O21	113.39(8)
O28-P3-O3	110.18(8)	O21-P7-O7	107.14(8)
O31-P3-O3	109.94(9)	O25-P7-O5	108.53(8)
O4-P5-O18	108.7(8)	O25-P7-O7	109.57(8)
O29-P5-O4	109.7(8)		

Symmetry transformations used to generate equivalent atoms:

^{#1} +X, -1+Y, +Z; ^{#2} -1/2+X, 1/2+Y, +Z; ^{#3} +X, 1+Y, +Z; ^{#4} +X, 1-Y, -1/2+Z; ^{#5} -1/2+X, 1/2-Y, -1/2+Z; ^{#6} 1/2+X, -3/2+Y, +Z; ^{#7} +X, -Y, -1/2+Z; ^{#8} -1/2+X, 3/2-Y, -1/2+Z; ^{#9} +X, 1-Y, 1/2+Z; ^{#10} +X, -Y, 1/2+Z; ^{#11} 1/2+X, -1/2+Y, +Z; ^{#12} 1/2+X, 1/2-Y, 1/2+Z

(b) BeP₂O₆

Atom-Atom	Length/Å	Atom-Atom	Length/Å
P1-O3	1.568(3)	P6017	1.597(3)
P1-O2	1.440(3)	P7–O21	1.577(3)
P101	1.483(4)	P7–O19	1.460(3)
P104	1.575(3)	P7017	1.567(3)
P2-O4	1.567(3)	P7–O20	1.457(3)
P207	1.568(3)	P8–O24	1.461(4)

Р2О5	1.434(4)	Р8-О23	1.457(4)	
P206	1.472(4)	P8-O21	1.581(3)	
P309	1.465(4)	P8-O22 ^{#1}	1.578(3)	
Р3-О10	1.584(4)	Be1–O2	1.616(6)	
P3–O8	1.448(3)	Be1-O11#4	1.606(6)	
Р3-07	1.561(3)	Be1013	1.592(6)	
P4–O12	1.449(3)	Be1–O22	1.616(7)	
P4–O11	1.451(3)	Be2-O18#10	1.633(6)	
P4–O32	1.603(3)	Be2–O14 ^{#2}	1.612(6)	
P4–O10	1.583(4)	Be2–O23 ^{#2}	1.580(6)	
P5–O14	1.452(4)	Be2–O1	1.579(6)	
P5-O15	1.568(3)	Be3–O16 ^{#7}	1.622(6)	
Р5-О13	1.465(4)	Be3–O8 ^{#12}	1.592(6)	
Р5-О22	1.582(3)	Be3–O5 ^{#7}	1.580(6)	
P6–O18	1.450(3)	Be3–O9	1.615(6)	
P6–O16	1.458(3)	Be4–O12 ^{#11}	1.627(6)	
P6-O15	1.592(3)	Be4–O19 ^{#7}	1.591(6)	
Atom-Atom-Atom	Angle/deg	Atom-Atom-Atom	Angle/deg	
O3–P1–O4	103.2(2)	O19–P7–O21	106.8(2)	
O2-P1-O3	111.2(2)	O14–P5–O15	110.6(2)	
O2-P1-O1	118.2(2)	O14–P5–O13	118.0(2)	
O2-P1-O4	108.5(2)	O14–P5–O22	109.7(2)	
O1–P1–O3	106.3(2)	O15-P5-O22	104.5(2)	
O1–P1–O4	108.5(2)	O13-P5-O15	106.3(2)	
O4–P2–O7	107.3(2)	O13-P5-O22	106.8(2)	
O5–P2–O4	109.8(2)	O18–P6–O16	117.6(2)	
O5–P2–O7	104.9(2)	O18–P6–O15	104.9(2)	

O5–P2–O6	121.6(3)	O18–P6–O17	112.4(2)
O6–P2–O4	104.0(2)	O16–P6–O15	112.6(2)
O6–P2–O7	108.6(2)	O16–P6–O17	107.7(2)
O9–P3–O10	105.4(2)	O15-P6-O17	100.2(2)
O9–P3–O7	104.5(2)	O19–P7–O17	106.9(2)
O8–P3–O9	120.0(2)	O17-P7-O21	103.0(2)
O8–P3–O10	112.3(2)	O20-P7-O21	109.3(2)
O8–P3–O7	108.4(2)	O20-P7-O19	118.8(2)
O7–P3–O10	105.0(2)	O20-P7-O17	110.8(2)
O12–P4–O11	116.5(2)	O24–P8–O21	104.9(2)
O12-P4-O3	111.8(2)	O24–P8–O22 ^{#1}	108.5(2)
O12–P4–O10	106.5(2)	O23–P8–O24	122.8(2)
O11-P4-O3	109.1(2)	O23–P8–O21	109.3(2)
O11-P4-O10	111.5(2)	O23–P8–O22 ^{#1}	104.5(2)
O10–P4–O3	100.2(2)	O22 ^{#1} –P8–O21	105.8(2)

Symmetry transformations used to generate equivalent atoms:

^{#1} -X, 1/2+Y, 2-Z; ^{#2} 1-X, -1/2+Y, 1-Z; ^{#3} 2-X, 1/2+Y, 1-Z; ^{#4} 1+X, +Y, +Z; ^{#5} +X, -1+Y, +Z; ^{#6} 1-X, 1/2+Y, 1-Z; ^{#7} -1+X, +Y, +Z; ^{#8} 1-X, -1/2+Y, 2-Z; ^{#9} -X, -1/2+Y, 1-Z; ^{#10} 2-X, -1/2+Y, 1-Z; ^{#11} +X, 1+Y, +Z; ^{#12} -X, 1/2+Y, 1-Z

Compound	Ions	φ	SHG	Ref.
α-KZnPO ₄	K^+	6.45	$0.2 \times \text{KDP}$	1
α-LiZnPO ₄	Li^+	16.95	$2.9 \times \text{KDP}$	1
$K_2SrP_4O_{12}$	Sr ²⁺	15.87	0.5 imes KDP	2
KMg(H ₂ O)PO ₄	Mg^{2+}	27.78	$1.14 \times \text{KDP}$	3
Ba ₃ P ₃ O ₁₀ Cl	Ba ²⁺	14.08	$0.6 \times \text{KDP}$	4
Mg ₂ PO ₄ Cl	Mg^{2+}	27.78	$5.2 \times \text{KDP}$	5
Na ₂ BeSiO ₄	Na ⁺	8.85	$0.6 \times \text{KDP}$	6
Li ₂ BeSiO ₄	Li ⁺	16.95	$1.6 \times \text{KDP}$	6
Li _{2.9} Cs _{1.1} (SO ₄) ₂	Cs ⁺	5.52	$0.3 \times \text{KDP}$	7
LiKSO ₄	K^+	7.25	$1.2 \times \text{KDP}$	8
$Li_4Cs_3B_7O_{14}$	Cs ⁺	5.62	0.5 imes KDP	9
$Li_4Sr(BO_3)_2$	Sr^{2+}	15.87	2.0 imes KDP	10
$CsZn_2B_3O_7$	Cs ⁺	5.52	$1.6 \times \text{KDP}$	11
$Ba_5Zn_4(BO_3)_6$	Ba ²⁺	14.08	$2.5 \times \text{KDP}$	12
KNa ₄ B ₂ P ₃ O ₁₃	K ⁺	6.62	$0.4 \times \text{KDP}$	13
$Na_5B_2P_3O_{13}\\$	Na ⁺	8.62	$1.0 \times \text{KDP}$	14
CsBPO ₄ F	Cs ⁺	5.32	$0.3 \times \text{KDP}$	15
KBPO ₄ F	K^+	6.45	$1.1 \times \text{KDP}$	15
RbCaCO ₃ F	Rb ⁺	5.92	1.11 × KDP	16
KCaCO ₃ F	K^+	7.25	$3.61 \times \text{KDP}$	16
RbCaCO ₃ F	Ca ²⁺	18.19	1.11 × KDP	16
RbMgCO ₃ F	Mg^{2+}	35.09	$4.0 \times \text{KDP}$	17
RbCd ₄ Ga ₃ S ₉	Rb ⁺	5.82	$0.01 \times AGS$	18
$KCd_4Ga_5S_{12}$	\mathbf{K}^+	6.45	$2.0 \times AGS$	19
Na ₂ Hg ₃ Sn ₂ Se ₈	Na ⁺	8.85	$5.4 \times AGS$	20
Li ₂ HgSnSe ₄	Li^+	16.95	$6.0 \times AGS$	20

Table S3 Applicability of ionic potential modulation strategy in known alkali/alkaline-earth metal NLO materials.

Fig. S1 Crystal structure of $Cs_4LiBe_4P_7O_{24}$. (a) $[LiBe_4P_7O_{24}]_{\infty}$ pseudo layers with twelve-membered rings. (b) 3D stacking of $[LiBe_4P_7O_{24}]_{\infty}$ pseudo layers viewed along the *a*-axis.

Fig. S2 Powder XRD patterns of LiBePO₄ before and after melting.

Fig. S3 (a) Powder XRD patterns of BeP_2O_6 before and after melting BeP_2O_6 . (b) Powder XRD patterns of BeP_2O_6 after melting.

Fig. S4 XPS spectra of (a) LiBePO₄ and (b) BeP₂O₆. LiBePO₄: (a) XPS survey scan. (b)-(e) Fine XPS spectra of Li1s, Be 1s, P 2p, and O 1s, respectively. BeP₂O₆: (f) XPS survey scan. (g)-(i) Fine XPS spectra of Be 1s, P 2p, and O 1s, respectively.

Fig. S5 TG and DSC curves of LiBePO₄ and BeP₂O₆.

Fig. S6 IR spectra of LiBePO₄ and BeP₂O₆.

Fig. S7 Birefringence measurements of (a) $LiBePO_4$ and (b) BeP_2O_6 .

Fig. S8 Arrangement uniformity change of the PO_4 surrounding Cs^+ , Li^+ and Be^{2+} in $Cs_4LiBe_4P_7O_{24}$.

Fig. S9 Arrangement uniformity change of the PO_4 surrounding Li^+ and Be^{2+} in $LiBePO_4$.

References

- X. M. He, L. Qi, W. Y. Zhang, R. X. Zhang, X. Y. Dong, J. H. Ma, M. Abudoureheman, Q. Jing and Z. H. Chen, Controlling the nonlinear optical behavior and structural transformation with a-site cation in α-AZnPO₄ (A= Li, K), *Small*, 2023, **19**, 2206991.
- Z. Y. Bai, L. H. Liu, L. Z. Zhang, Y. S. Huang, F. F. Yuan and Z. B. Lin, K₂SrP₄O₁₂: A deep-UV transparent cyclophosphate as a nonlinear optical crystal, *Chem. Commun.*, 2019, 55, 8454-8457.
- Z. Y. Bai, C.-L. Hu, L. H. Liu, L. Z. Zhang, Y. S. Huang, F. F. Yuan and Z. B. Lin, KMg(H₂O)PO₄: A deep-ultraviolet transparent nonlinear optical material derived from KTiOPO₄, *Chem. Mater.*, 2019, **31**, 9540-9545.
- 4. P. Yu, L.-M. Wu, L.-J. Zhou and L. Chen, Deep-ultraviolet nonlinear optical crystals: Ba₃P₃O₁₀X (X = Cl, Br), *J. Am. Chem. Soc.*, 2013, **136**, 480-487.
- J. X. Zhang, Q. G. Yue, S. H. Zhou, X. T. Wu, H. Lin and Q. L. Zhu, Screening strategy identifies an overlooked deep-ultraviolet transparent nonlinear optical crystal, *Angew. Chem. Int. Ed.*, 2024, 63, e202413276.
- Y. -G. Chen, X. X. Jiang, H. -X. Lv, D. J. Mei, X. Zhang, Y. Guo, Z. S. Lin and X. -M. Zhang, Two α-SiO₂-related deep-ultraviolet phase-matchable optical nonlinear beryllium silicate crystals Na₂BeSiO₄ and Li₂BeSiO₄ with enhanced SHG effect, *Small*, 2025, **21**, 2408360.
- W. Yang, L. H. Liu, L. Z. Zhang, Y. S. Huang, F. F. Yuan and Z. B. Lin, Li_{2.9}Cs_{1.1}(SO₄)₂: An ultraviolet transparent sulfate as a nonlinear optical crystal, *Cryst. Growth Des.*, 2023, 23, 5614-5620.
- P. F. Zhu, P. F. Gong, Z. Y. Wang, H. T. Jiang, J. F. Zhao, C. Li, Z. S. Lin, X. L. Duan and F. P. Yu, Enlargement of bandgap and birefringence in nonlinear optical alkali-metal sulfate crystals by the substitution of asymmetrical non-π-conjugated cation, *Adv. Optical Mater.*, 2023, 11, 2301152.
- 9. Y. Yang, S. L. Pan, H. Y. Li, J. Han, Z. H. Chen, W. W. Zhao and Z. X. Zhou, Li₄Cs₃B₇O₁₄: Synthesis, crystal structure, and optical properties, *Inorg. Chem.*, 2011, **50**, 2415-2419.
- S. G. Zhao, P. F. Gong, L. Bai, X. Xu, S. Q. Zhang, Z. H. Sun, Z. S. Lin, M. C. Hong, C. T. Chen and J. H. Luo, Beryllium-free Li₄Sr(BO₃)₂ for deep-ultraviolet nonlinear optical applications, *Nat. Commun.*, 2014, 5, 1-5.
- 11. A. H. Reshak, Novel borate CsZn₂B₃O₇ single crystal with large efficient second harmonic generation in deep-ultraviolet spectral range, *J. Alloys Compd.*, 2017, **722**, 438-444.
- M. H. Duan, M. J. Xia and R. K. Li, Ba₅Zn₄(BO₃)₆: A nonlinear-optical material with reinforced interlayer connections and large second-harmonic-generation response, *Inorg. Chem.*, 2017, 56, 11458-11461.
- Y. Yang, P. F. Gong, Q. Huang, G. M. Song, X. M. Liu and Z. S. Lin, KNa₄B₂P₃O₁₃: A deepultraviolet transparent borophosphate exhibiting second-harmonic generation response, *Inorg. Chem.*, 2019, **58**, 8918-8921.
- Z. H. Li, Y. C. Wu, P. Z. Fu, S. L. Pan, G. F. Wang and C. T. Chen, Crystal growth of Na₅ [B₂P₃O₁₃], *Chem. Lett.*, 2002, **31**, 560-561.
- Q. R. Ding, S. G. Zhao, L. N. Li, Y. G. Shen, P. Shan, Z. Y. Wu, X. F. Li, Y. Q. Li, S. Liu and J. H. Luo, Abrupt structural transformation in asymmetric ABPO₄F (A= K, Rb, Cs), *Inorg. Chem.*, 2019, 58, 1733-1737.
- 16. G. H. Zou, N. Ye, L. Huang and X. S. Lin, Alkaline-alkaline earth fluoride carbonate crystals

ABCO₃F (A= K, Rb, Cs; B= Ca, Sr, Ba) as nonlinear optical materials, *J. Am. Chem. Soc.*, 2011, **133**, 20001-20007.

- 17. T. T. Tran, J. G. He, J. M. Rondinelli and P. S. Halasyamani, RbMgCO₃F: A new berylliumfree deep-ultraviolet nonlinear optical material, *J. Am. Chem. Soc.*, 2015, **137**, 10504-10507.
- L.-Q. Yang, X.-M. Jiang, S.-M. Pei, W.-F. Chen, B.-W. Liu and G.-C. Guo, Optimizing the nonlinear optical performance of an ANMQ (A: Alkali metal; N: *d*¹⁰ metal; M: Main group metal; Q: Chalcogen) system, *ACS Appl. Mater. Interfaces.*, 2022, 14, 4352-4359.
- 19. H. Lin, L.-J. Zhou and L. Chen, Sulfides with strong nonlinear optical activity and thermochromism: ACd₄Ga₅S₁₂ (A= K, Rb, Cs), *Chem. Mater.*, 2012, **24**, 3406-3414.
- L. H. Gao, J. J. Xu, X. Y. Tian, B. B. Zhang, X. W. Wu and K. Wu, AgGaSe₂-inspired nonlinear optical materials: tetrel selenides of alkali metals and mercury, *Chem. Mater.*, 2022, 34, 5991-5998.