Electronic Supplementary Information

Hydrosilylation and hydrogermylation of white phosphorus

Jose Cammarata,^a Maximilian Schimpf,^a Daniel J. Scott ^{*b} and Robert Wolf^{*a}

^a Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany.

^b Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom.

E-mail: robert.wolf@ur.de, ds2630@bath.ac.uk

Table of Contents

1. General information	3
2. Computational investigations	4
2.1. General methods	4
2.2. Mechanisms of P_4 hydroelementation by Me ₃ EH (E = Si, Ge, Sn)	4
2.3. Mechanisms of P_4 hydrogermylation and hydrosilylation by R_3 GeH (R = Me and Ph) anZ.d R'_3SiH Ph, Me_3Si), respectively.	(R' = Me, 4
2.4. Mechanisms of HAT process from intermediate (Me ₃ Si)P ₄ with different HAT donors	5
2.5. Calculated bond dissociation energies	6
3. Hydrogermylation of white phosphorus (P ₄)	7
3.1. Hydrogermylation of P ₄ using Bu ₃ GeH and LED irradiation (0.01 mmol scale)	7
3.2. General procedure and optimisation for the hydrogermylation of P_4 using Ph_3GeH and LED (0.01 mmol scale)	irradiation 9
3.3. Crystallographic characterisation of (Ph ₃ Ge) ₂ PH (1)	12
3.4. Hydrogermylation of P _{red} using Ph ₃ GeH and LED irradiation (0.06 mmol scale)	13
3.5. General procedure and optimization for the hydrogermylation of P_4 using Ph_3GeH and chemical radica (0.01 mmol scale)	1 initiators 14
3.6. Synthesis and quantification of PH_3 (4) via hydrogermylation of P_4 (0.01 mmol scale)	16

6. Cartesian coordinates of optimized structures	50
5. References for supplementary information	49
(0.01 mmol scale)	47
4.7. General procedure for the hydrosilylation of P4 using (Me3Si)3SiH, iPr3SiSH and chemical radica	l initiators
4.6. Hydrosilylation of P _{red} using using (Me ₃ Si) ₃ SiH, <i>i</i> Pr ₃ SiSH or 1,4-CHD and LED irradiation (0.06 mm	ol scale) 46
4.5. Synthesis and isolation of TBPB (5) via hydrosilylation of P_4 (0.2 mmol scale)	45
4.4. Synthesis and quantification of PH_3 (4) via hydrosilylation of P_4 (0.01 mmol scale)	42
4.3. General procedure for the functionalisation of the hydrosilylphosphine mixture	36
4.2. General procedure and optimisation for the hydrosilylation of P_4 using (Me ₃ Si) ₃ SiH and <i>i</i> Pr ₃ SiSH, u irradiation (0.01 mmol scale)	nder LED 28
4.1. General procedure for reactivity studies of R_3SiH (R = Ph, Et) towards P_4 under LED irradiation (0 scale)).01 mmol 27
4. Hydrosilylation of white phosphorus (P4)	27
3.9. Hydrogermylation of P ₄ using Ph ₃ GeH and HAT donors (0.01 mmol scale): general procedure and op	timization 25
3.8. Synthesis and isolation of TBPB (5) via hydrogermylation of P ₄ (0.1 mmol scale)	23
2.0.5 $(1 - 1)$ $(1 - 1)$ $(2 - 1)$ $(2 - 1)$	22
3.7. General procedure for the functionalisation of the mixture $(Ph_3Ge)_xPH_{3-x}$ (x = 1, 2)	19

1. General information

Unless stated otherwise, all reactions and manipulations were performed under an N₂ atmosphere (< 0.1 ppm O₂, H₂O) through use of MBraun Unilab and GS MEGA Line gloveboxes and standard Schlenk line techniques. All glassware was oven-dried (160 °C) overnight prior to use. PhH was distilled from Na/benzophenone and stored over molecular sieves (3 Å). MeCN was distilled from CaH₂ and stored over molecular sieves (3 Å). *n*-Hexane, PhMe, Et₂O and THF were purified using an MBraun SPS-800 system and stored over molecular sieves (3 Å). EtOH was degassed and dried by standing over at least three sequential batches of molecular sieves (3 Å). C₆D₆ was distilled from K and stored over molecular sieves (3 Å). CD₃CN, CD₃OD and D₂O were used without purification. All reagents and starting materials were purchased from major suppliers. Liquids were degassed (if not supplied under inert atmosphere) but were otherwise used as supplied, unless stated otherwise. 1,4-Cyclohexadiene (1,4-CHD) was supplied containing 0.1% BHT as stabilizer and was used as received. BnBr, EtBr, BuBr, PhC(O)Cl and *t*BuC(O)Cl were distilled, degassed, and stored over molecular sieves (3 Å). Solids were dried under vacuum (with the exception of paraformaldehyde) but otherwise used as supplied, unless stated otherwise. Red phosphorus (≥97.0%) was purchased from Sigma-Aldrich.

NMR spectra were recorded at room temperature on Bruker Avance 400 spectrometers (400 MHz). Chemical shifts, δ , are reported in parts per million (ppm); ¹H NMR and ¹³C NMR shifts are reported relative to SiMe₄ and were referenced internally to residual solvent peaks, while ³¹P NMR and ¹¹⁹Sn shifts were referenced externally to 85 % H₃PO₄ (aq.) and SnMe₄ (90% in C₆D₆), respectively. Except where stated otherwise, integrals for ³¹P{¹H} and ³¹P spectra are provided for the purposes of qualitative comparison only, and should not be considered quantitatively accurate. The abbreviations s, d, t, q, m are used to indicate singlets, doublets, triplets, quartets and multiplets, respectively.

Reactions driven by light were performed using apparatus that has been described in previous publications, in which reaction vessels are illuminated from beneath by LEDs while placed in a metal block through which cooling water is constantly circulated to maintain near-ambient temperature. ^[16]

LEDs used for the optimization reactions:

- 365 nm, 3 W: 4.3 V, 700 mA, Osram OSLON SSL 80.
- 365 nm, 10 W: 14 V, 700 mA, Osram OSLON SSL 80.
- 390 nm, 40 W: Kessil PR160L.
- 455 nm (±15 nm): 3.7 V, 700 mA, Osram OSLON SSL 80.

2. Computational investigations

2.1. General methods

All calculations were carried out with the ORCA program package.^[43,44] Unless stated otherwise, all calculations were carried out on isolated molecules (in the gas phase). Density fitting techniques, also called resolution-of-identity approximation (RI)^[45], were used for GGA calculations and the RIJCOSX^[46] approximation was used for hybrid-GGA DFT calculations. Atom-pairwise dispersion corrections with the Becke-Johnson damping (D3BJ)^[47,48] were used for all DFT calculations. Pictures were rendered with the software Avogadro.^[49] All geometries were obtained at the PBE-D3BJ/def2-TZVP level of theory.

2.2. Mechanisms of P₄ hydroelementation by Me₃EH (E = Si, Ge, Sn)

The calculated mechanisms for the hydroelementation of the first P-P bond in P_4 by Me_3E^{\bullet} addition and subsequent HAT and the aggregation of P_4 with the initial intermediate $(Me_3E)P_4^{\bullet}$ are combined in Figure S1 for ease of comparison. While the *endo* attack of the Me_3E^{\bullet} radical to P_4 would give the alternative *endo* isomer of intermediate $(Me_3E)P_4^{\bullet}$, only the *exo* pathway was considered, as in the case of Me_3Sn^{\bullet} the *endo* attack was calculated to be much less feasible, in line with chemical intuition.^[28]

Figure S1. Calculated mechanisms for hydroelementation of the first P–P bond in P₄ and for agregation of further P₄ with the first P-centred radical intermediate (relative free energies in kcal mol⁻¹). [**E**] = Me₃Si, Me₃Ge or Me₃Sn.

2.3. Mechanisms of P_4 hydrogermylation and hydrosilylation by R_3GeH (R = Me and Ph) and R'₃SiH (R' = Me, Ph, Me₃Si), respectively.

Analogous studies on the first P–P bond hydroelementation step were performed for non-truncated model radicals such as Ph_3Ge^{\bullet} (Figure S2a) and R'₃Si[•] (R' = Ph and Me₃Si; Figure S2.b). In all cases, the addition of these radicals to P₄ was found to be barrierless and downhill, forming the corresponding 'butterfly' P₄ radical intermediates. Interestingly, the subsequent HAT process exhibited lower energy barriers with respect to the truncated models Me₃EH (E = Ge, Si), which is consistent with the calculated lower E–H bond dissociation energies (see Section 2.5).

Figure S2. Calculated mechanisms for hydroelementation of the first P–P bond in P₄ by a) Me₃GeH and Ph₃GeH; b) Me₃SiH, Ph₃SiH, and (Me₃Si)₃SiH (relative free energies in kcal mol⁻¹).

2.4. Mechanisms of HAT process from intermediate (Me₃Si)P₄ with different HAT donors

The HAT process from the intermediate (Me₃Si)P₄[•] with different HAT donors such as thiols RSH (R = Ph, Me₃Si, iPr_3Si) and 1,4-cyclohexadiene (1,4-CHD) was calculated to be energetically favoured and with smaller activation barriers in all cases. Relaxed surface scans for the silvl substituted thiols R₃SiSH (R = Me, *iPr*) revealed no identifiable transition state.

Figure S3. Calculated mechanisms for the HAT step to form $(Me_3Si)P_4H$ from the intermediate $(Me_3Si)P_4$ with different HAT donors (relative free energies in kcal mol⁻¹). **[Si]** = Me_3Si. 1,4-CHD = 1,4-cyclohexadiene.

2.5. Calculated bond dissociation energies

Bond dissociation energies (BDE, Table S1) were calculated according the following equation

$$BDE = H(X^{\bullet}) + H(H^{\bullet}) - H(X-H)$$

wich corresponds to the enthalpy of the homolysis reaction

$$X-H \rightarrow X^{\cdot} + H^{\cdot}$$

 $H(H^{\bullet}) = -0.49584461$ Eh. Enthalpy values for all other relevant molecules (X–H and X[•]) are given in Section 6.

		•
Entry	X–H	BDE (kcal mol ⁻¹)
1	Me ₃ Sn–H	75.3
2	Me ₃ Ge–H	84.9
3	Bu ₃ Ge–H	84.3
4	Ph ₃ Ge–H	81.6
5	Me ₃ Si–H	91.2
6	Ph ₃ Si-H	87.3
7	TMS ₃ Si–H	81.1
8	Me ₃ SiS–H	88.7
9	<i>i</i> Pr ₃ SiS–H	88.2
10	PhS-H	79.1
11	1,4-CHD–H	72.0

 Table S1. Calculated bond dissociation energies.

3. Hydrogermylation of white phosphorus (P₄)

3.1. Hydrogermylation of P₄ using Bu₃GeH and LED irradiation (0.01 mmol scale)

To provide the most direct comparison to the hydrostannylation of P_4 with Bu_3SnH , we first tested the reactivity of Bu_3GeH towards P_4 under the same reaction conditions. Thus, Bu_3GeH and P_4 were combined in a 6:1 molar ratio in PhMe and irradiated with blue LED light (455 nm) for one day. Unfortunately, and in sharp contrast to the efficient reaction of P_4 with R_3SnH , the ${}^{31}P{}^{1}H$ NMR spectrum of the resulting orange suspension showed only unconsumed P_4 at -521.5 ppm (Figure S4). When the reaction was performed under near UV LED light (365 nm) and longer reaction times, minor signals were observed at -255.5 ppm and -261.6 ppm attributed to Bu_3GePH_2 and $(Bu_3Ge)_2PH$, respectively (Figures S5 and S6). Other attempts to achieve useful reactivity using Bu_3GeH also led to unsatisfactory results.

Representative procedure:

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (500 µL), and Bu₃GeH (46.5 µL, 0.18 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 3 days. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy, as shown in Figures S4-6 below.

Figure S4. ³¹P{¹H} NMR spectrum for the reaction of P₄ (0.01 mmol) with Bu₃GeH (0.06 mmol) in PhMe and driven by 456 nm LED irradiation for 24 h.

Figure S5. ³¹P{¹H} NMR spectrum for the reaction of P_4 (0.01 mmol) with Bu₃GeH (0.18 mmol) in PhMe and driven by 356 nm, 10 W LED irradiation for 3 days. * marks the internal standard Ph₃PO.

Figure S6. ³¹P NMR spectrum for the reaction of P₄ (0.01 mmol)with Bu₃GeH (0.18 mmol) in PhMe and driven by 356 nm, 10 W LED irradiation for 3 days. The insets show expansions of the signals attributed to Bu₃GePH₂ and (Bu₃Ge)₂PH, highlighting their multiplicity due to ${}^{1}J({}^{31}P{}^{-1}H)$ couplings. * marks the internal standard Ph₃PO.

3.2. General procedure and optimisation for the hydrogermylation of P₄ using Ph₃GeH and LED irradiation (0.01 mmol scale)

Representative procedure:

To a 10 mL, flat-bottomed, stoppered tube were added P₄ (0.01 mmol, as a stock solution in 84.3 μ L PhH), PhMe (100 μ L), and Ph₃GeH (36.6 mg, 0.12 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 24 hours. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ¹H, ³¹P{¹H}, and ³¹P NMR spectroscopy, as shown in Figures S7-9, below. Compounds **1-3** have not been reported previously. However, the observed NMR data are consistent with those reported for similar compounds such as (Me₃Ge)₂PH^[32] and R₃Ge₂P(H)Ph (R = Me, Et).^[33]

Figure S7. ¹H NMR spectrum for the reaction of P_4 with Ph_3GeH (0.12 mmol) in hexane and driven by 365 nm, 3 W LED irradiation for 3 d (Table S2, Entry 9). The inset shows expansions of the doublet resonances attributed to the PH moieties of (Ph_3Ge)₂PH (1) and [Ge]P(H)Ph (3), and the PH₂ moiety of (Ph_3Ge)PH₂ (2). [Ge] = Ph_3Ge . * marks Ph_3GeH . ~ marks solvent resonances truncated for clarity.

Figure S8. Quantitative ³¹P{¹H} NMR spectrum (D1 = 40 s) for the reaction of P₄ with Ph₃GeH (0.12 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 3 d (Table S2, Entry 9). [Ge] = Ph₃Ge. * marks the internal standard Ph₃PO (0.02 mmol). # marks an unknown side product.

Figure S9. ³¹P NMR spectrum for the reaction of P₄ with Ph₃GeH (0.12 mmol) in hexane and driven by 365 nm, 3 W LED irradiation for 3 d (Table S2, Entry 9). The insets show expansions of the signals attributed to [Ge]₂PH (1), [Ge]PH₂ (2) and [Ge]P(H)Ph (3), highlighting their multiplicity due to ${}^{1}J({}^{31}P{}^{-1}H)$ couplings. [Ge] = Ph₃Ge. * marks the internal standard Ph₃PO (0.02 mmol).

For reasons of experimental expediency, during the optimization of the hydrogermylation of P₄, non-quantitative ${}^{31}P{}^{1}H$ NMR spectra were recorded to analyse each experiment and to assess the relative total conversion to **1-3**. Although this did not provide precise, quantitative conversions directly it did allow for meaningful, qualitative comparisons between experiments. Under the conditions highlighted in Table S2, entry 9, a quantitative ${}^{31}P{}^{1}H$ NMR spectrum was recorded using an inverse-gated decoupled pulse sequence (D1 = 40 s, Figure S8), and the conversion of P₄ to products **1-3** was determined. Thus, for ease of interpretation, the integrals measured for **1-3** for all optimization experiments have been normalized relative to the value for this experiment (Table S2, entry 9) to provide the relative conversions indicated in Table S2.

	P. +	nUV LED ((365 nm)	Ph ₃ Ge ₋ GePh ₃	Ph ₃ Ge、 _P 、H	
	4 ⁺	PhMe	, RT	r I H		Ph₃ Ge´[「]` Ph
				<u>ر</u> 1	2)	3
				major pro	ducts	side product
Entry	Ph ₃ GeH	PhMe	Time	Full conv. of	Relative conv. to 1	Relative conv. to
	(mmol)	(µL)	(days)	P ₄ ?	and 2 (%)	3 (%)
1^{c}	0.06	500	1	Х	traces	-
2^{c}	0.06	500	3	\checkmark	9	-
3	0.06	500	3	\checkmark	46.7	10.0
4	0.06	500 (hexane)	3	\checkmark	54.1	8.9
5	0.06	500 (THF)	3	\checkmark	49.0	11.9
6	0.06	500 (EtOH)	3	Х	4.7	-
7	0.06	500 (CH ₃ CN)	3	\checkmark	7.9	-
6	0.09	500	4	\checkmark	75.6	12.8
7	0.09	500 (hexane)	3	\checkmark	70.2	7.6
8	0.12	500 (hexane)	3	\checkmark	81.9	4.8
9	0.12	500	3	\checkmark	86.7	7.7
10	0.12	100	3	\checkmark	57.7	13.3
11	0.12	100	2	\checkmark	77.9	12.0
12	0.12	100	1	\checkmark	87.4	7.8

Table S2. Optimization of hydrogermylation of P4 using Ph3GeH and near-UV LED irradiation(365 nm).^a

^a The general procedure described in this section was modified to use the indicated amount of reactants and solvent. ^b Conversions were calculated by integration of the ³¹P resonances of **1-3** relative to an internal standard, which was then normalized relative to entry 9 as described in the text above. ^c Blue LED (455 nm).

Crystals of $(Ph_3Ge)_2PH$ (1) suitable for X-ray analysis were obtained by removing volatiles from the product mixture under vacuum, washing the solid residue with n-hexane, re-dissolving in a minimal amount of toluene and adding n-hexane by slow diffusion at ambient temperature (see Section 3.3).

3.3. Crystallographic characterisation of (Ph₃Ge)₂PH (1)

Single crystal X-ray diffraction data for (Ph₃Ge)₂PH (1) were recorded on a Rigaku XtaLAB Synergy DW R (DW system, HyPix-Arc 150) diffractometer with microfocus Cu-K α radiation (λ = 1.54184 Å). The crystal was selected under mineral oil, mounted on a micromount loop and quench-cooled using an Oxford Cryosystems open flow N₂ cooling device. Data processing, reduction and multi-scan absorption correction^[50,51] was performed with the program CrysAlisPro (Rigaku Oxford Diffraction, 2021). Using Olex2,^[52] the structure was solved with the SHELXT^[53] structure solution program using Intrinsic Phasing and refined using SHELXL using Squares refinements on $F^{2,[54]}$ (Ph₃Ge)₂PH crystallizes in the monoclinic space group $P2_1$ with two molecules in the asymmetric unit. All non-hydrogen atoms were refined using anisotropic displacement parameters. All hydrogen atoms but the P bound hydrogen atoms were located from the electron density map and had its positions and isotropic displacement parameters refined freely. The disorder of the P bound hydrogen atom (H2 at P2) was treated with a geometrical restraint. Crystallographic data for this structure has been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of this data can be obtained free of charge on quoting the depository number: 2408662; E-mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk.

Crystal and refinement data of $(Ph_3Ge)_2PH$ (1) are collected in Table S3, and the structure itself is illustrated in Figure S10. Selected bond lengths and angles are listed in the figure caption of the latter. The Ge–P distances (Ge1–P1 2.3325(7) Å, Ge2–P1 2.3269(7) Å) are slightly elongated compared to that observed in the phosphanylgermane ((F₅C₆)Ge)₃PH₂ (2.307(1) Å),^[55] while the P–H bond length (P1–H1 1.21(4) Å) is identical.

Figure S10. Single-crystal XRD structure of (Ph₃Ge)₂PH (1). Thermal ellipsoids are shown at 50%. H atoms, except for the one bound directly to P, are omitted. C atoms are shown in grey, H in white, P in orange, and Ge in dark green. Selected bond lengths/Å and angles/°: P1–H1 1.21(4), Ge1–P1 2.3325(7), Ge2–P1 2.3269(7), Ge1–C1 1.956(2), Ge1–C2 1.951(2), Ge1–C3 1.953(2), Ge2–C4 1.957(2), Ge2–C5 1.956(2), Ge2–C6 1.964(2), Ge1–P1–Ge2 108.03(3), C1–Ge1–P1 105.04(7), C2–Ge1–P1 115.83(7), C3–Ge1–P1 111.24(7), C4–Ge2–P1 116.59(7), C5–Ge2–P1 108.74(7), C6–Ge2–P1 104.44(7).

	(Ph ₃ Ge) ₂ PH (1)
Formula	$C_{36}H_{31}Ge_2P$
Formula weight, g mol ⁻¹	639.76
Crystal system	123.0(1)
Crystal size, mm	monoclinic
Space group	$P2_1$
a, Å	9.67692(3)
b, Å	18.31240(5)
<i>c</i> , Å	17.49013(6)
<i>α</i> , °	90
<i>β</i> , °	105.3799(3)
γ, °	90
V, Å ³	2988.388(17)
Ζ	4
$ ho_{ m calcd},{ m Mg}\;{ m m}^{-3}$	1.422
μ (Mo K α), mm ⁻¹	3.148
<i>F</i> (000)	1304.0
2θ range, deg	$0.129 \times 0.115 \times 0.078$
Index ranges	Cu Ka ($\lambda = 1.54184$)
	5.24 to 150.644
	$-12 \le h \le 11, -22 \le k \le 22, -21 \le l \le 21$
No. of reflns collected	174471
No. indep. Reflns	12237 [$R_{int} = 0.0318$, $R_{sigma} = 0.0135$]
No. refined params	12237/1/716
GooF (F^2)	1.040
$R_1(F) (I > 2\sigma(I))$	$R_1 = 0.0168, wR_2 = 0.0426$
$wR_2(F^2)$ (all data)	$R_1 = 0.0172, wR_2 = 0.0427$
Largest diff peak/hole, e $Å^{-3}$	0.25/-0.16
CCDC number	2408662

Table S3. Crystal data and structure refinement of (Ph₃Ge)₂PH (1).

3.4. Hydrogermylation of P_{red} using Ph₃GeH and LED irradiation (0.06 mmol scale)

To a 10 mL, flat-bottomed, stoppered tube were added P_{red} (0.4 mmol, 12.4 mg), PhMe (250 µL), and Ph₃GeH (18.3 mg, 0.06 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 2 days. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ³¹P{¹H} NMR spectroscopy, as shown in Figure S11, below.

Figure S11. ³¹P{¹H} NMR spectrum for the reaction of P_{red} with Ph₃GeH (0.06 mmol) in PhMe and driven by 356 nm, 10 W LED irradiation for 2 days. * marks the internal standard Ph₃PO. [Ge] = Ph₃Ge.

3.5. General procedure and optimization for the hydrogermylation of P₄ using Ph₃GeH and chemical radical initiators (0.01 mmol scale)

Representative procedure:

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (500 µL), AIBN (0.05 mmol, as a stock solution in PhH) and Ph₃GeH (18.3 mg, 0.06 mmol). The tube was sealed, wrapped in Al foil to exclude light, and heated to 60 °C for 2 days. Ph₃PO (14.0 mg, 0.0503 mmol) was subsequently added to act as an internal standard. The resulting mixture was analysed by ${}^{31}P{}^{1}H$ NMR spectroscopy, as shown in Figures S12 and 13, below.

Figure S12. ³¹P{¹H} NMR spectrum for the reaction of P₄ with Ph₃GeH (0.06 mmol) and AIBN (azobis(isobutyronitrile), 0.05 mmol) in PhMe, heated to 60 °C for 2 d (Table S4, Entry 4). * marks the internal standard Ph₃PO (0.0503 mmol). [Ge] = Ph₃Ge.

Figure S13. ³¹P{¹H} NMR spectrum for the reaction of P₄ with Ph₃GeH (0.06 mmol) and ACN (1,1'-azobis(cyclohexanecarbonitrile), 0.05 mmol) in PhMe, heated to 80 °C for 2 d (Table S4, Entry 7). * marks the internal standard Ph₃PO (0.041 mmol). [Ge] = Ph₃Ge.

	$\frac{1}{2}$ P + 15 equiv	AIBN or ACN	► Ph ₃ Ge、	<mark>_</mark> ∠GePh ₃ _ Ph ₃ Ge、	, <mark>⊳</mark> ,H	
	0.01 mmol	PhMe		H .	H Ph ₃ G	ie ^{r '} Ph
			\subseteq	1	2	3
				ک major products	side	product
Entry	Radical initiator (mmol)	Temperature (°C)	Time (days)	Full conv. of P ₄ ?	Relative conv. to 1 and 2 (%)	Relative conv. to 3 (%)
1	AIBN (0.001)	60	1	Х	traces	-
2	AIBN (0.001)	60	2	Х	traces	-
3	AIBN (0.05)	60	1	Х	<15	traces
4	AIBN (0.05)	60	2	Х	27.6	traces
6	ACN (0.001)	80	1	Х	traces	-
7	ACN (0.05)	80	2	Х	21.7	traces
8	ACN (0.05)	100	2	Х	<15	traces

Table S4. Optimization of hydrogermylation of P4 using Ph3GeH and chemical radical initiators.^a

^a The general procedure described in this section was modified to use the indicated amount of reactant, temperature and time. ^b Conversions were calculated by integration of the ³¹P resonances of **1-3** relative to an internal standard, which was then normalized relative to Table S2, entry 9 as described in Section 3.2. AIBN = azobis(isobutyronitrile)). ACN = 1,1'-azobis(cyclohexanecarbonitrile).

3.6. Synthesis and quantification of PH₃ (4) via hydrogermylation of P₄ (0.01 mmol scale)

1/4
$$P_4$$
 + 1.5 equiv. Ph₃GeH $\stackrel{\text{i)}}{\xrightarrow{}}$ nUV LED (365 nm)
0.01 mmol $\stackrel{\text{ii)}}{\xrightarrow{}}$ HCI $\stackrel{\text{H}}{\xrightarrow{}}$ H
4
≥50% conversion

To an NMR tube fitted with a J. Young valve were added PhMe (500 μ L), P₄ (0.01 mmol, as a stock solution in 97.7 μ L PhH), Ph₃PO (11.5 mg, 0.0413 mmol) and Ph₃GeH (18.3 mg, 0.06 mmol). The NMR tube was sealed, placed in thermal contact with a water-cooled block to maintain near-ambient temperature (by placing in a water-filled, flat-bottomed glass tube, which was in turn placed in the block and wrapped in Al foil), and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 3 days. The resulting yellow suspension was frozen by placing the NMR tube in a bath of liquid nitrogen, and HCl (0.4 mmol, 4.0 M in 1,4-dioxane) was added (while still maintaining an inert atmosphere). The NMR tube was sealed and its contents were then thawed, agitated briefly, and analysed by ¹H, ³¹P{¹H} and ³¹P NMR spectroscopy. The resulting spectra indicated clean conversion of **1** and **2** to PH₃,^[20] and the formation of PhPH₂ from **3** as shown in Figures S14-16, below.^[56]

In order to accurately quantify the amount of PH_3 in solution, a proton-coupled ³¹P spectrum was acquired with a 20 s delay between scans (which was confirmed to be > 5 x T₁), and the intensity of the PH₃ resonance was integrated relative to that of Ph₃PO (which had been added specifically to act as an internal standard). This indicated 50% of the theoretical maximum conversion to PH₃ (Figure S17), which provides a lower bound for the actual conversion (this value does not include any PH₃ present in the NMR tube headspace).

Figure S14. ¹H NMR spectrum of a solution of PH_3 (**4**) generated *via* hydrogermylation of P_4 in PhMe, followed by acidification. Solvent resonances (~) truncated for clarity.

Figure S15. ³¹P{¹H} NMR spectrum of PH₃ (4) generated *via* hydrogermylation of P₄ in PhMe, followed by acidification in the presence of Ph₃PO (*) as an internal standard.

Figure S16. ³¹P NMR spectrum of PH₃ (**4**) generated *via* hydrogermylation of P₄ in PhMe, followed by acidification in the presence of Ph₃PO (*) as an internal standard.

Figure S17. Quantitative ³¹P NMR spectrum (D1 = 20 s) of PH₃ (4) generated *via* hydrogermylation of P₄ in PhMe, followed by acidification, in the presence of Ph₃PO (*) as an internal standard.

3.7. General procedure for the functionalisation of the mixture $(Ph_3Ge)_xPH_{3-x}$ (x = 1, 2)

The conversions of the products shown in this section were determined by a quantitative single scan inverse-gated ${}^{31}P{}^{1}H$ NMR (DS = 0, D1 = 2 s) methodology that we have described previously, and whose use to quantify tertiary phosphines and quaternary phosphonium salts has previously been validated.^[16]

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL), and Ph₃GeH (36.6 mg, 0.12 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 24 hours (unless stated otherwise). The resulting clear yellowish solution was treated with the corresponding electrophiles as follows:

<u>*Reactivity towards benzyl bromide:*</u> Benzyl bromide (47.6 μ L, 0.4 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the yellowish solution, and heated to 100 °C with stirring for 3 days. After cooling to room temperature, Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. Volatiles were removed under vacuum, and CH₃CN (0.5 mL) was then added. NMR analysis of the resulting mixture showed the formation of [Bn₄P]Br (**5**) as the main product with 90 % conversion as shown in Figure S18.

Figure S18. ³¹P{¹H} NMR spectrum of [Bn₄P]Br (**5**) generated *via* hydrogermylation of P₄ in PhMe, followed by treatment with benzyl bromide (0.4 mmol) and KHMDS (0.1 mmol), heated to 100 °C for 3 d. * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

<u>Reactivity towards bromoethane</u>: Bromoethane (30 μ L, 0.4 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the yellowish solution, and heated to 100 °C with stirring for 3 days. After cooling to room temperature, Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. Volatiles were removed under vacuum, and CH₃CN (0.5 mL) was then added. NMR analysis of the resulting mixture showed the formation of [Et₄P]Br (**6**) as the main product with 42 % conversion as shown in Figure S19.

Figure S19. ³¹P{¹H} NMR spectrum of $[Et_4P]Br$ (6) generated *via* hydrogermylation of P₄ in PhMe, followed by treatment with bromoethane (0.4 mmol) and KHMDS (0.1 mmol), heated to 100 °C for 3 d. * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

<u>*Reactivity towards paraformaldehyde:*</u> Volatiles were removed under vacuum. EtOH (0.5 mL) and paraformaldehyde (15.0 mg, 0.5 mmol) were added to the oily solid residue, and the resulting suspension was heated to 50 °C with stirring for 2 days. After cooling to room temperature, the mixture was frozen in a liquid-nitrogen bath, and HCl (4.0 M in 1,4-dioxane, 100 μ L, 0.4 mmol) was added. After thawing, the reaction mixture was stirred at room temperature for 2 hours. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. NMR analysis of the resulting mixture showed only traces of the desired product THPC (-27.6 ppm, <5% conversion), along with PH₃ (-242.7 ppm) and an unknown signal (-20.2 ppm), as shown in Figure S20.

Figure S20. ³¹P{¹H} NMR spectrum of THPC generated *via* hydrogermylation of P₄ in PhMe, followed by treatment with paraformaldehyde (0.5 mmol) in EtOH, heated to 50 °C for 2 d. Then, quenched with HCl (0.4 mmol).* marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

<u>*Reactivity towards benzoyl chloride:*</u> PhC(O)Cl (27.9 μ L, 0.24 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the yellowish solution, and stirred at room temperature for 24 hours. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy as shown in Figure S21.

The spectra show the complete consumption of the crude 1/2 mixture and the formation of the desired product $P(C(O)Ph)_3$ at -54.1 ppm, albeit in trace amounts. Two other unidentified P-containing species were observed at -24.6 and -75.3 ppm, the latter being the main product of this reaction. Based on their chemical shifts and the absence of ${}^{1}J({}^{31}P{}^{-1}H)$ splitting in the proton-coupled spectrum, these resonances are attributed to partially acylated species such as $Ph_3GeP(C(O)Ph)_2$ or $(Ph_3Ge)_2PC(O)Ph$ (or possibly $Ph_3GeP(Ph)C(O)Ph$, formed *via* acylation of side-product **3**). Similar outcomes were observed during experiments with higher temperatures and extended reaction times. Analogous experiments using fewer equivalents of PhC(O)Cl were also unsuccessful in our attempts to target these potential intermediates more selectively.

Figure S21. ³¹P{¹H} and ³¹P NMR spectra for the hydrogermylation of P₄ in PhMe, followed by treatment with benzoyl chloride (0.24 mmol) and KHMDS (0.1 mmol), stirred at room temperature for 24 h. # marks unknown species.

<u>*Reactivity towards pivaloyl chloride:*</u> tBuC(O)Cl (29.6 μ L, 0.24 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the yellowish solution, and heated to 60 °C with stirring for 24 hours. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy as shown in Figure S22.

Similar to the reaction with benzoyl chloride, the ³¹P{¹H} NMR spectrum shows only traces amounts of the desired product $P(C(O)tBu)_3$ (-51.9 ppm) along with a variety of other unknown species. The main product of this reaction appears as a singlet resonance at -117.1 ppm, which splits into a doublet in the ³¹P spectrum (¹*J*(³¹P-¹H) = 200 Hz). Given the similarities on chemical shift and ¹*J*(³¹P-¹H) coupling constant with analogous compounds (Bu₃SnP(H)C(O)tBu^[20] and Me₃SiP(H)C(O)tBu^[57]), this species was assigned as Ph₃GeP(H)C(O)tBu. Additional experiments using fewer equivalents of *t*BuC(O)Cl, in our attempts to target this potential intermediate more selectively, were unsuccessful. Moreover, similar outcomes were observed during experiments at higher temperatures and with longer reaction times.

Figure S22. ³¹P{¹H} and ³¹P NMR spectra for the hydrogermylation of P₄ in PhMe, followed by treatment with benzoyl chloride (0.24 mmol) and KHMDS (0.1 mmol), heated to 60 °C for 24 h. # marks unknown species.

3.8. Synthesis and isolation of TBPB (5) via hydrogermylation of P₄ (0.1 mmol scale)

$$\frac{1}{4} P_{4} + 3 \text{ equiv. Ph}_{3}\text{GeH} \xrightarrow{\text{i) } nUV LED (365 nm)}{\text{PhMe, RT, 2 d}} \xrightarrow{\text{ii) } BnBr} \xrightarrow{\text{Bn}}_{\text{KHMDS}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{P}-Bn}_{\text{Bn}} Bn \xrightarrow{\text{Bn}}_{\text{Bn}} Bn \xrightarrow{\text{Bn$$

To a 50 mL, flat-bottomed, stoppered tube were added P_4 (12.4 mg, 0.1 mmol), PhMe (2.0 mL), and Ph₃GeH (366.0 mg, 1.2 mmol). After stirring to obtain a homogeneous solution, the tube was placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 2 days. To the yellowish solution benzyl bromide (476 µl, 4.0 mmol) and KHMDS (120 mg, 0.6 mmol) were added and the reaction mixture heated to 100 °C with stirring for 3 days. After cooling to room temperature the pale yellow suspension was filtered, and the remaining solid was washed with PhMe (3 x 6 mL) and extracted into acetonitrile (3 x 10 mL). Removal of volatiles under vacuum yielded the target product as a white solid (146 mg, 77 %).

¹**H NMR** (400 MHz, 300 K, CD₃CN) : δ = 7.35 ppm (3H, m), 7.21 ppm (2H, m), 3.87 ppm (2H, d, ²*J*(³¹P-¹H) = 14.6 Hz). ³¹P{¹H} **NMR** (121 MHz, 300 K, CD₃CN) : δ = 25.8 ppm (s). ³¹P **NMR** (121 MHz, 300 K, CD₃CN) : δ = 25.8 ppm (m). NMR data are consistent with our previous report.^[20]

3.89

--51.6 --25.8

Figure S23. ¹H NMR spectrum of [Bn₄P]Br (5) in CD₃CN (*solvent, **H₂O).

Figure S24. ³¹P{¹H} NMR spectrum of [Bn₄P]Br (5) in CD₃CN. * maks an unknown side product.

Figure S25. ³¹P NMR spectrum of [Bn₄P]Br (**5**) in CD₃CN.

3.9. Hydrogermylation of P₄ using Ph₃GeH and HAT donors (0.01 mmol scale): general procedure and optimization

The hydrogermylation of P_4 mediated by a HAT donor was also investigated. In summary, the outcomes of these reactions were found to be similar to those observed in the absence of additives, apart from different product distribution and the presence of PH₃ in the ³¹P{¹H} and ³¹P NMR spectra, in minor to considerable amounts. See Figures S26 and S27 for selected examples.

Representative procedure:

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL), Ph₃GeH (18.3 mg, 0.06 mmol) and 1,4-CHD (5.7 µL, 0.06 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 3 days (unless stated otherwise). Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ¹H, ³¹P{¹H}, and ³¹P NMR spectroscopy.

Figure S26. ³¹P{¹H} NMR spectrum for the reaction of P₄ with Ph₃GeH (0.06 mmol) and 1,4-CHD (0.06 mmol) in PhMe and driven by 356 nm, 3 W LED irradiation for 3 d (Table S5, Entry 6). * marks the internal standard Ph₃PO. # marks unknown side products. [Ge] = Ph₃Ge.

Figure S27. ³¹P{¹H} and ³¹P NMR spectra for the reaction of P₄ with Ph₃GeH (0.06 mmol) and AdSH (1-adamantanethiol, 0.14 mmol) in hexane and driven by 356 nm, 3 W LED irradiation for 3 d (Table S5, Entry 2). * marks the internal standard Ph₃PO. # marks unknown side products. [Ge] = Ph₃Ge.

	¹¼	additive Ph ₃ GeH <u>nUV LED (365 nm)</u> PhMe, RT, 3 d	Ph ₃ Ge P	GePh ₃ + Ph ₃ Ge + H H 2	+ Ph ₃ Ge ^{-P} Ph	
				major products	side product	
Entry	Additive (mmol)	PhMe (µL)	Time (days)	Full conv. of \mathbf{P}_4 ?	Relative conv. to 1 and $2 (\%)^{b,c}$	Relative conv. to 3 (%)
1	AdSH (0.06)	500 (hexane)	3	\checkmark	23.6	traces
2	AdSH (0.14)	500 (hexane)	3	\checkmark	26.1	-
3	PhSH (0.01)	500	3	\checkmark	49.4	traces
4	PhSH (0.06)	500	3	\checkmark	19.3	traces
5	1,4-CHD (0.01)	100	3	\checkmark	54.9	12.7
6	1,4-CHD (0.06)	100	3	\checkmark	62.1	traces
7	<i>i</i> Pr ₃ SiSH (0.06)	500 (hexane)	3	\checkmark	60.1	7.1

Table S5. Optimization of hydrogermylation of P4 using Ph3GeH in the presence of a HAT donor.^a

^a The general procedure described in this section was modified to use the indicated amount of reactant and solvent. ^b Conversions were calculated by integration of the ³¹P resonances of **1-3** relative to an internal standard, which was then normalized relative to Table S2, entry 9 as described in Section 3.2. ^c The signal assigned to PH₃ was observed in the ³¹P{¹H} and ³¹P NMR spectra (see Figures S26 and S27 for selected examples).

4. Hydrosilylation of white phosphorus (P₄)

4.1. General procedure for reactivity studies of R_3SiH (R = Ph, Et) towards P₄ under LED irradiation (0.01 mmol scale)

Blue LED (455 nm)
or

1
 P₄ + 1.5 equiv. R₃SiH $\xrightarrow{\text{nUV LED (365 nm)}}$ R₃Si $\xrightarrow{\text{P}}$ R₃Si $\xrightarrow{\text{P}}$ SiR₃ ??
0.01 mmol R = Ph. Et

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL) and Ph₃SiH (15.6, 0.06 mmol) or Et₃SiH (18.5 µL, 0.06 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with blue light (455 nm, 3.2 V, 700 mA, Osram OSLON SSL 80) or UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 3 days (unless stated otherwise). The resulting mixture was analysed by ¹H, ³¹P{¹H}, and ³¹P NMR spectroscopy.

The ³¹P{¹H} NMR spectra for the reaction of P₄ with R₃SiH (R = Ph, Et) only showed uncomsumed P₄. Figure S28 displays the ³¹P{¹H} NMR spectrum for the reaction of P₄ with Ph₃SiH (0.06 mmol) in PhMe driven by 365 nm LED irradiation for 3 days as a selected example.

Figure S28. ³¹P{¹H} NMR spectrum for the reaction of P_4 with Ph_3SiH (0.06 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 3 d.

4.2. General procedure and optimisation for the hydrosilylation of P₄ using (Me₃Si)₃SiH and *i*Pr₃SiSH, under LED irradiation (0.01 mmol scale)

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL), (Me₃Si)₃SiH (27.9 µL, 0.09 mmol), and *i*Pr₃SiSH (19.3 µL, 0.09 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 2 days (unless stated otherwise). Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy, as shown in Figures S29-31, below.

Figure S29. ³¹P{¹H} NMR spectra for the reactions of P₄ with (Me₃Si)₃SiH (0.14 mmol) and no additive (top) or in the presence of *i*Pr₃SiSH (0.14 mmol) as additive (bottom), both in hexane and driven by 365 nm, 3 W LED irradiation for 3 or 1 days, respectively. * marks the internal standard Ph₃PO (0.02 mmol).

Figure S30. Quantitative ³¹P{¹H} NMR spectrum (D1 = 40 s) for the reaction of P₄ with (Me₃Si)₃SiH (0.14 mmol) and *i*Pr₃SiSH (0.14 mmol) in hexane and driven by 390 nm, 40W LED irradiation for 24 h. * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products. Assignments are consistent with previous reports.^[39,40]

Figure S31. ³¹P NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.14 mmol) and *i*Pr₃SiSH (0.14 mmol) in hexane and driven by 390 nm, 40W LED irradiation for 24 h. The insets show expansions of the signals attributed to [(Me₃Si)₃Si]PH₂ (7), [(Me₃Si)₃Si]P(H)SiMe₃ (8), Me₃SiPH₂ (9) and (Me₃Si)₂PH (10), highlighting their multiplicity due to ¹J(³¹P-¹H) couplings. * marks the internal standard Ph₃PO (0.02 mmol). Assignents are consistent with previous reports.^[39,40]

For reasons of experimental expediency, during the optimization of the hydrosilylation of P₄, acquisition of quick but non-quantitative ${}^{31}P{}^{1}H{}$ NMR spectra was used to analyse each experiment and to assess the relative total conversion to **7-10**. Although this did not directly provide precise, quantitative conversions it did allow for meaningful, qualitative comparisons between experiments. Under the conditions highlighted in Table S6, entry 4 a quantitative ${}^{31}P{}^{1}H{}$ NMR spectrum was recorded using an inverse-gated decoupled pulse sequence (D1 = 40 s, Figure S30), and the conversion of P₄ to products **7-10** was determined. Thus, for ease of interpretation, the integrals measured for **7-10** for all optimization experiments have been normalized relative to the value for this experiment (Table S6, entry 4) to provide the relative conversions indicated in Table S6. However, additional integrations (of signals of as yet unidentified monophosphorus species) have not been taken into account, although they may contribute to the final yield in the formation of the desired end products (*e.g.* PH₃) after subsequent functionalization with electrophiles.

	P₄ + (Me₃Si)₃SiH 0.01 mmol	iPr₃SiSH nUV LED (365 nm) PhMe, RT	Me ₃ Si H Me ₃ Si−Si−P + Me ₃ Si H	H Me ₃ Si Si Si Si Me ₃ Me ₃ Si SiMe ₃ 8	+ Н + Н Me ₃ Si ^{/Р} Н М	SiMe₃ e₃Si╯ [┝] ╰H ⁺ 10
			<u></u>	crude	mixture	
Entry	(Me ₃ Si) ₃ SiH	<i>i</i> Pr ₃ SiSH	PhMe	Time	Full conv. of	Relative conv. to
	(mmol)	(mmol)	(µL)	(days)	P ₄ ?	7-10 (%) ^b
1°	0.06	-	500	1	\checkmark	traces
2^d	0.06	-	500	3	\checkmark	traces
3 ^e	0.14	-	500 (hexane)	3	\checkmark	6.1
4 ^e	0.14	0.14	500 (hexane)	1	\checkmark	72.2
5	0.14	0.14	500 (hexane)	1	\checkmark	73.4
6	0.14	0.14	500	1	\checkmark	77.5
7	0.14	0.06	500	3	\checkmark	69.8
8	0.14	0.01	500	3	\checkmark	8.9
9	0.06	0.06	500	1	\checkmark	42.4
10	0.06	0.06	500	2	\checkmark	44.3
11	0.06	0.06	500	3	\checkmark	49.9
12	0.09	0.09	500	4	\checkmark	72.7
13	0.09	0.09	100	3	\checkmark	67.0
14	0.09	0.09	100	2	\checkmark	67.4
15	0.09	0.09	100	1	1	55.0

Table S6. Optimization of hydrosilylation of P₄ using (Me₃Si)₃SiH, *i*Pr₃SiSH, and near-UV LED irradiation (365 nm, 3 W).^a

^a The general procedure described in this section was modified to use the indicated amount of reactants and solvent. ^b Conversions were calculated by integration of the ³¹P resonances of **7-10** relative to an internal standard, which was then normalized relative to entry 4 as described in the text above. ^c 455 nm. ^d 365 nm, 10 W.^e 390nm 40 W.

Table S7. Screening of additive for the hydrosilylation of P_4 using $(Me_3Si)_3SiH$ and near-UV LED irradiation (365 nm, 3 W).^a

	P₄ + (Me₃Si)₃SiH 0.01 mmol	additive <u>nUV LED (365 nm)</u> → PhMe, RT 7	H H -P' + Me ₃ Si Si ^P SiMe ₃ H Me ₃ Si SiMe ₃ 8 crude r	+ Me ₃ Si + H 9 nixture	+ SiM + Me₃Si - P - ⊦ 10	le ₃
Entry	(Me ₃ Si) ₃ SiH (mmol)	<i>additive</i> (mmol)	PhMe (µL)	Time (days)	Full conv. of P ₄ ?	Relative conv. to 7-10 (%)
1	0.06	CySH (0.06)	500	4	\checkmark	21.0
2	0.14	AdSH (0.14)	500 (hexane)	1	\checkmark	71.9
3	0.06	AdSH (0.06)	500 (hexane)	1	\checkmark	35.9
4	0.14	PhSH (0.14)	500	1	\checkmark	67.8
5	0.14	4-MePhSH (0.14)	500	1	\checkmark	76.5
6	0.14	4-MePhSH (0.06)	500	1	\checkmark	26.8
7	0.09	1,4-CHD (0.09)	100	3	\checkmark	71.0
8 ^c	0.09	1,4-CHD (0.09)	100	3	\checkmark	50.3

^a The general procedure described in this section was modified to use the indicated amount of reactants and solvent. ^b Conversions were calculated by integration of the ³¹P resonances of **7-10** relative to an internal standard, which was then normalized relative to Table S6, entry 4 as described in the text above. ^c 455 nm.

Figure S32. ³¹P{¹H} NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.06 mmol) and CySH (0.06 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 4 d (Table S7, Entry 1). * marks the internal standard Ph₃PO (0.02 mmol).

Figure S33. ³¹P{¹H} NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.14 mmol) and AdSH (0.14 mmol) in hexane and driven by 365 nm, 3 W LED irradiation for 24 h (Table S7, Entry 2). * marks the internal standard Ph₃PO (0.02 mmol). # marks an unknown side product.

Figure S34. ¹H NMR spectrum for the reaction of P_4 with (Me₃Si)₃SiH (0.14 mmol) and PhSH (0.14 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 24 h (Table S7, Entry 4). The inset shows expansion of the doublet resonances attributed to the PH₂ moiety of [(Me₃Si)₃Si]PH₂ (7).~ marks solvent resonances truncated for clarity.

×,	4	2	œ	5	Υ.	œ	
-	ŝ	-	-	LO I	ດ	5	
r	e	4	4	9	9	~	
N	2	2	2	2	2	2	
L						_	

Figure S35. ³¹P{¹H} NMR spectrum for the reaction of P₄ with $(Me_3Si)_3SiH$ (0.14 mmol) and PhSH (0.14 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 24 h (Table S7, Entry 4). * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

Figure S36. ${}^{31}P{}^{1}H{}$ NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.14 mmol) and 4-MePhSH (4-methylbenzenethiol, 0.14 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 24 h (Table S7, Entry 5). * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

Figure S37. ³¹P{¹H} NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.09 mmol) and 1,4-CHD (0.09 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 3 d (Table S7, Entry 7). * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products. Relative conversion to 7: 32.5%; 8: 23.2%; 9,10: 15.3%.

Figure S38. ³¹P{¹H} NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.09 mmol) and 1,4-CHD (0.09 mmol) in PhMe and driven by 455 nm, 3 W LED irradiation for 3 d (Table S7, Entry 8). * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products. Relative conversion to 7: 34.1%; 8: 12.1%; 9,10: 4.1%.

Table S8. Screening	g of silanes for	the hydrosilyl	lation of P ₄ using near-U	JV LED irradiation	(365 nm, 3 W). ^a
<u> </u>	,	5 5	. 0		· · · ·	/

		additiv	e			
	D	nUV LED (365	ōnm, 3W)	н	ų	
	0.01 mmol	PhMe, I	रा	R₃ Si−P ∖ H	⁺ R ₃ Si ^{∕ P} ∖SiR ₃	??
Entry	R ₃ SiH	additive	PhMe	Time	Full conv. of	Relative conv. to
Liiu y	(mmol)	(mmol)	(µL)	(days)	\mathbf{P}_4 ?	\mathbf{P}_1 compounds
1		-	500	3	Х	-
2	Ph ₃ SiH	<i>i</i> Pr ₃ SiSH (0.14)	500	3	Х	-
3	0.14	PhSH (0.14)	500	3	Х	_b
4 ^c		1,4-CHD (0.14)	100	2	Х	_b
5		-	500	3	Х	-
6	Et ₃ SiH	<i>i</i> Pr ₃ SiSH (0.14)	500	3	Х	-
7	0.14	PhSH (0.14)	500	3	Х	_b
8 ^c		1,4-CHD (0.14)	100	2	Х	_b
9 ^c	(Me ₃ SiO) ₃ SiH	-	500	1	Х	-
10 ^c	0.09	<i>i</i> Pr ₃ SiSH (0.09)	500	1	Х	-

^a The general procedure described in this section was modified to use the indicated amount of reactants and solvent. ^b A small signal assigned to PH₃ was observed in the ³¹P{¹H} and ³¹P NMR spectra (see Figure S39 for a selected example). ^c 365 nm, 10 W.

Figure S39. ³¹P{¹H} and ³¹P NMR spectra for the reaction of P₄ with Ph₃SiH (0.14 mmol) and PhSH (0.14 mmol) in PhMe and driven by 365 nm, 3 W LED irradiation for 3 d (Table S8, Entry 3). * marks the internal standard Ph₃PO (0.02 mmol). # marks unknown side products.

4.3. General procedure for the functionalisation of the hydrosilylphosphine mixture

The conversions of the products shown in this section were determined by a quantitative single-scan inverse-gated ${}^{31}P{}^{1}H$ NMR (DS = 0, D1 = 2 s) methodology that we have described previously, and whose use to quantify tertiary phosphines and quaternary phosphonium salts has previously been validated.^[16]

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL), (Me₃Si)₃SiH (27.9 µL, 0.09 mmol), and *i*Pr₃SiSH (19.3 µL, 0.09 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 2 days (unless stated otherwise). The resulting clear colourless solution mixture was treated with the corresponding electrophiles as follows:

<u>*Reactivity towards benzyl bromide:*</u> Benzyl bromide (47.6 μ L, 0.4 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the colourless solution, and heated to 100 °C with stirring for 3 days. After cooling to room temperature, Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. Volatiles were removed under vacuum, and CH₃CN (0.5 mL) was then added. NMR analysis of the resulting mixture showed the formation of [Bn₄P]Br (**5**) as the main product with 73 % conversion as shown in Figure S40.

Figure S40. ³¹P{¹H} NMR spectrum of [Bn₄P]Br (**5**) generated *via* hydrosilylation of P₄ in PhMe, followed by treatment with benzyl bromide (0.4 mmol) and KHMDS (0.1 mmol), heated to 100 °C for 3 d. * marks the internal standard Ph₃PO (0.02 mmol). # marks an unknown side product.

<u>*Reactivity towards bromoethane:*</u> Bromoethane (30 μ L, 0.4 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the colourless solution, and heated to 100 °C with stirring for 3 days. After cooling to room temperature, Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. Volatiles were removed under vacuum, and CH₃CN (0.5 mL) was then added. NMR analysis of the resulting mixture showed the formation of [Et₄P]Br (**6**) as the main product with 54 % conversion as shown in Figure S41.

Figure S41. ³¹P{¹H} NMR spectrum of [Et₄P]Br (6) generated *via* hydrosilylation of P₄ in PhMe, followed by treatment with bromoethane (0.4 mmol) and KHMDS (0.1 mmol), heated to 100 °C for 3 d. * marks the internal standard Ph₃PO (0.02 mmol). # marks an unknown side product.

<u>*Reactivity towards 1-bromobutane:*</u> 1-bromobutane (43.2 μ L, 0.4 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the colourless solution, and heated to 100 °C with stirring for 3 days. After cooling to room temperature, Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. Volatiles were removed under vacuum, and CH₃CN (0.5 mL) was then added. NMR analysis of the resulting mixture showed the formation of [Bu₄P]Br (**11**) as the main product with 40 % conversion as shown in Figure S42.

Figure S42. ³¹P{¹H} NMR spectrum of $[Bu_4P]Br$ (11) generated *via* hydrosilylation of P₄ in PhMe, followed by treatment with 1-bromobutane (0.4 mmol) and KHMDS (0.1 mmol), heated to 100 °C for 3 d. * marks the internal standard Ph₃PO (0.02 mmol).

<u>*Reactivity towards paraformaldehyde:*</u> Volatiles were removed under vacuum. EtOH (0.5 mL) and paraformaldehyde (15.0 mg, 0.5 mmol) were added to the oily residue, and heated to 50 °C with stirring for 2 days. After cooling to room temperature, the mixture was frozen in a liquid nitrogen bath, and HCl (4.0 M in 1,4-dioxane, 100 μ L, 0.4 mmol) was added. After thawing, the reaction mixture was stirred at room temperature for 2 hours. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. NMR analysis of the resulting mixture showed the formation of THPC (**12**) as the main product with 27% conversion, along with other unknown side products (<12%). Nevertheless, analogous reactivity studies of the crude [Si]_nPH_{3-n} mixture generated in the presence of 1,4-CHD instead of *i*Pr₃SiSH, resulted in the exclusive formation of THPC (**12**) with 48% conversion as shown in Figure S43.

Figure S43. ³¹P{¹H} NMR spectrum of THPC generated *via* hydrosilylation of P₄ in PhMe, followed by treatment with paraformaldehyde (0.5 mmol) in EtOH, heated to 50 °C for 2 d. Then, quenched with HCl (0.4 mmol).* marks the internal standard Ph₃PO (0.02 mmol).

<u>*Reactivity towards benzoyl chloride:*</u> PhC(O)Cl (27.9 μ L, 0.24 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the colourless solution, and stirred at room temperature for 24 hours. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy as shown in Figure S44.

The ³¹P{¹H} NMR spectrum showed only traces amounts of the desired product $P(C(O)tBu)_3$ (-54.1 ppm) along with a variety of other unknown species. The main product of this reaction appears as a singlet resonance at -114.6 ppm, which splits into a doublet in the ³¹P spectrum (¹*J*(³¹P-¹H) = 208 Hz). Given the similarities on chemical shift and ¹*J*(³¹P-¹H) coupling constant with analogous compounds (Bu₃SnP(H)C(O)tBu^[20] and Me₃SiP(H)C(O)tBu^[57]), this species was assigned to R₃SiP(H)C(O)Ph (R = SiMe₃ or Me). Additional experiments using fewer equivalents of PhC(O)Cl, in our attempts to target this potential intermediate more selectively, were unsuccessful. Moreover, similar outcomes were observed during experiments at higher temperatures and longer reaction times.

Figure S44. ³¹P{¹H} and ³¹P NMR spectra for the hydrosilylation of P₄ in PhMe, followed by treatment with benzoyl chloride (0.24 mmol) and KHMDS (0.1 mmol), stirred at room temperature for 24 h. # marks unknown species. $R = SiMe_3$, Me.

<u>*Reactivity towards pivaloyl chloride:*</u> tBuC(O)Cl (29.6 μ L, 0.24 mmol) and KHMDS (19.9 mg, 0.1 mmol) were added to the colourless solution, and stirred at room temperature for 24 hours. The resulting mixture was analysed by ³¹P{¹H} and ³¹P NMR spectroscopy as shown in Figure S45.

Similar to the reaction with benzoyl chloride, the ³¹P{¹H} NMR spectrum showed only trace amounts of the desired product $P(C(O)tBu)_3$ (-52.0 ppm) along with a variety of other unknown species. The main product of this reaction appears as a singlet resonance at -128.4 ppm, which splits into a doublet in the ³¹P spectrum (¹*J*(³¹P-¹H) = 210 Hz). Given the similarities on chemical shift and ¹*J*(³¹P-¹H) coupling constant with analogous compounds (Bu₃SnP(H)C(O)tBu^[20] and Me₃SiP(H)C(O)tBu^[57]), this species was assigned to R₃SiP(H)C(O)tBu (R = SiMe₃ or Me). Aditional experiments using fewer equivalents of *t*BuC(O)Cl, in our attempts to target this potential intermediate more selectively, were unsuccessful. Moreover, similar outcomes were observed during experiments at higher temperatures and with longer reaction times.

Figure S45. ³¹P{¹H} and ³¹P NMR spectra for the hydrosilylation of P₄ in PhMe, followed by treatment with pivaloyl chloride (0.24 mmol) and KHMDS (0.1 mmol), stirred at room temperature for 2 d. $R = SiMe_3$, Me.

4.4. Synthesis and quantification of PH₃ (4) via hydrosilylation of P₄ (0.01 mmol scale)

i) 2.3 equiv.
$$iPr_3SiSH$$

 $1/4 P_4 + 2.3 equiv. (Me_3Si)_3SiH \xrightarrow{nUV LED (365 nm)}{PhMe, RT, 2 d} \xrightarrow{ii) HCI} H_P H$
0.01 mmol
 4
 $\geq 64\%$ conversion

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (100 µL), (Me₃Si)₃SiH (27.9 µL, 0.09 mmol), and *i*Pr₃SiSH (19.3 µL, 0.09 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 4.3 V, 700 mA, Osram OSLON SSL 80) for 2 days. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard to the resulting clear colourless solution mixture and transferred to an NMR tube fitted with a J. Young valve. The mixture was frozen by placing the NMR tube in a bath of liquid nitrogen, and HCl (0.4 mmol, 4.0 M in 1,4-dioxane) was added (while still maintaining an inert atmosphere). The NMR tube was sealed and its contents were then thawed, agitated briefly, and analysed by ¹H, ³¹P{¹H}, and ³¹P NMR spectroscopy. The resulting spectra indicated clean conversion to PH₃,^[20] as shown in Figures S46-48, below.

In order to accurately quantify the amount of PH_3 in solution, a proton-coupled ³¹P spectrum was acquired with a 20 s delay between scans (which was confirmed to be > 5 x T₁), and the intensity of the PH_3 resonance was integrated relative to that of Ph_3PO . This indicated 64% of the theoretical maximum conversion to PH_3 (Figure S49), which provides a lower bound for the actual conversion (this value does not include any PH_3 present in the NMR tube headspace).

Figure S46. ¹H NMR spectrum of a solution of PH₃ (4) generated *via* hydrosilylation of P₄ in PhMe, followed by acidification. Solvent resonances (\sim) truncated for clarity.

Figure S47. ³¹P{¹H} NMR spectrum of PH₃ (**4**) generated *via* hydrosilylation of P₄ in PhMe, followed by acidification in the presence of Ph₃PO (*) as an internal standard.

Figure S48. ³¹P NMR spectrum of PH₃ (4) generated *via* hydrosilylation of P₄ in PhMe, followed by acidification in the presence of Ph₃PO (*) as an internal standard.

Figure S49. Quantitative ³¹P NMR spectrum (D1 = 20 s) of PH₃ (4) generated *via* hydrosilylation of P₄ in PhMe, followed by acidification, in the presence of Ph₃PO (*) as an internal standard.

4.5. Synthesis and isolation of TBPB (5) via hydrosilylation of P₄ (0.2 mmol scale)

To a 50 mL, flat-bottomed, stoppered tube were added P₄ (24.8 mg, 0.2 mmol), PhMe (2.0 mL), (Me₃Si)₃SiH (555.3 μ L, 1.8 mmol), and *i*Pr₃SiSH (386.4 μ L, 1.8 mmol). After stirring to obtain a homogeneous solution, the tube was placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 6 days. To the colorless solution benzyl bromide (951.5 μ l, 8.0 mmol) and KHMDS (398.9 mg, 2.0 mmol) were added and the reaction mixture heated to 100 °C with stirring for 3 days. After cooling to room temperature the pale yellow suspension was filtered, and the remaining solid was washed with PhMe (3 x 6 mL) and extracted into acetonitrile (3 x 10 mL). Removal of volatiles under vacuum yielded the target product as a white solid (266 mg, 70 %).

For characterisation data, see Section 3.8.

4.6. Hydrosilylation of P_{red} using using (Me₃Si)₃SiH, *i*Pr₃SiSH or 1,4-CHD and LED irradiation (0.06 mmol scale)

To a 10 mL, flat-bottomed, stoppered tube were added P_{red} (0.4 mmol, 12.4 mg), PhMe (250 µL), (Me₃Si)₃SiH (18.5 µL, 0.06 mmol), and *i*Pr₃SiSH (12.9 µL, 0.06 mmol) or 1,4-CHD (5.7 µL, 0.06 mmol). The tube was sealed, placed in a water-cooled block to maintain near-ambient temperature, and irradiated with UV light (365 nm, 14 V, 700 mA, Osram OSLON SSL 80) for 2 days. Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ³¹P{¹H} NMR spectroscopy, as shown in Figures S50 and S51, below.

Figure S50. ³¹P{¹H} NMR spectrum for the reaction of P_{red} with (Me₃Si)₃SiH (0.06 mmol) and *i*Pr₃SiSH (0.06 mmol) in PhMe and driven by 365 nm, 10 W LED irradiation for 2 d. * marks the internal standard Ph₃PO.

Figure S51. ³¹P{¹H} NMR spectrum for the reaction of P_{red} with (Me₃Si)₃SiH (0.06 mmol) and 1,4-CHD (0.06 mmol) in PhMe and driven by 365 nm, 10 W LED irradiation for 2 d. * marks the internal standard Ph₃PO.

4.7. General procedure for the hydrosilylation of P₄ using (Me₃Si)₃SiH, *i*Pr₃SiSH and chemical radical initiators (0.01 mmol scale)

To a 10 mL, flat-bottomed, stoppered tube were added P_4 (0.01 mmol, as a stock solution in 84.3 µL PhH), PhMe (500 µL), AIBN (0.05 mmol, as a stock solution in PhH), (Me₃Si)₃SiH (43.2 µL, 0.14 mmol), and *i*Pr₃SiSH (30 µL, 0.14 mmol). The tube was sealed, wrapped in Al foil to exclude light, and heated to 60 °C for 24 hours (unless stated otherwise). Ph₃PO (0.02 mmol, stock solution in benzene) was subsequently added to act as an internal standard. The resulting mixture was analysed by ³¹P{¹H} NMR spectroscopy, as shown in Figure S52, below.

Figure S52. ³¹P{¹H} NMR spectrum for the reaction of P₄ with (Me₃Si)₃SiH (0.14 mmol), *i*Pr₃SiSH (0.14 mmol) and AIBN (0.05 mmol) in PhMe, heated to 60 °C for 24 h (Table S9, Entry 2). * marks the internal standard Ph₃PO (0.02 mmol).

Table S9. Optimization of hydrosilylation of P4 using (Me3Si)3SiH, HAT donor and chemical radical initiators.^a

	¼	additive AIBN PhMe, 60 °C	Me₃Si H Me₃Si−Si−P Me₃Si H 7	H + Me ₃ Si Si Si Me ₃ Si SiMe ₃ 8	∕le ₃ ⁺ Me₃Si^	H H H Me ₃ Si 9 1	SiMe ₃ P _H + I0
		`-		Cr	rude mixture		*
Entry	Additive (mmol)	Radical init (mmol)	iator)	Temperature (°C)	Time (days)	Full conv. of P ₄ ?	Relative conv. to 7-10 (%)
1	AdSH (0.14)	AIBN (0.0	05)	60	1	Х	traces
2	<i>i</i> Pr ₃ SiSH (0.14)	AIBN (0.0	05)	60	1	Х	traces
3	<i>i</i> Pr ₃ SiSH (0.14)	AIBN (0.	14)	60	2	Х	traces
4	1,4-CHD (0.14)	AIBN (0.	14)	60	2	Х	traces

^a The general procedure described in this section was modified to use the indicated amount of reactant, temperature and time. ^b Conversions were calculated by integration of the ³¹P resonances of **7-10** relative to an internal standard.

5. References for supplementary information

For references [1]-[42] please refer to the main manuscript.

- [43] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- [44] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
- [45] R. A. Kendall, H. A. Früchtl, Theor. Chem. Acc. 1997, 97, 158–163.
- [46] F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109.
- [47] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [48] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [49] Avogadro Chemistry, 2016, http://avogadro.cc/.
- [50] G. M. Sheldrick, SADABS, Bruker AXS, Madison, USA 2007.
- [51] SCALE3ABS, CrysAlisPro, Aglient Technologies Inc. Oxford, GB 2015.
- [52] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.
- [53] G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.
- [54] G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
- [55] M. Driess, C. Monsé, K. Merz, Z. Anorg. Allg. Chem., 2001, 627, 1225–1230.
- [56] T. M. Horsley-Downie, M. F. Mahon, J. P. Lowe, R. M. Bailey, D. J. Liptrot, ACS Catal. 2022, 12, 8214-8219.
- [57] G. Becker, M. Roessler, W. Uhl, Z. Anorg. Allg. Chem., 1981, 473, 7-19.

6. Cartesian coordinates of optimized structures

р				
E= ·	1365.03900477 Eh	6	T	
01			•	
Р	-8.63724066817835	1.73405756013613	0.95356065420993	
Р	-7.30344057381550	1.81815961948766	-0.77432824026063	
Р	-6.96619533814420	0.33677370507047	0.79516442354124	
Р	-8.68358341986195	0.14155911530574	-0.53970683749054	
Me	Sn	Q		
E= -	-333.83773926 Eh	<u></u>		
H= ·	-333.79419951 Eh	e	- And	
02			·	
Sn	-0.04181811914409	-0.11771975225806	2.18561965993890	
С	0.01624841845516	-0.03766963620385	0.02408622563928	
С	1.95707088074064	-0.56728058815974	2.88224279632402	
С	-0.55523065397075	1.85612096675477	2.90912231806715	
Н	0.34106820462594	-0.99425367785191	-0.38489706900594	
Н	0.72681657543460	0.73715997838795	-0.27485231550035	
Н	-0.96671998773747	0.20757913395128	-0.37752448186928	
Н	-1.54006851800091	2.15245397070418	2.54845420629491	
Н	0.18832079417249	2.56651605051999	2.53892030643005	
Η	-0.55323100757316	1.87485945633416	3.99882489447740	
Н	2.27918565815780	-1.54435600176422	2.52254509139057	
Н	1.99099649044407	-0.55860348753939	3.97155273552864	
Н	2.63847126439568	0.19588358712484	2.49769563228466	
			-	
(Me	sSn)P₄.			
E= -	-1698.87329909 Eh	-		
		000	S	
		0		
02	1			
P	-1.95523966599795	-1.6/253689686902	2.74605314937196	
P D	-4.40913481143529	-1./51045889/2/84	5.78802420050400 2.27015468200861	
P D	-3.049040/8899390	-0.29/0/0122120/9	2.37013408200801	
r Sn	-2.81342737308302	-0.45707601502512	4.50951051554589	
C	0.00879311068946	-0.00370314227183	-0.098619509757/3	
c	1 74654435191822	-0.82572726558248	2 88612211424798	
c	-0.48175123769149	1 90665066206422	2.00012211424790	
н	0.83447392423197	0.56515094414195	-0.43235579842360	
н	-0.92378221563992	0.32562000100411	-0.50521193561982	
Н	0.16242055058868	-1.07789405977524	-0.47240897596584	
Н	-1.46724553645603	2.23853193473814	2.45265525883124	
Н	0.27268975288791	2.59356365941020	2.39124909644244	
Н	-0.44879161676758	1.91659140180575	3.86818390953441	
Н	2.58342993775571	-0.19270279932788	2.58655002116582	
Н	1.92775103073342	-1.84183155510255	2.53547485654537	

Me ₃ SnH			
E= -334.45306553 Eh			
H= -334.41002696 Eh			

Sn	-6.04471667208550	0.33284160579064	0.38585898860526
С	-7.71073127776283	-0.82831122829153	1.07102915111342
Н	-7.40809971322585	-1.43674482176383	1.92467936063237
Н	-8.06703535137819	-1.48923307853153	0.28038348036314
Н	-8.52919079948289	-0.17654228763201	1.37822361613702
С	-4.49479454034692	-0.98497549741784	-0.28862299278680
Н	-3.61978984365241	-0.41541993363825	-0.60385958039123
Н	-4.84474622633764	-1.58366861053805	-1.13017019072076
Н	-4.20148444456054	-1.65639892611004	0.51961102706190
С	-5.30862551989089	1.54303464840539	1.99503785789955
Н	-6.07816567053497	2.23852704188395	2.33151435304507
Н	-4.43742575389723	2.11525142695790	1.67425342800372
Н	-5.02041604962666	0.90799357813743	2.83410633460966
Н	-6.54115813721747	1.34597608274776	-0.91038483357233

$TS((Me_3Sn)P_4 \cdot \rightarrow ((Me_3Sn)P_4H)$

E= -2033.30911684 Eh im. freq. = 771.71 *i*

02			
Н	0.06423181035575	-1.73612866467063	3.30241068825383
Sn	-0.20889869110693	-0.00204390311150	2.34204877368218
Р	2.14953408882840	-2.62985782909297	6.79502752708436
Р	0.57377560193294	-2.87782050273250	4.42838091071761
Р	2.36010497775788	-1.65044831208672	4.81973330963943
Р	0.56817678001534	-1.31073628529748	5.97583112593764
Sn	3.39345664481709	-0.82075258000473	8.10313762842307
С	2.67156601350831	1.12652783338235	7.55877446665433
С	5.47989741859054	-0.98037588984864	7.62234351453257
С	3.07403098652855	-1.16847994766599	10.19684985254107
Н	2.73970662199042	1.27021447539667	6.48028876189557
Н	3.27835294742562	1.88380077580779	8.05849278734947
Н	1.63207068845080	1.24445352049963	7.86452605220644
Н	3.62390732459128	-0.42954613041045	10.78181568131370
Н	3.41987858782449	-2.16513919731435	10.47169273413654
Н	2.01253664912419	-1.08633604478284	10.43152999218820
Н	5.61866341980464	-0.85782730354501	6.54786373461452
Н	5.86631657617706	-1.95540985461302	7.91942018339593
Н	6.04039977564852	-0.20266808123123	8.14353225675101
С	0.77437304305083	1.62247735157282	3.36050967235314
Н	1.84839295782703	1.44193547604309	3.39601127026933
Н	0.39741716102985	1.70688404163896	4.37938120924122
Н	0.58276377781308	2.55543478466263	2.82571809278882
С	0.59614159731586	-0.18734197178691	0.35166637906147
Н	0.09581557022091	-0.99121866101514	-0.18838513477562
Н	1.66415204387254	-0.40067182221209	0.39719213293675
Н	0.44509818382991	0.74959369382293	-0.18854866801024
С	-2.32330748212930	0.39805420668573	2.22762646999092
Н	-2.74646706000616	0.47819953260103	3.22890791137537
Н	-2.83160982266577	-0.40301422413359	1.69076304260614
Н	-2.48625819242375	1.33865151344217	1.69739764084497

(Me₃Sn)P₄H E= -1699.48597461 Eh

01

P 2.60825079651189 -0.27852527900993 2.25044672203470 P 4.83618138677669 0.90114854014262

3.61294963869152

359	2.50069754164659	Н -1.95255262568761	-1.04473374843718	4.31749568681963
474	1.89492329543462	H -0.98595335018478	-2.51780701096958	4.10572293203903
585	2.58867641859464	H -0.62873132910650	-1.40717967631692	5.44228899762143
477	3.00011104950728		¶	
896	-0.20608062449968	Me ₃ Ge [•]	- X 9	h0
333	3.61877548901145	E= -2196.27911102 Eh		
214	2.54211007348659	H= -2196.23749239 Eh	- L	
858	1.96503170424256			0
)55	-0.75828784086817	0 2	-	
442	-0.39675450940367	Ge -6.03032719953612	0.30323244649022	0.42012632065943
208	-0.56034463311294	C -7.56354208901077	-0.75674867757626	1.04723080471239
873	4.06516545889515	Н -7.24933695643939	-1.38107096967147	1.88951262736187
740	2.68557342335666	H -7.93662642644507	-1.40616646153573	0.25479950545397
272	2.83138429056076	H -8.37416473998071	-0.10747445879040	1.37956270969865
368	4.44554633190407	C -4.60513250651833	-0.90579213259089	-0.19168912386877
		Н -3.73427082111365	-0.33926970587033	-0.52351139490647
•		H -4.95224651126682	-1.52993975938974	-1.01570534938295
<u></u>		Н -4.30207077507694	-1.55690209854285	0.63399744024195
		C -5.35615022289328	1.41182021757530	1.89830815822001
	° (()	Н -6.12802301586116	2.09476120984888	2.25461408455449
		H -4.49206497119805	1.99654398672809	1.58078173470203
394	2.54801167071202	H -5.05388376465968	0.76516640332518	2.72789248255340
971	3.94111640646466			
350	2.82941040964135			
813	4.55874473745784			
268	2.17544671117925	(Me ₃ Ge)P ₄ ·	8	
821	0.09012347761209	E= -3561.32408927 Eh	c 🖗 e	
501	3.36395902786457		0	-
982	2.77895834461659	0.2		
598	-0.10314331799110	P 2 42558728149884	-0 25550882448982	2 25217185967132
253	-0.50589343086431	P 4 69195391212326	0.81330550677054	3 49670748627093
233	-0.20717021662121	P 2.63197416426256	0.71268616632875	4.23511882842292
434	2.10486998832881	P 3.08166274136950	1.85352097923624	2,43897677673396
443	2.74972183110074	Ge 0.10328307905216	0.09952894969010	1.92105057049387
043	3.79274854344711	C -0.46483480968926	1.86201123697519	2.54411360513092
		0.10100100720		=

C -0.95125033310812 -1.46956981698081

Р	3.17430640760397	1.85064563304859	2.50069754164659
Sn	0.11767835233257	0.08158718528474	1.89492329543462
С	-0.47884956851307	2.02029042606585	2.58867641859464
С	-0.90658708668548	-1.44399803208477	3.00011104950728
С	-0.26247665066296	-0.12429133016896	-0.20608062449968
Н	-0.15551634111142	2.16966592351333	3.61877548901145
Η	-1.56665037597744	2.09482322070214	2.54211007348659
Η	-0.04123314402378	2.79952592334858	1.96503170424256
Η	0.24993368701561	0.66368396790055	-0.75828784086817
Η	-1.33420845352469	-0.05088767232442	-0.39675450940367
Η	0.09295656157647	-1.09217111849208	-0.56034463311294
Η	-0.70608613549304	-1.32503104317873	4.06516545889515
Η	-0.57060112492773	-2.43215906141740	2.68557342335666
Η	-1.98166070287450	-1.36523508574272	2.83138429056076
Н	5.11858302117921	2.03432132301868	4.44554633190407

4.25216617051788

P 2.72930937079770 0.66783647939390

$TS((Me_3Sn)P_4 \rightarrow (Me_3Sn)P_8)$

E= -3063.89939282 Eh im. freq. = 100.14 i

(Me₃Sn)P₈.

0.2

Р Р

Р

Р

Η Р

С

Η

Η

Η

Р

Р

С

Sn

Η

Р

Н

E= -3063.89957219 Eh

02			
Р	-2.21003322683120	-1.90136616300394	2.54801167071202
Р	-4.58995594469094	-2.42752452084971	3.94111640646466
Р	-4.00653158811772	-0.62518548629350	2.82941040964135
Р	-2.85201596664408	-1.23258221773813	4.55874473745784
Sr	n -0.52993154069454	-0.00970127422268	2.17544671117925
С	-0.03146472974718	0.01251201257821	0.09012347761209
С	1.19233664424430	-0.48228574197601	3.36395902786457
С	-1.37905785297348	1.86449818948982	2.77895834461659
Η	0.70917817633123	0.79000707172598	-0.10314331799110
Η	-0.92118095409734	0.21541307134253	-0.50589343086431
Н	0.38218584660922	-0.95102769238233	-0.20717021662121
Н	-2.18760556060772	2.14732861144434	2.10486998832881
Н	-0.60449492123789	2.63279506678443	2.74972183110074
Н	-1.77338431752628	1.79515187424043	3.79274854344711
Η	1.94523656723047	0.29914497108048	3.24957714059980
Н	1.61883342558451	-1.43437177186465	3.04793658823939
Н	0.90898640775024	-0.55088395934257	4.41435360995988
Р	-7.49779783331619	-0.30623527418499	4.21005343607977
Р	-7.76698655690785	0.13504014340855	6.33885486827557
Р	-6.22082378513720	-1.48962118045098	5.52862193368994
Р	-5.89848228922030	0.66690427021472	5.32611824020714

6.89148694749768	1.11570887185430	3.82048115990157
7.57080781414734	3.56223719836687	4.87391810295771
6.60537008018981	1.87548728955946	5.87402903164898
5.60202515492911	2.87315991350147	4.20956242397067
0.59365150584319	-0.04102484416759	0.46132195844439
3.85730307874197	0.19196847501584	2.49459688656549
-0.09825024708821	-0.61781540004384	1.07539034379769
1.28182422437636	2.19396349178298	3.19425259889989
-1.11305861950137	-0.25651224414088	0.90150218172150
-0.04141907596150	-1.66659452957893	0.78409844711898
5.42151872582528	-0.62804985648977	3.81986823078707
2.71200534542806	-1.42837409495145	3.47443499090614
0.44180369728059	1.69160070601011	3.67401733408055
0.40858074085498	-0.38600722842080	3.14678189078141
-0.48760425910361	2.15724298599206	3.34157287337379
3.57418088479375	0.25637664247679	4.64087761900586
0.53142163983356	1.80715287593786	4.75397775778859

Me	3GeH
\mathbf{F}^{-}	-2106.0

E= -2196.90908050 Eh H= -2196.86847032 Eh

C -0.20469542455597

H -0.19325250271151

H -1.55068735354438

H -0.00678864274470

H 0.32876090456159

Н -1.27109879630000

Н -0.64262370331514

0.1

4.40286855176961

217185967132 670748627093 511882842292 897677673396 105057049387 1.86201123697519 2.54411360513092 C -0.82669753892190 -1.30562996086839 2.91513543784380 -0.08657053815520 -0.00277063460256 2.01291957199252 3.58950113476215 1.93786972968373 2.45094655431498 2.65212541985503 1.94834210179275 0.69218788954658 -0.54938505317920 0.00186470871274 -0.22108971582520 H 0.14243146490425 -1.05892232541339 -0.35495518001395 -1.19523232521587 3.98462620977393 H -0.48489001304776 -2.29296233469123 2.60214960256393 H -1.90207476294154 -1.23618384995752 2.73712041584547

-51-

Н	-6.13100446358158	2.09094513034933	2.24575906178828
Н	-4.49696621901376	1.99386348362322	1.57364924913678
Н	-5.04989046190243	0.77715012402210	2.73568934391907
Н	-6.46789587283271	1.20298864442097	-0.73605750311443

E= -5758.20342573 Eh im. freq. = 131.50 i

0.2

Р	3.07428885917582	-0.74811432365135	2.38897500515331
Р	5.87863377854958	-0.48088139672441	2.88813527627351
Р	4.14675247253712	0.24456213208272	4.05381155632408
Р	4.43729399931663	0.96017919753545	2.03490202693636
Ge	1.04167121721564	0.44393401149729	2.45488143244306
С	1.17536634259464	2.11363278448522	3.46465002921999
С	-0.28241490125267	-0.73764477532669	3.27888298229168
С	0.55434516586656	0.81589047123786	0.59548662548154
Н	1.39127140644483	1.91423217158455	4.51508969437364
Н	0.22485915055828	2.64777377301852	3.39822698677184
Н	1.96274991879479	2.75224380268855	3.06252568634665
Н	1.29775208569062	1.46688296603921	0.13294654727026
Н	-0.41763914819513	1.31250541535305	0.55487362491448
Н	0.49669660076966	-0.10904624573060	0.02052988245954
Η	-0.01688854493263	-0.94118076313201	4.31704506349240
Η	-0.33682320556515	-1.68543029638552	2.74139738023884
Η	-1.26768954668244	-0.26747745364713	3.25639811612034
Н	9.58192282346799	2.79850619622769	3.02069792535177
Н	6.62826990268200	4.09090113524281	2.44192558023745
Н	9.62997168235085	3.68074142138670	4.55801439023358
С	9.31929008916926	2.74797814258621	4.07798924741110
Н	6.68231140539183	4.93532279833854	4.00231224659700
С	6.40042196965027	4.00261942813594	3.50462040285360
Η	9.86773265784496	1.92350108349798	4.53508885874602
Ge	7.38279707050351	2.50164224535820	4.30369222154366
Н	5.32636294216179	3.85310034594753	3.61904956162050
Н	6.77219515718480	0.63721867706682	3.41730593648693
Η	7.26987634641221	3.21916650639399	6.74967968709026
С	6.93450782233008	2.32992703990926	6.20816631175023
Η	7.42083566188356	1.45547496052001	6.64219226928830
Н	5.85598881808050	2.22870854846354	6.33489744467788

(Me₂Ge)P₄H

0.1

E= -3561.93766778 Eh

P 3.07829127033371 Ge 0.11191151540641 C -0.46369437886685 C -0.82258931115185 C -0.21086017235406 H -0.19850098744781 H -1.54918773787919 H -0.00553851058479 2.65369487638344 1.94782947428334 H 0.31565812967733 0.69379524673330 -0.55331247534835 H -1.27910398700370 -0.00108292256902 -0.21154074107830H 0.13626464313080 -1.05757519505045 -0.35767283455303 H -0.63609509234976 -1.19324126323113 3.98329116840890 H -0.48559078236904 -2.29068591184082 2.60022988773978 H -1.89789425725815 -1.22791719049873 2.73831393414492 H 5.06575103889859

 $TS((Me_3Ge)P_4 \rightarrow (Me_3Ge)P_8)$ E=-4926.35020504 Eh im. freq. = 105.96 *i*

1.98602568749661 2.64717775310880 3.72755337800731 1 72877460793962 2.01072641686715 2.64916071049511 3.17768525411737 0.16641914406077 3.65886324476367 2.66065161785609 1.99408995739302 -0.48463718542041 0.11372829008988 -0.199731875093624.20215570882302 2.83800524766375 3.16810398251698 3.46679280841243 4.88594536382307 5.58889371219812 4.20832617488097

(Me₃Ge)P₈ E= -4926.35080109 Eh

P 5.41738820665069

02 P 6.80794242672950 1.06336545571780 3.82513987519387 P 7.53860675230855 3.48454635334003 4.92610458823482 P 6.54063355107072 1.79646930323166 5.89180746817471 P 5.56033839030261 2.84428484877948 4.24334200605638 H 0.61080287841661 -0.02392590635154 0.61462616175226 P 3.75944467506537 0.27356468247069 2.48494211902891 C -0.06258855160350 -0.59242209466097 1.25753287674895 H 1.17927088067082 2.09600938840511 3.03113808266267 H -1.08306055858059 -0.24002590775149 1.09265516027423 H -0.00861030785828 -1.64465404704312 0.97557100779901 P 5.29891002146424 -0.64163323232548 3.77780070391777 P 2.55650325964176 -1.33564521672988 3.40767448836278 C 0.42140672643137 1.55128799045201 3.59539974196802 Ge 0.42815437622619 -0.34921879013893 3.13608196193534 H -0.55899182340478 1.96887897755684 3.35449859836052 P 3.48063638338620 0.27009353847783 4.63425579885958 H 0.60921269394913 1.69634387014246 4.65969910243827 C -0.78355359192414 -1.34536967055900 4.30561501293049 H -1.79925245259154 -0.95608559926557 4.20942060305677 H -0.79023481857926 -2.40307301033589 4.03888638431218 H -0.47241091112098 -1.25156093341202 5.34687825793238

Me₂Si^{*} E= -408.91880037 Eh H= -408.87946501 Eh

02

Si -6.01402051526227 0.27061830776064 C -7.49572177038263 -0.72928209931292 H -7.20999313844297 -1.37485409559983

0.46188261231549 1.03987549331333 1.87868838845208

Н 2.72152173980685	1.50289981516152	2.21905679621848
P 7.23129372702742	0.58670560754539	0.22214101631096
P 4.55784810420592	-0.38260342904176	-0.30988831320128
C 2.33596696123415	0.48106480099930	2.22410501193292
Si 2.42811498512531	-0.29885069111586	0.52488983724384
H 1.29236120083102	0.51412557799601	2.55164245033094
P 5.68723751237105	-0.20739785982348	1.59010784589570
Н 2.90395935766787	-0.08961000730645	2.96184139407352
C 1.81822306163252	-2.06845147414236	0.58891405261393
H 1.86435931048357	-2.53644237214456	-0.39730456909300
Н 0.78024959314093	-2.10508457569791	0.93176399347354
Н 2.42242853207219	-2.66773520507423	1.27411865095924
H 6.17008741009510	3.38899185956549	4.89365058507193
Н 7.57656389432358	5.26897175153512	2.71809265822366
Н 9.31947205848223	3.56084754252580	4.76083998657407
C 6.20948089969268	2.58988308109948	4.14418273431479
C 7.58993419436337	4.40128785862589	2.04912459921795
C 9.29818664978982	2.74809728620655	4.02578344267518
Si 7.70567293573662	2.80847091729087	3.03321330045283
H 10.17178029613813	2.85788197386182	3.37948529956272
H 5.28669145814389	2.61892456426778	3.56161394670775
H 6.67675184458759	4.42334186137115	1.45008345834602
H 8.44100918080324	4.51033654357462	1.37319287737545
H 6.24348301988100	1.63349018813402	4.66993747500349
Н 9.39315004821745	1.80418652680018	4.56672910774082
Н 7.80266746923170	1.42645013361575	1.34539334969225

(Me₃Si)P₄H E= -1774.58612818 Eh

01

Р	2.34160725142255	-0.26015142346776	2.22923655084666
Р	4.67547418971061	0.80810515159025	3.50735562410747
Р	2.57584724317160	0.70686302135387	4.20876956630948
Р	3.03865988421143	1.83428241275955	2.42393381692182
Si	0.10626585786440	0.10933683803006	1.92450299394151
С	-0.45041090319057	1.79363722083104	2.51817962649802
С	-0.77944640028840	-1.23813433873107	2.87609299102146
С	-0.19647533154646	-0.07172476442247	0.08538540143955
Н	-0.21863712782384	1.94814933742902	3.57412194755100
Н	-1.53435347360124	1.87900689486086	2.39394772161822
Н	0.01920275572997	2.59825637155943	1.94849654654072
Н	0.33243725914831	0.70070708103751	-0.47772598479367
Н	-1.26343848267232	0.01693208127468	-0.13853387173446
Н	0.14394225102503	-1.04493569207092	-0.27625274639312
Н	-0.59992800326494	-1.13903226224294	3.94918743423886
Н	-0.44334683818464	-2.23072034223980	2.56755911008737
Н	-1.85852546944850	-1.17850552334198	2.70670624120257
Н	5.03445533773700	1.93913793579068	4.31110703059651

2.63848419472026

TS(E= im.	(Me₃Si)P₄ → (Me₃Si)F -3138.99921989 Eh freq. = 101.26 <i>i</i>	Ps ⁾	
02			
Р	6.80930377065385	1.31257592157288	3.97650312244923
Р	7.58148297273131	3.23878324693308	5.06573963322217
Р	6.57453563818840	1.60792622097576	6.12593314380650
Р	5.45142484967171	2.85191127235550	4.73130573080480
Η	0.39469323040173	-0.18143663740558	0.56769085214903
Р	3.70432564299016	0.51068575614294	2.48605309822503
С	-0.21047792634541	-0.68460084278552	1.32519659425797

H -1.24202384960440 -0.33490930682332 1.22362864293390

H -0.19534287549680 -1.75629529070821 1.11343749462599

H 1.03213929355579 2.05778989538455

Р	6.80930377065385	1.31257592
Р	7.58148297273131	3.23878324
Р	6.57453563818840	1.60792622
Р	5.45142484967171	2.85191127
Н	0.39469323040173	-0.1814366
Р	3 70432564299016	0 5106857

,	P 6.57453563818840
	P 5.45142484967171
	Н 0.39469323040173
75964	P 3.70432564299016

Н	-7.88105082580489	-1.36723195801090	0.24179892912929
Н	-8.30677872666042	-0.07987656429112	1.37610169639179
С	-4.65423753233380	-0.87250476273634	-0.14792647301809
Н	-3.78453929170950	-0.30664987918378	-0.48886379525873
Н	-4.99982067671912	-1.49485790967117	-0.97610006086427
Н	-4.32757881798652	-1.53784494558140	0.65971261201179
С	-5.37642272184734	1.35504288780905	1.85706718820993
Н	-6.14718924291025	2.04408102100073	2.20895832536620
Н	-4.51508275436684	1.94608197754458	1.53842619346284
Н	-5.06540398557342	0.73543802027247	2.70629889048834

(Me₃Si)P₄

E= -1773.97201212 Eh

0.2

JZ			
Р	2.34947013291138	-0.25875155855258	2.23203374798272
Р	4.64287752089734	0.78988328280609	3.47698857756903
Р	2.57991826824500	0.71029281573002	4.21321975843626
Р	3.04084471625620	1.84069561489277	2.41454919478782
Si	0.09881176169652	0.10820645615874	1.92403562195825
С	-0.44959584157801	1.79310502271836	2.51962980030735
С	-0.78369804831968	-1.24073493583690	2.87594868279375
С	-0.19613165027979	-0.07319651712265	0.08369236205008
Н	-0.21188018917704	1.94712128585575	3.57432363818549
Н	-1.53408198986518	1.88160839835441	2.40159761026664
Н	0.01914472369145	2.59604138490059	1.94703611984932
Н	0.33614146760016	0.69834725672018	-0.47731405548138
Н	-1.26235300450979	0.01749805889459	-0.14383744056271
Н	0.14325925229600	-1.04717535967083	-0.27668022604903
Н	-0.60431711280528	-1.14120020242494	3.94894059158311
Н	-0.44744780490449	-2.23313860554600	2.56720247948578
Н	-1.86296220215478	-1.18161239787760	2.70638353683752

Me₃SiH

E= -409.55922044 Eh H= -409.52053043 Eh

JI			
Si	-6.01248331123423	0.26782889926965	0.46602798014279
С	-7.48855346046404	-0.73013459568590	1.04317364315214
Н	-7.21259431195311	-1.37615306499274	1.88145080794240
Н	-7.87375211982764	-1.36659962297267	0.24299268093057
Н	-8.30081103755454	-0.07865747686688	1.37451537814760
С	-4.65690432196795	-0.87231024808338	-0.14127140546444
Н	-3.78993052399976	-0.30468265685610	-0.48809688973143
Н	-5.00495791262431	-1.49410340890456	-0.96964936335428
Н	-4.32287928502732	-1.53771482366907	0.65971170322898
С	-5.37642313512936	1.34689306923911	1.85838846524285
Н	-6.14748471167042	2.03882721315529	2.20585674630476
Н	-4.51544827212018	1.93879592575456	1.53823551534058
Н	-5.06576273840850	0.73579668618106	2.71050594586001
Н	-6.44049485801863	1.14703410443163	-0.66389120774251

TS((Me₃Si)P₄·→(Me₃Si)P₄H)

E= -2183.49388392 Eh im. freq. = 187.56 *i*

~ -			
Н	1.76785332166208	1.73192075453450	-0.74352556675964
Р	5.26548175904519	1.57400204163037	0.44593987257250
С	1.41888243281266	0.69764885679241	-0.69952391982808
Н	1.48794077398493	0.27571723064116	-1.70493255822981
Н	0.36435626740824	0.70751884057105	-0.40914881547324

С	-4.16234125100168	3.80012160759954	2.55691419635230
С	-5.45594026596202	4.30056508210357	2.57522214970643
Н	-5.69241471429284	5.17508256621039	3.17040408219489
Н	-7.45885475474650	4.06685186008708	1.83651173967769
Н	-2.84536970803399	2.29313218895267	1.79788959848158
Н	-3.38606011036793	4.28139272084791	3.14141648670070
Н	-6.92297872442399	2.09268334705929	0.47472673846896
С	-6.21496448387858	-3.33886526739942	0.09785057127724
С	-7.22302213727381	-2.05850169710698	1.86089851373550
С	-7.11298997058653	-3.24599011556876	1.15218642213338
Н	-6.12641186940662	-4.26421781275303	-0.46021174127010
Н	-6.52609030200614	-0.04767593302464	2.08654539770266
Н	-4.74248171744768	-2.33055338955633	-1.07970639279192
Н	-7.72649957802238	-4.09860583964969	1.41966486272370
Н	-7.92065803578455	-1.98139738655658	2.68738022301509

(**Ph₃Ge**)**P₄** E= -4135.92468393 Eh

02			
Р	-6.78111348136322	-3.69311545219836	-0.35059140525359
Р	-5.80827922024736	-2.93427722491734	2.12313874443235
Р	-7.65446287371033	-2.29599783723228	1.13036645233739
Р	-5.73669194264887	-1.83128615435831	0.22774808501138
Н	-11.39224235788280	-5.82066421317482	-4.5938136877222
Н	-11.09388334815745	0.91096304483060	-1.2064929037209
Н	-6.02366361440199	-1.73064483011601	-6.77666553870203
С	-11.07767991989609	-5.41815886896582	-3.6374729326752
С	-10.08027835323801	0.64149159362262	-1.4806846024381
С	-6.03932996265480	-2.46709430684567	-5.98119161885324
Н	-9.41126204408754	-4.36237426600030	-4.47168553422268
Н	-9.36812731685237	2.66601139576133	-1.45522494331422
Н	-10.51488414854629	-1.45351455416448	-1.5809166139191
Н	-12.65120137089670	-6.37978522428943	-2.5393248114501
С	-9.96402269017787	-4.59356793893319	-3.56681555632038
Н	-4.65845922839166	-3.78395283924399	-6.96173047257012
Н	-7.41925561230989	-1.34874373782195	-4.78607571216568
С	-9.11276408348076	1.62576608518142	-1.62146462688752
С	-11.78401576068920	-5.73158335580370	-2.4852993109930
С	-9.75190282135752	-0.68971353981036	-1.69065394311341
С	-5.27455384190712	-3.61901297385262	-6.08528139943220
С	-6.82533416038348	-2.25387533562693	-4.85735898915292
С	-7.81788738443464	1.27752290287931	-1.97719797737805
С	-5.29906973173829	-4.56025135516429	-5.06556733004458
С	-8.45433495754315	-1.05248969608856	-2.04614377865156
С	-9.54567765993090	-4.06979830866155	-2.34510263853013
С	-6.85669074074220	-3.19053248822977	-3.82615020358016
С	-11.37463069223024	-5.21973211248198	-1.2624385849683
С	-6.08492560141626	-4.34549700055632	-3.94410924552678
С	-7.49089757302985	-0.05343263630072	-2.18693932268138
С	-10.26137453881250	-4.39523364017455	-1.1940931295382
Ge	e -7.97328611313903	-2.92270874873984	-2.25511061167011
Н	-4.70235484341569	-5.46198602006285	-5.14239593094277
Н	-7.05940280538349	2.04398292018752	-2.08802539210039
Н	-11.91981434248225	-5.46777428066903	-0.3588771639139
Н	-6.09395069058595	-5.08863507569929	-3.15254532562799
Н	-6.47480201207214	-0.31276050294831	-2.46598822340866
Н	-9.94371215976186	-4.00985342333010	-0.22992382031100

Р	5.24411332885430	-0.61815003062887	3.57819949468350
Р	2.53061970644032	-1.25348673862987	3.12828395731171
С	0.43405488835684	1.51646546580289	3.37449297677182
Si	0.43176079306204	-0.32504733803216	3.04651373989537
Н	-0.59233918735693	1.89212857896968	3.31715671746463
Р	3.45057248842806	0.12892113693711	4.60403926202759
Н	0.82442533892916	1.75349680539972	4.36632367083483
С	-0.58585641784556	-1.22514254059766	4.33449897371637
Н	-1.62575210341447	-0.88697973447153	4.30247023004516
Н	-0.57722206477507	-2.30398366168832	4.16315160451386
Н	-0.20127751742521	-1.03943217870310	5.33997686553992

(**Me₃Si)P₈**[•] E= -3138.99919594 Eh

02			
Р	6.77027283155221	1.04974892229513	3.82668057190752
Р	7.51090745474446	3.45862374009500	4.95528289769527
Р	6.50554709174998	1.76314066105081	5.90104793902137
Р	5.53165674734286	2.83346854494524	4.26302514278594
Н	0.61662664890327	-0.02195070932587	0.67430379695746
Р	3.71442836007537	0.31026000653690	2.48370763597252
С	-0.04709260996760	-0.58251204792616	1.33660665746047
Н	1.14424278198834	2.04932681993334	2.96390790671796
Н	-1.06991566222461	-0.23407077212283	1.16600643453481
Н	0.00194148537523	-1.63610446168719	1.05231969895078
Р	5.25129763455232	-0.64444229818586	3.75200124017370
Р	2.49608893259533	-1.30640309172119	3.37405978315460
С	0.42376815087547	1.48520820304494	3.56009919945864
Si	0.43342710187942	-0.33525680302538	3.12940222397278
Н	-0.57170680933178	1.89498808805727	3.36251264897932
Р	3.44134907416976	0.26352114068074	4.63265001756066
Н	0.65303374410620	1.65297473603823	4.61445933207992
С	-0.71210869741062	-1.28743409539801	4.26363999847774
Н	-1.73663011623462	-0.91527954756804	4.17291911999094
Н	-0.71684815688385	-2.35163904874104	4.01680660099509
Н	-0.40712598785745	-1.18494798697608	5.30764115315196

Ph₃Ge[•]

E = -2770.88109631 Eh

H= -2770.81938847 Eh

02

Ge	e -4.43429441611669	0.48085306309191	-0.04362897639998
С	-5.52853984518282	-1.04737842430767	0.46257211683583
С	-5.43425524229980	-2.24687735391876	-0.24712099461443
С	-6.43799272769615	-0.96745045736590	1.51821933781657
С	-4.84562756039471	2.04329351722765	1.04230130691164
С	-6.14149535358907	2.56362630955382	1.06318803384841
С	-3.85868925693875	2.68078418473039	1.79589927936165
Н	-0.40023544086488	-2.44321793200358	0.88923722067853
С	-0.73323557226290	-1.48268186470829	0.51207710231647
С	-2.08756056048989	-1.18330087215191	0.48850251082749
Н	-2.80211553471523	-1.91368249853984	0.85316517775897
С	-2.53613853705564	0.05003078980254	0.01346371973393
С	-1.59232553520503	0.97175469923824	-0.44514996794701
Н	-1.91774322617305	1.93352371910070	-0.82948312210057
С	-0.23884207968209	0.67459094269692	-0.41880466185993
Н	0.48140024738365	1.40212176716357	-0.77588004828020
С	0.19332313818814	-0.55524569055854	0.05823454365210
Н	1.25132268848450	-0.79048815085035	0.07471233665122
С	-6.44661756215418	3.67850232055406	1.82784223670115

С	-7.27397395321511	1.17912568726138	0.88640767158904
С	-11.78468365858694	-3.70968365750075	-3.0666834314903
C	-8.55654652866684	-0.59734238100244	-0.10275532828964
C	-4.14236566856533	-3.54850236796592	-4.53935937349212
Ċ	-5 55954542139662	-2.14511488041193	-3 19844383933599
C	-6 10231155845773	0 50015334770237	0 58348015907891
c	-4 66714106645866	-4 67085608011569	-3 91406619770465
c	-7 387/8/8363081/	-1 20111383737672	-0.41077807063369
c	-9.24213997529557	-3 363/5108755681	-1 969057639/3197
c	6 00//8623/35736	3 26413150150804	2 56300061603647
c	11 57772100830616	3 02766403424870	1 7123660237703
c	5 62592461902667	4 52762116740076	-1./123009237793
C	-3.03383401892007	-4.32/02110/400/0	-2.95222445005120
C	-0.100/4131023300	-0.72431630364725	-0.00555749454515
C	-10.31280819502007	-3./5012023409544	-1.10820/1092091
Ge	-7.4/5418/2///959	-3.06930854576905	-1.20323786968322
н	-4.31806278482174	-5.65944005888370	-4.1903685/349809
Н	-5.14202199105456	0.91428927248509	0.86594269513090
Н	-12.40192461922273	-4.23596740474225	-1.0791192757738
Н	-6.03490455619558	-5.41332904754260	-2.44723381367502
Н	-5.23586614693813	-1.24277339495475	-0.29286882855549
Н	-10.16114784531550	-3.93605571369004	-0.1079189582994
Η	-5.62111939671328	-3.74497652934979	4.12207074211036
Η	-7.18849676862857	-0.43260919654590	3.26189039944711
Н	-5.66963193058612	-3.90606814423901	7.17513983700903
Н	-2.97616152537254	-2.28821245406684	2.81949801721282
Ge	-5.20363191646079	-1.97817086094486	4.87850200844610
С	-7.61752347463162	-0.50929229070164	4.25542449918821
С	-4.71462838367769	-3.42710391575661	7.36837993965370
С	-3.15969412180767	-1.22310129911635	2.91261815361886
Н	-9.38437693890634	0.55859452986697	3.69421112694566
Н	-4.40222667901034	-4.51156314305453	9.19155569164946
С	-8.86040818608266	0.05275921419366	4.49750522939357
С	-3.99964334966915	-3.77631006862525	8.50398513297424
С	-4.14929886190554	-0.75992200985161	3.77807983493357
С	-4.21476917407718	-2.47741484435536	6.47615638479014
С	-6.92187001676654	-1.16499275114366	5.27415493426494
Н	-1.64429345228663	-0.71478930485922	1.48368649802392
С	-2.40532341292997	-0.33758626519745	2.15729063319998
С	-4.36418185615493	0.61542052442628	3.87171265661902
С	-2.62438070595051	1.02875652925331	2.26486333892213
С	-2.76727431365360	-3.19024913742527	8.75699794206532
С	-2.96934185840096	-1.90578359332232	6.73559056672402
С	-9.43213469092276	-0.03940414297571	5.75909644324997
Ĉ	-7.50537459865233	-1.24882139108236	6.53808833554634
Ċ	-3 60253016109807	1.50412539619025	3 12663907555768
н	-5 13330047243342	0 99847511007734	4 53385771316807
C	-2 25123017792999	-2 25824926621782	7 86854372896648
н	-2.03356187359895	1 72190838944685	1 67682073346189
н	-2 20729728229394	-3 46433514687082	9 64368800990897
C	-8 75193314082561	-0 68993026474324	6 77887528660587
н	-2 55928864521867	-1 17300556075051	6 04837921418234
н	-10 40661646212584	0 39646157180916	5 94787663155210
ч	-6 07773257321/20	-1 7/070107388779	7 3/8152700057/0
ч	-3 776821007/3822	2 5706521122300210	3 21651250742000
ч	-1 28650624260605	-1 80137/0/730800	8 05018201060744
п	-1.20037034300003	-1.0013/474/37022	7 7673/055/05510
11	1.11404517410119	0.75701050740052	1.10137733403312

422	-0.36008176534194
731	2.19142476056753
952	1.12138240847374

0 1 P -6.78608463988543 -3.709701587304

(**Ph₃Ge**)**P**₄**H** E= -4136.53821195 Eh

P -5.81593152733154 -2.881769434717 P -7.67316962582306 -2.319072555399

Ph₃GeH E= -2771.50694095 Eh H= -2771.44522483 Eh

01		
Ge -4.46080381737895	0.79792562282311	-0.12917702870032
C -5.61433443005909	-0.75801504254840	0.07677011735454
C -5.13113840232917	-1.90666262086566	0.70006731755576
C -6.93916865734013	-0.73957736364770	-0.35565401159216
C -4.75630600929185	2.02819337826207	1.35378995008287
C -5.64652911244021	1.71025928054385	2.37610602671997
C -4.05363405328400	3.23063330326134	1.42967917551922
Н 0.09165617948816	0.08982741857059	1.96339955888669
C -0.50621868432775	-0.05778195674465	1.07101951851871
C -1.81665562774281	0.39891822704865	1.03316146025969
Н -2.23178063635858	0.90323960156014	1.89980387204245
C -2.60084678159252	0.21982594836608	-0.10405771823770
C -2.04183319629545	-0.42823243237058	-1.20465798582254
Н -2.63344043896233	-0.58214917146808	-2.10197353287615
C -0.73310015091298	-0.88493556272095	-1.17090575233572
Н -0.31186429331302	-1.38570070583230	-2.03543214653385
C 0.03711690243150	-0.69958758498039	-0.03117308224065
Н 1.06102185496935	-1.05463099151073	-0.00405566761114
Н -4.77716531314581	1.48973331918451	-1.47228780241235
C -5.83066275722824	2.57072027681174	3.45010469170566
C -4.23367045049807	4.09170172133629	2.50163771571336
C -5.12358159754993	3.76162504854214	3.51430243649975
Н -5.26487014740409	4.43395674775633	4.35291968488151
Н -6.52685049526696	2.30860565958960	4.23888729379529
Н -3.35056423896404	3.49952804913173	0.64710259986037
Н -3.67962377046162	5.02254372467632	2.54806864263096
Н -6.20141606330293	0.77845025046001	2.33552529647391
C -5.95152798313789	-3.00920015379655	0.89104388528395
C -7.76237890295225	-1.84039317224079	-0.16741902407185
C -7.26852389359227	-2.97673039726279	0.45706977802390
Н -5.56054017532929	-3.89606267611235	1.37699966391414
Н -7.33749274413619	0.14261806560346	-0.84745315953141
Н -4.09914648260255	-1.94443247644502	1.03440028897724
Н -7.91042197483451	-3.83795992673060	0.60346691596755
Н -8.79072365485317	-1.81232340825048	-0.50988897870171

TS((**Ph**₃**Ge**)**P**₄[•]→(**Ph**₃**Ge**)**P**₄**H**) E= -6907.41123410 Eh

im. freq. = 595.25 *i*

02

Р	-7.13763354625216	-4.72204246910222	0.45267989337738
Р	-6.16597148154660	-4.88601553035032	3.16794546162277
Р	-7.46202171918178	-3.38399135418784	2.19264433062941
Р	-5.45929088333216	-3.69210576706328	1.45080463438696
Н	-10.88319219461299	-3.15442867867250	-4.9343740308220
Η	-9.41822096730279	1.16329274496098	0.76684912274778
Н	-4.18043918195000	-1.40659482429811	-4.66668285883142
С	-10.72551594189463	-3.32233226972200	-3.8749209297523
С	-8.50090901130924	0.63214114821399	0.53791472154244
С	-4.58922610601068	-2.28562059067630	-4.18107108581958
Η	-8.63727967656281	-2.85647417723866	-3.96944067832121
Η	-7.22979238056711	2.13337934961345	1.39933404744303
Η	-9.52023633440864	-1.01913428866281	-0.36948586476173
Н	-12.77172030195608	-3.84600740551157	-3.4936256925250
С	-9.46185112530200	-3.15215317867893	-3.32844599226435
Н	-3.38316945379655	-3.65916637610719	-5.30516974314035
Н	-5.89971939695860	-1.15251258640672	-2.92177551140079

Н	-4.04974275611404	2.79122474633420	3.51207619776808
С	-3.47179353020056	1.21605284079119	4.86184602510909
Н	-5.37979777003143	2.11535737946721	4.42799278238494
Н	-8.80474333843355	-3.14204969247484	1.49850196192181
Н	-9.72931800861436	-1.80823386521526	2.15353908678821
С	-8.71629742606288	-2.98752215636241	3.64386839167554
Н	-3.27950429510108	-2.72851506509766	-1.39522255210084
Η	-3.14152346606449	-3.58725011290922	0.12604019335802
С	-1.84644112677455	-1.88426679594762	-0.02947486967370
Н	-7.79534710415382	-3.56481083593978	3.76498197362383
Н	-9.55673012512172	-3.66140922541318	3.82440738898503
Η	-8.72901407009648	-2.22322604396552	4.42613497117795
Н	-1.79455507033457	-0.90688023392785	-0.51431067169856
Н	-0.99875808725943	-2.47209160110158	-0.38842542192144
Н	-1.71154470075150	-1.72842502758961	1.04510498451483
Н	-2.52958212488097	0.97713721013927	4.36042118988955
Н	-3.86800683342044	0.28406324202826	5.27476487366027
Η	-3.24352060466111	1.87956121453113	5.69900366013587

Bu₃Ge[•]

E= -2549.55294995 Eh H= -2549.48491092 Eh

0 2		
Ge -6.23673852680420	0.47719635488392	0.17154501746155
C -7.69986457518610	-0.79342248169558	0.58850176103242
C -7.63137554387525	-1.41036291887884	1.98088387174670
Н -7.68853021236536	-1.57504130676648	-0.17836784715439
Н -8.64802364119721	-0.26023772483997	0.46751831825022
C -4.62181227265649	-0.48465807956713	-0.45797100916761
Н -3.77241884904736	0.18446514864900	-0.29359206224339
Н -4.70786025513007	-0.61422966967694	-1.54158585707913
C -4.39251843297480	-1.83968799678922	0.20405230491756
C -5.79881605104797	1.58757021672554	1.75412484562704
Н -6.73787156490821	1.81878309862540	2.26780424235363
Н -5.40341576892163	2.54229379492271	1.39363544240253
C -4.80414726258479	0.94879746288584	2.71623486781267
C -3.16827937513714	-2.58334272761032	-0.32294659066698
Н -5.27601571610537	-2.46930081583949	0.05490200907536
H -4.28952385458708	-1.71429525967646	1.28824892917182
H -6.68660283484580	-1.95037244568009	2.10944041885266
C -8.78564234040064	-2.36075691373024	2.26823462903409
Н -7.62849053366005	-0.61777896492381	2.73856547075845
H -3.88080204895696	0.69582420516817	2.18190449554289
Н -5.20128221066648	-0.00009341617774	3.09438757672693
C -4.45632356171336	1.84474654215146	3.89647823432096
Н -4.06024554056251	2.79384535739120	3.51757732087697
C -3.45480218893762	1.21003129853081	4.84568317508768
Н -5.37569969650089	2.09472893642918	4.43803286836998
Н -8.79070375773693	-3.15466802706265	1.51279347365692
Н -9.73146550696102	-1.82087499916748	2.14569368193787
C -8.71544692191652	-2.97177022238535	3.65665917422361
Н -3.26799262303966	-2.71030917045384	-1.40714385031775
H -3.15921048803923	-3.59227262039309	0.10358106309819
C -1.85119411496938	-1.89484076415835	-0.00722694463940
Н -7.79007142125952	-3.53920409245540	3.78958515265063
Н -9.55083550114103	-3.65088883149424	3.84132115440578
Н -8.73918539376105	-2.19759157553513	4.42881179939040
Н -1.78567286373139	-0.91193841824861	-0.47903260594803
Н -1.00149765777126	-2.48372217652979	-0.35957188483736
Н -1.73333741411343	-1.75314645697505	1.07128609587228
Н -2.51532702274018	0.98464389149962	4.33309523927467
Н -3.83913539387584	0.27067567915988	5.25296689237298
Н -3.22489106017014	1.86753608968856	5.68717912574856

P -5.76702689539123	-1.83594153249058	0.23444302272974
Н -5.74901004693786	-1.68489977022604	2.97662736666882
Н -11.43662721681040	-5.75217583407766	-4.6081137829266
Н -11.08093218746120	0.90698092017580	-1.2068953128698
Н -6.08154891835011	-1.75421829612744	-6.79226616752881
C -11.10580286615460	-5.37615583211330	-3.6464889499945
C -10.06873523312439	0.63545732459705	-1.4843118027728
C -6.07049702288875	-2.48072835420275	-5.98762120199891
Н -9.44418044192762	-4.31006095987341	-4.47705783405182
Н -9.35605099836507	2.65990706137127	-1.47574585458634
Н -10.50413351992774	-1.46035979598374	-1.5687050499585
Н -12.66980323395835	-6.35616377099857	-2.5508525427501
C -9.98575411412675	-4.56065988130059	-3.57050392241337
Н -4.66031503851114	-3.77029876463985	-6.96250906162507
Н -7.47120065774835	-1.38616419263633	-4.79492351846093
C -9.10178254556665	1.61845354796581	-1.63613741779612
C -11.79755937811418	-5.71512302836129	-2.4926367667206
C -9.74155173591957	-0.69741723152511	-1.68723323978934
C -5.27411595819435	-3.61168527397483	-6.08326862122353
C -6.85344706380650	-2.27572147642226	-4.86014286410813
C -7.80875259596718	1.26727880164115	-1.99591315838104
C -5.26397020364339	-4.53978136608385	-5.05142161268956
C -8.44602928889220	-1.06294681671491	-2.04570543251346
C -9.54537685092426	-4.07256762276023	-2.34201091631001
C -6.84980873678596	-3.19873265121006	-3.81632847288873
C -11.36704905501515	-5.23816334003687	-1.2630973193222
C -6.04683432776172	-4.33280576201781	-3.92623504294584
C -7.48334302640826	-0.06525443704010	-2.19817456281652
C -10.24705993302226	-4.42310139404426	-1.1898026667167
Ge -7.96443812345173	-2.93672677961076	-2.24207642294752
H -4.64242285281302	-5.42515417078599	-5.12164843423954
Н -7.05062465586275	2.03275167794353	-2.11600316992028
Н -11.90069127161542	-5.50635185441257	-0.3583541682993
Н -6.02811459527083	-5.06535664851755	-3.12504415826089
Н -6.46872973692354	-0.32683941792819	-2.48077984983580
Н -9.91305387931721	-4.06524950015655	-0.22055649343473

	•	
0 1		
Ge -6.22940188625121	0.46944007030593	0.18105126649801
C -7.69609152234307	-0.77566784203155	0.60164375400941
C -7.62722810909431	-1.41513482660083	1.98152650273729
Н -7.71609892231484	-1.54918132296315	-0.17397260723460
Н -8.63417411888824	-0.22013816946886	0.49871121223362
C -4.63804567681966	-0.49989519934769	-0.45837067193687
Н -3.78017561494736	0.16802188363432	-0.33527573815885
H -4.75708304935970	-0.64953048977633	-1.53681421897686
C -4.38397025775282	-1.84059107185614	0.21975199087210
C -5.77942098478222	1.58330741838112	1.74161541082279
Н -6.71284038075762	1.84974081441080	2.24951514309487
Н -5.36153534351695	2.52189733170752	1.36283526893528
C -4.80604331226130	0.94634888064472	2.72363090067723
Н -6.70988881904795	1.40628733792304	-0.95626542412665
C -3.16433152516355	-2.58473747080527	-0.31452646593230
Н -5.26520691798222	-2.47945882965091	0.09783265368572
Н -4.26297272880298	-1.69814904183750	1.30030081088821
Н -6.68708711452224	-1.96653489305924	2.09787427873706
C -8.78748232571183	-2.35789076851140	2.26410473372413
Н -7.61057340459447	-0.63412943722974	2.75134453707626
Н -3.88030565928199	0.67343558493089	2.20285381034207
Н -5.21828874182587	0.00670912145194	3.10951797590793
C -4.45850314590047	1.84976494240165	3.89691471052562

Bu₃GeH

0

E= -2550.18263665 Eh

H= -2550.11498566 Eh

C -9.11063137621801	1.56178819952874	-1.62093508119950
C -11.74465762563434	4 -5.67428130172749	-2.5075192490818
C -9.75085955046135	-0.75220036454416	-1.70320023254328
C -5.31771632143139	-3.61873559357858	-6.02875230587412
C -6.88257768317189	-2.25290949545762	-4.82110099234003
C -7.81690077088037	1.21437811874871	-1.98225862103155
C -5.32883810307551	-4.54268967866358	-4.99295185567797
C -8.45346300697219	-1.12152383409790	-2.06357591502298
C -9.49161847772199	-4.02147107977693	-2.35733708432666
C -6.90331177215019	-3.16904250029507	-3.76784645778188
C -11.3331716633066	5 -5.17057922601593	-1.2818105227506
C -6.11457145783948	-4.31721958325457	-3.87448180654995
C -7.49263046926715	-0.11489936292945	-2.20065342775681
C -10.21575354616943	3 -4.35353438728055	-1.2096555819455
Si -7.98623120214506	-2.91508385880994	-2.26687522241581
Н -4.72156660035762	-5.43838646679919	-5.05555656144912
Н -7.05804910061729	1.98070731866586	-2.09096554619713
Н -11.8799444071137	2 -5.42032421121082	-0.3797355321075
Н -6.11255307391405	-5.04803974924094	-3.07122984996961
Н -6.47771173380458	-0.37152804632140	-2.48629635664140
Н -9.89852711725521	-3.97480666873051	-0.24266249247711

Ph₃SiH E= -984.15709748 Eh H= -984.09685731 Eh

01

Si

 \mathbf{C}

С

С

С

С

С

Н

С

С

Н

С

С Н С

Н С

Н С С

С

Н Н Н Н Н С С С Н Н Н Н Н Н

-4.42831323129758	0.76750287446236	-0.07579179214989
-5.55000839561949	-0.72040446371714	0.08669924544193
-5.07924770842881	-1.91923138231690	0.62384045622924
-6.89486869714937	-0.64561984367191	-0.28300915506470
-4.74379458151755	1.96504491257608	1.32665870462704
-5.53842296065831	1.61131315141140	2.41694806155777
-4.15037436365972	3.23030558476835	1.32489363856540
0.06536465260139	0.09440796059126	2.01205412611709
-0.53763178716712	-0.05961702207763	1.12426927325144
-1.84559842016235	0.40309857198139	1.08697123458516
-2.25398927900038	0.91875315635064	1.94999655626022
-2.64116077146543	0.21723323615443	-0.04389409821318
-2.08440214952483	-0.44558997542354	-1.14042467255969
-2.68107110535829	-0.60569725166107	-2.03361131789217
-0.77852765239092	-0.90822746183579	-1.10875202509331
-0.36293254442941	-1.41902453668063	-1.97008838802448
-0.00267711504802	-0.71543110599835	0.02631004832445
1.01965554997915	-1.07526257411199	0.05253341953599
-5.73254538393887	2.48916969986892	3.47444971002328
-4.34009669236940	4.11005811801522	2.37876910233044
-5.13245493373319	3.73886626962437	3.45675968742158
-5.28230179618927	4.42616028974359	4.28169041725238
-6.35386946804246	2.19588287651369	4.31316865106060
-3.52605123209238	3.53262228510492	0.48915072152316
-3.87166813863718	5.08766313222014	2.36072163039073
-6.01243462354775	0.63547949729871	2.43901414826937
-5.92329315831970	-3.00768439661646	0.79096024220041
-7.74230732398696	-1.73032271536450	-0.11842108266959
-7.25620623201118	-2.91376178965929	0.42000636072876
-5.53895887987802	-3.93105635329868	1.20945195362580
-7.28750217661378	0.27407340952409	-0.70651296021682
-4.03602855983704	-2.00439589591404	0.91055672591961
-7.91718901514088	-3.76354918578416	0.54768878826852
-8.78335644419589	-1.65451963198120	-0.41163350410572
-4.71115538116897	1.44267055990372	-1.37537390752085

Ph₃Si[•] E= -983.52229624 Eh H= -983.46200346 Eh

02			
Si	-4.41032569756071	0.45595615782670	0.06408974815872
С	-5.48101405677812	-1.00335079736144	0.50799828061494
С	-5.39279075541156	-2.19115420331708	-0.22907781515098
С	-6.40760120041013	-0.94847521078254	1.55448079027604
С	-4.81092290817044	1.97713905239426	1.06398378942369
С	-6.10532084336759	2.51123641907614	1.04507762406451
С	-3.84192258057081	2.63176401657639	1.83176436250787
Н	-0.40630349163571	-2.42940073378369	0.89501593445080
С	-0.75738922836073	-1.47449896144764	0.52011574315725
С	-2.11251586514806	-1.18169362094790	0.54098895308516
Н	-2.80906962627426	-1.91260138594100	0.93748199391323
С	-2.59161714720357	0.04475752195551	0.06853728271252
С	-1.66137430967921	0.96546393793429	-0.42947687174117
Н	-2.00473051363220	1.92168763361422	-0.81258681463486
С	-0.30714187624384	0.67667927000733	-0.44642921068024
Н	0.39624210664868	1.40448546176772	-0.83497525536369
С	0.14823244725828	-0.54683429182095	0.02652365557005
Н	1.20747103328479	-0.77649995009655	0.00879487598269
С	-6.42259826365598	3.64440853667232	1.77491041822495
С	-4.15640196603583	3.77055977960827	2.55756266535161
С	-5.44668492209046	4.27891257229629	2.53200833653414
Н	-5.69230975016013	5.16881058512366	3.10012113524489
Н	-7.43201683449449	4.03905160859413	1.74829944172453
Н	-2.83132782848617	2.23923930569308	1.86865792969106
Н	-3.39190537250074	4.26076778469362	3.14999524534512
Н	-6.87528709421335	2.03204860379486	0.44790467862823
С	-6.18792966992568	-3.28311565173471	0.07543144695430
С	-7.20915768652420	-2.03872137197992	1.85642164281729
С	-7.10123124421985	-3.20845486629849	1.11857214642433
Н	-6.10082072509784	-4.19413038915280	-0.50583422824890
Н	-6.49496046865493	-0.04374135100388	2.14628457458996
Н	-4.69081635829468	-2.26035840350339	-1.05463846046741
Н	-7.72745484519309	-4.06120181590457	1.35434846657989
Н	-7.91775245719733	-1.97600524255225	2.67468749425950

E= -2348.57272251 Eh

0	2
	Р

(Ph₃Si)P₄.

Р	-6.82672586411737	-3.68507073275573	-0.43127473901281
Р	-5.79217735784035	-2.92426702375885	2.05029332568545
Р	-7.63634727705684	-2.26287512227104	1.06562379940184
Р	-5.71936487423000	-1.85302708326720	0.13564890505891
Н	-11.35115647100554	-5.75564100745031	-4.6157882719612
Н	-11.09123587875939	0.84570503688750	-1.2069928289724
Н	-6.09192365218630	-1.75225178599243	-6.75069287748673
С	-11.03543080562803	-5.35923503497851	-3.6573411345007
С	-10.07823110873145	0.57730394623993	-1.4842418934390
С	-6.09669816480280	-2.47495990387558	-5.94262111533781
Н	-9.36368496525519	-4.31013153654901	-4.48498993819837
Н	-9.36480274504367	2.60130133832070	-1.44804011957854
Н	-10.51537172417600	-1.51455186991227	-1.5966268431457
Н	-12.61517558958097	-6.31778731877815	-2.5652406386744
С	-9.91790076274926	-4.54127518209914	-3.58119125204774
Н	-4.70117462333371	-3.79094211328001	-6.90355736706820
Н	-7.48753307599550	-1.35422283468848	-4.76566631558184

С	-4.22307624328407	0.32423979243952	1.64908265456034
С	-6.15123127260687	-0.80806236405526	7.04251142610603
С	-6.17245842055650	-1.25651663691865	5.71746909575111
Η	-5.54529233239805	0.23781012088659	3.32802827019575
Η	-4.76717078068528	1.13262932838108	1.17314132141603
С	-7.25280278497664	-0.17687827149646	7.59897342786840
Η	-7.21515989867503	0.16645298710583	8.62673870870153
С	-7.34186986549158	-1.05969734401464	4.97359910785447
Η	-7.40137091743643	-1.41447603424706	3.94944949307407
С	-8.39918166148209	0.01866723038913	6.84205613772749
С	-8.44106147533563	-0.42486757838476	5.52741731685716
Η	-9.26078860769509	0.51119478649817	7.27840084216400
Η	-9.33496031478610	-0.28567033299197	4.92989210474838

(**Ph₃Si)P₄H** E= -2349.18758727 Eh

01			
Р	-6.83848579002669	-3.68990909339945	-0.42542432021053
Р	-5.81287331415318	-2.88893764377429	2.11599697057789
Р	-7.66318970903780	-2.26856739914395	1.06334287026523
Р	-5.75271773454423	-1.84917594946698	0.15504114174207
Н	-5.70070056343337	-1.69185436256907	2.89583401066333
Н	-11.38419162984009	-5.69566475964680	-4.6352750554490
Н	-11.07582236731079	0.84279510149210	-1.1886660643111
Н	-6.15252109934803	-1.78376432642864	-6.76591583922090
С	-11.05779891176656	-5.32239516666793	-3.6711242172495
С	-10.06605080787216	0.57236006080876	-1.4756219762410
С	-6.12893771253603	-2.49377042773858	-5.94697999054045
Н	-9.38559931630019	-4.26673655881098	-4.48953290828632
Н	-9.35141071233573	2.59618846699314	-1.45904805505198
Н	-10.50500387763701	-1.52032657465342	-1.5709235209286
Н	-12.63465243505806	-6.29467878853493	-2.5868715422878
С	-9.93406928257085	-4.51376806869602	-3.58633807424933
Н	-4.70046062633154	-3.78065339742608	-6.89871849734220
Н	-7.54312091759822	-1.39735065204021	-4.77509948872100
С	-9.09967193572547	1.55550691453720	-1.62854513274092
С	-11.75921825986667	-5.65850298432119	-2.5224149042582
С	-9.74154097531480	-0.75877131304870	-1.69053946604011
С	-5.31535897246830	-3.61398175091338	-6.02167198226414
С	-6.91234363570237	-2.27868619597028	-4.82243442762213
С	-7.81017704748203	1.20513370467307	-2.00221721863529
С	-5.28961892651197	-4.52100753111669	-4.97136568706283
С	-8.44849334293159	-1.13091739312528	-2.06218032280234
С	-9.49300398147011	-4.02497079228896	-2.35516878646455
С	-6.89639213139485	-3.17773295778998	-3.75449737173860
С	-11.33345302177774	-5.18547846268760	-1.2895143641168
С	-6.07335614038542	-4.30228993849961	-3.84991832495823
С	-7.48913292209742	-0.12566781327865	-2.21612649323959
С	-10.20966549857859	-4.37781388906026	-1.2091132160706
Si	-7.98051238656555	-2.92788842283744	-2.25265950850389
Н	-4.65506360864566	-5.39821120489045	-5.02489415702040
Н	-7.05221795047120	1.97038278977885	-2.12431548083549
Н	-11.87381566829858	-5.45194986277711	-0.3883212261232
Н	-6.04189226550898	-5.01942320045929	-3.03507580151886
Н	-6.47761120600388	-0.38476404966466	-2.51183881887872
Н	-9.88138331509812	-4.02329610655622	-0.23665275226347

(**Me₃Si**)₃**Si**[•] E= -1516.27644343 Eh H= -1516.19693237 Eh

موقع د موقع د	8	
<u>_</u>)-6-)
00	de la companya de la	

.

TS((**Ph**₃**Si**)**P**₄·→(**Ph**₃**Si**)**P**₄**H**) E= -3332.70358652 Eh im. freq. = 375.49 *i*

02			
Р	-6.79624641691532	-4.67385638615953	0.39504923662218
Р	-5.48123241291081	-4.90891325465700	2.98490557793661
Р	-7.26120559919295	-3.75447193030393	2.36178764874369
Р	-5.35515656602108	-3.34626216663464	1.42563879140475
Н	-9.88959419116965	-3.14849789300153	-5.33153460280700
Н	-11.68342929860889	-1.00003383388376	1.1966911697981
Н	-5.20205733906855	0.94471254706919	-2.91449312651461
С	-9.78425363032760	-3.62519890823358	-4.36350510043062
С	-10.60561865934469	-0.92562028027437	1.1070722661255
С	-5.14007135462800	-0.11135079306182	-2.67667573921711
Н	-8.30937158985026	-2.23292787814480	-3.68309238692992
Н	-10.45042530406952	0.73234848480410	2.46267468336630
Н	-10.47060666980272	-2.54687761344960	-0.2825355379780
Н	-11.22649979250594	-5.15732499138301	-4.7884084513154
С	-8.89729535041874	-3.10976861063499	-3.43107122757354
Н	-3.15823059891036	-0.33403834063805	-3.47012070949377
Н	-7.09315649879751	-0.16979678455177	-1.80744408404943
С	-9.91413254171475	0.04525790571947	1.81756800229273
С	-10.53434713130765	-4.75228391237013	-4.0589479156976
С	-9.91890109292938	-1.79746746750844	0.27573679890444
С	-3.99476807776549	-0.82800429782877	-2.98873763532292
С	-6.20696820866143	-0.74474599551523	-2.05516459178194
С	-8.53537135712546	0.13944488080975	1.69525455398220
С	-3.92218299535582	-2.17971443615088	-2.68260076658314
C	-8.53130567069980	-1.71989443326892	0.14172096426508
C	-8.74373221476322	-3.70869104236385	-2.17928042172269
C	-6.15005531088/19	-2.10225798204343	-1./33/10895546/0
C	-10.39145936509889	-5.36386028441042	-2.8224731785357
C	-4.99031135883698	-2.80689232998703	-2.0621/668161016
C	-/.85095/851558/8	-0./3/428/4100902	0.80/95450492995
C C:	-9.50155/0451//15	-4.84333398931337	-1.89320005085049
51	2 020220824070505	-2.93099279937131	-0.90304101424202
п	7 00211260400447	-2.14309369121623	-2.92403007070398
н	-10.97031760667052	-6 24872527643471	-2 5834253678554
н	-10.97031700007032	-3 86203290257892	-1 81830844296736
н	-6 77197649696117	-0.66016730458102	0 79042740341304
н	-9 39182789996765	-5 33950760963715	-0.93215656528367
н	-0.83339316100579	-3 58787300061938	8 96453962861490
C	-1.55459042416917	-3 30207561030622	8 20748332366871
н	-0.20361121582185	-1.97430565092670	7.19891079008105
C	-1.20089333011965	-2.39936333335459	7.21555246951176
Н	-3.11497619713018	-4.54786471478797	8.99841869668442
С	-2.83446534386057	-3.83945840746888	8.22719307975040
С	-2.12322567526531	-2.03376872927898	6.24659247430735
С	-3.75266028434270	-3.47548631316429	7.25628923065054
Н	-1.83681972110084	-1.31963861415279	5.48210338323964
С	-3.41737614215595	-2.56187885360995	6.25051155586867
Н	-2.30426285389782	-2.57456053443638	3.31424171888311
Н	-1.52214598335280	-1.65823787342806	1.17689595027384
Н	-4.74871085352214	-3.90748709717734	7.27906701342310
С	-2.84130205426522	-1.74648521134919	2.86214410198126
С	-2.40143666541602	-1.23798743886761	1.65162881492647
Si	-4.69160783827567	-2.10295347429031	4.97317004990166
С	-3.98649719439587	-1.23628800163371	3.48889179401616
С	-3.10186676142114	-0.21237848867849	1.03200403334523
Н	-2.77968149880981	0.16308873748354	0.06800009585520
Н	-5.15959624746256	-3.86123426553823	4.09823369671375
Η	-5.25935385803876	-0.95063633859714	7.64337579687940
С	-4.65879542415238	-0.18020588749939	2.86356914401126

-58-

0.2

Н	0.78152835067185	1.18465890314094	-2.25014399967580
Н	0.86524490495218	3.45058366726755	-0.13645115619993
Si	-2.19417156055202	0.94566423186531	2.70434995890658
Н	-1.11390492440806	3.09777750473852	3.34285929904688
С	-0.26892522217917	1.43406483657269	-2.41931823254161
С	-0.20023132860090	3.63332716693078	-0.29721213629007
С	-2.12995994858131	2.78070248958459	3.09804729252957
Si	-1.07199913493469	2.06013720849296	-0.83973808058859
С	-2.83699187495024	-1.69006320072478	-1.03293005471181
Н	-0.77070270879320	0.54067467180746	-2.79835310294404
Н	-0.61633780367870	4.02155598630399	0.63496381710745
Н	-3.07144096267144	-2.69837728367348	-1.38754004380799
Н	-2.77049649211562	3.00415725141650	3.95657052588750
Н	-4.03842489820987	-0.58490524807888	2.00893270609469
Н	-0.29739589913130	4.40917598911730	-1.06247730597556
Н	-0.31135087445359	2.20013695356509	-3.19931649140187
С	-3.94488626650718	0.48979753192722	2.18194924065921
Н	-2.69542365757898	-1.05202626994786	-1.90851390741611
Н	-3.70340944701722	-1.31708892102972	-0.48205377922481
Н	-2.47927255557269	3.38077851245243	2.25457348272761
Н	-4.65435744979183	0.76287270579609	2.96918123689083
С	-2.88973820982063	2.41954226506471	-1.15643635419371
Н	-4.24325632154144	1.00483887845571	1.26621043760423
Н	-3.43247054450836	1.51368342122112	-1.43639270055268
Н	-3.37035568414509	2.84092771779800	-0.27035404125281
Н	-2.99746337644521	3.14254046811122	-1.97056046481666

(**Me₃Si**)₃**SiH** E= -1516.90042212 Eh H= -1516.82189069 Eh

01			
Si	-6.06637245982112	0.35484536187722	0.34486975116305
Si	-7.95000634537323	-0.83113375138808	1.09225113379790
Si	-4.39912711118081	-1.09428124977797	-0.45157737987403
Si	-5.20988077464873	1.72485571557291	2.04649171188940
Н	-6.49497192938092	1.23105898264537	-0.79637207822122
С	-4.89761026846819	-1.76595824214982	-2.13522100525988
С	-4.17455523985166	-2.52716477604810	0.74753505382116
С	-2.75764758344452	-0.18937334730762	-0.61860641320577
С	-4.07971553624666	3.03408303112433	1.31005839765808
С	-4.22393340927585	0.65830642883358	3.24308476901186
С	-6.59329122318872	2.57882375275473	2.99303629140987
С	-8.35335714203179	-2.25696434712668	-0.06693224265418
С	-9.43091633799955	0.32363350400211	1.17664753414481
С	-7.61149998409573	-1.52731679092072	2.80755001340736
Н	-2.84082343955077	0.65978575569174	-1.30114859357063
Н	-1.98932653185823	-0.86304345616525	-1.01042802037143
Н	-2.41001662273439	0.18811759826036	0.34596728500742
Н	-5.83770860473799	-2.31933721738411	-2.07881251518451
Н	-4.13024360308341	-2.44180910142128	-2.52477263159112
Н	-5.03080807287058	-0.95386884270560	-2.85387186837471
Н	-3.25598235642962	2.57952584141834	0.75536267966478
Н	-3.65187714166277	3.66038383257846	2.09873422440197
Н	-4.62811059773431	3.68298844303648	0.62322383288921
Н	-7.21605809994148	3.17969484834185	2.32615558346797
Н	-6.17953053181535	3.24274026228053	3.75803697100835
Н	-7.23955471227210	1.85349172199384	3.49303831548808
Н	-9.64859560763746	0.75134739515134	0.19510224904985
Н	-9.24996028791924	1.14926591787477	1.86873511019474
Н	-10.32091903336771	-0.21455641392854	1.5164668331612
Н	-8.57700329198543	-1.89724814695215	-1.07419559265695
Н	-9.22624067866320	-2.80842144318289	0.29552960367998

Si	-5.99809376645207	0.22318408829073	0.51233391427571
Si	-7.98133297616170	-0.85222140655450	1.11832605487987
Si	-4.36479984871589	-1.15595592246039	-0.43120975559348
Si	-5.17606475496720	1.73459356175833	2.09209727422485
С	-4.91667374949453	-1.76612593970766	-2.12089112426272
С	-4.06866663682027	-2.64463249995235	0.68436016153496
С	-2.75280398740618	-0.20400202814064	-0.61202261347941
С	-4.14114556390797	3.06183197257178	1.25676279699172
С	-4.09500660215436	0.80375259457411	3.32221101841580
С	-6.59166249981878	2.55094575156452	3.02237117239630
С	-8.37901711330327	-2.22740176582971	-0.10094282720872
С	-9.40394757509104	0.37528354584717	1.15551996339560
С	-7.78076293323728	-1.60733654602097	2.83227644404270
Н	-2.87762363179439	0.66423847577050	-1.26318293146657
Н	-1.97970912581042	-0.84470205794883	-1.04720624681166
Н	-2.38806909592474	0.15022498609962	0.35506492978836
Н	-5.85081351474327	-2.32816261702695	-2.05163099696704
Н	-4.15885589469533	-2.42322931017569	-2.55838103997067
Н	-5.07899955613315	-0.93067122839378	-2.80555881638373
Н	-3.31066837896532	2.62111293303827	0.70062834033168
Н	-3.72430324811806	3.74808965034986	2.00012141964629
Н	-4.74220161435342	3.64470651414022	0.55526750997075
Н	-7.24635497601642	3.10112336931102	2.34278500436716
Н	-6.20124986044438	3.25686512101604	3.76164621767117
Н	-7.19883566356147	1.81283148747589	3.55176434432324
Н	-9.55579824229194	0.82905583970258	0.17349531085331
Н	-9.21269007490024	1.17890813361547	1.87030184487460
Н	-10.33362211291874	-0.12269664500860	1.4472515070452
Н	-8.53141019662511	-1.83343159976794	-1.10845446151544
Н	-9.29283924085474	-2.74881258969207	0.19988098152401
Н	-7.57274280273208	-2.96377914179094	-0.14507737543130
Н	-3.24166774207750	0.33764444239564	2.82376273052997
Н	-4.65992613005323	0.01459042089402	3.82396682368679
Н	-3.70768212154066	1.48347999810806	4.08763524277661
Н	-6.96791747968693	-2.33732926947959	2.84792633377569
Н	-8.70063646304298	-2.11615127488288	3.13740525311029
Н	-7.55640491554267	-0.84050672012076	3.57764403741111
Н	-4.98535415109791	-3.22319481491714	0.82227337832150
Н	-3.71797734346551	-2.33400684038727	1.67136871003788
Н	-3.31424841507875	-3.30712266826516	0.24823946888756

((**Me₃Si**)₃**Si**)**P**₄[•] E= -2881.32110822 Eh

		Ų	
02			
Р	1.44415818522012	0.47039235019247	1.11975640854554
Р	3.57399850520557	0.49765815224173	2.97468714051651
Р	1.69877650436783	-0.62813318944975	3.02856694128274
Р	1.65555309764277	1.54822742867641	3.04225241759852
Н	1.07302897527928	-2.36700399458105	-0.36326931728181
Н	-0.69887409303790	-2.89742770817159	2.15518952650472
С	0.16509954405678	-2.32257041152180	-0.96980473036907
Н	-0.78424516251103	0.26237967409524	4.64123215123212
Н	-0.03066239473597	-3.32601116795264	-1.35963036260180
С	-1.56854440154168	-2.88238586687456	1.49362107072188
Н	-1.74016999010887	-3.90283742468311	1.13801651131972
Н	-1.70341671975062	-1.11277173073100	4.02602336334659
С	-1.75082726533997	-0.04268944356566	4.23668863155689
Н	0.36235880764151	-1.66208848179373	-1.81712623464698
Si	-1.29476041317919	-1.71791956725420	0.04349043071336
Н	-2.43665142264026	-2.58503179190087	2.08622625093701
Si	-0.83887488545709	0.44204772300350	0.84915786927928
Н	-2.51150298054651	0.11848801209509	5.00711578548427

С	7.72580231106688	-2.20024682499318	5.17846848211271
С	5.77173374408923	3.24018480992418	4.85466994096208
Н	8.30937774123413	0.93857706535397	4.40171816536474
Н	2.61950244989818	2.52343895147816	5.45149131464226
Н	4.12333116093461	-3.39374754219886	6.09250997827161
Si	5.23312210189049	0.01695493730217	6.04100607425798
Н	1.77286810541818	0.00685381808173	7.27996429944667
Н	7.09192825957560	-3.00587427354534	5.55570753579695
Н	6.83777563537350	3.01404356153053	4.79342285609245
Н	1.47797372801815	-1.63244645110077	7.87452349847840
Н	8.76612805746366	-2.53560659780760	5.22784793147006
Н	5.66105839803531	4.32153967468503	4.98076276073740
С	8.59114754548968	0.71551501813982	5.43345292299044
С	3.14514101269413	2.82350984043100	6.35968220706190
С	4.29828268668963	-3.12002040193126	7.13594235801830
Si	3.88660935360462	-1.31000064196968	7.43395315463484
Si	4.95592440443100	2.33429354492551	6.28367850669152
Si	7.49011423418678	-0.61994841785517	6.16741060322575
Н	3.05786821573000	3.91008989923885	6.45663312720521
Н	9.63412607235674	0.38432632560246	5.43397836039838
Н	3.67487715672467	-3.76374985524301	7.76357041085211
Н	8.53503622747543	1.64308743634702	6.00785420793807
Н	2.63704212151521	2.36634576023808	7.21176544687950
Н	5.34396657659817	-3.33475825874749	7.36838927419871
С	4.27395370557107	-0.86149504499945	9.22157384400027
С	8.01046328616688	-0.91485539335872	7.95175908239751
С	5.78708079406650	2.83888613506603	7.89651246548493
Н	3.99162466221621	0.17302597248279	9.43220819003118
Н	6.85363119197546	2.60167931327059	7.88343633612456
Н	7.46027428709568	-1.74945985053300	8.39269796332237
Н	9.07764454825024	-1.15233254448467	8.00181586977803
Н	3.71181431419916	-1.50717352774970	9.90362792634726
Н	5.68240069607653	3.91578321847796	8.06186475644880
Н	5.34086091053981	2.32114703176857	8.74883476748117
Н	5.33640991776216	-0.97020531103895	9.44783159398127
		0.0011050540500	0 5 600 001 10 60 5 11

28	1.11641493753588
66	2.99429617329620
78	3.03384530397901
55	3.03155813994813
72	4.41507507027265
85	-0.35916028311336
881	2.15293357744638
34	-0.96755259432519
36	4.64592545023013
73	-1.35820734114727
80	1.49168105017706
158	1.13460875887135
20	4.02609550647496
976	4.23785551039733
63	-1.81408529816255
-02	0.04345953545361
549	2.08527085018685
90	0.85176079794519
83	5.00548919825576
23	-2.25834370039580
92	-0.15021795365679
58	2.70422387412579

H 7.83188427354953 -0.03118597619793 8.56893814062541 $((Me_3Si)_3Si)P_4H$ E= -2881.93486972 Eh

		- 0	-
01			
Р	1.43856599373669	0.46928363346328	1.116
Р	3.60493808506801	0.51682669825966	2.994
Р	1.69694023103359	-0.60804277287878	3.033
Р	1.64898006988100	1.55470159372355	3.031
Н	3.78813129287491	0.51877205348372	4.415
Н	1.07182787010939	-2.37312574563885	-0.359
Н	-0.70345328815629	-2.90034591355881	2.152
С	0.16533774139957	-2.32484560562934	-0.967
Н	-0.78842113454936	0.26231011894136	4.645
Н	-0.03395139433502	-3.32730127253673	-1.358
С	-1.57335283302368	-2.88079789889780	1.491
Η	-1.74912077373769	-3.90004503400458	1.134
Н	-1.70050384999155	-1.11548639496120	4.026
С	-1.75256284690963	-0.04582192606976	4.237
Н	0.36722164303017	-1.66476572059863	-1.814
Si	-1.29387251493575	-1.71502461377402	0.043
Н	-2.43995302479799	-2.58106897920549	2.085
Si	-0.82775797905502	0.44191771599790	0.851
Н	-2.51683537275651	0.11166859441883	5.005
Н	0.77162700396309	1.17747029307723	-2.258
Н	0.87178362668607	3.44566928549192	-0.150
Si	-2.18990580118067	0.94334755887658	2.704

Н	-7.51961197508138	-2.95971998225402	-0.13892987223593
Н	-3.36076101898305	0.20398461239586	2.75055712327762
Н	-4.83572138998791	-0.14750934969425	3.65529781505537
Н	-3.85306173791902	1.25938114910127	4.07853734709480
Н	-6.73729221897098	-2.18306602145917	2.80771810638647
Н	-8.46820804417514	-2.10989938813236	3.15886230670757
Н	-7.43120920573297	-0.72845891331720	3.53092822125382
Н	-5.09572410869021	-3.10455630184158	0.85711702005033
Н	-3.88124339747231	-2.17419196686576	1.73905685825880
Н	-3.39498234371527	-3.20587510491190	0.38870607079843

 $TS(((Me_{3}Si)_{3}Si)P_{4} \cdot \rightarrow ((Me_{3}Si)_{3}Si)P_{4}H)$ E= -4398.20058555 Eh

im. freq. = 1025.91 *i*

02			
Р	2.12283083745918	-0.28702679406406	1.29907067015478
Р	4.56042206387580	-0.76890776985581	2.72707459052089
Р	2.46609117554004	-1.02113266383908	3.35622154138879
Р	3.17754450021704	0.94271375785880	2.80107104615806
Н	0.38602364059021	-2.96438543456301	0.80231647268159
Н	-0.63767956738901	-2.15731533286324	3.69846880208896
С	-0.60292567491091	-2.69899034057841	0.42077447560761
Н	0.92429077816638	0.94779107437928	5.01533911157888
Н	-1.22296297840405	-3.60044031566973	0.43069401905397
С	-1.60521731398299	-1.98021629852095	3.22268968460451
Н	-2.16227015507677	-2.92195984520475	3.22649272261063
н	-0.70686223418973	0.28554638966266	5.06840049673761
С	-0.13175313864383	1.20182387687216	4.92129588289074
Н	-0.48505372114202	-2.37964209001420	-0.61702863841043
Si	-1.39269843905536	-1.35227162991241	1.46361254651682
Н	-2.15573159038471	-1.26311032276357	3.83605264712103
Si	-0.01067112672349	0.54793344840429	1.45714517169740
Н	-0.38898957791210	1.89850270644841	5.72517411683345
Н	0.77354956068720	-0.20630949211609	-1.92146220871562
Н	2.27895734288725	2.24849629514894	-0.66907563650671
Si	-0.50831411817414	1.97966887445719	3.25726783610157
Н	1.49228117597322	3.46238793787521	3.06568936207285
С	-0.10911722573062	0.43404728047860	-1.99259109770745
С	1.34907482565345	2.81856551535638	-0.73926234660006
С	0.41062342905168	3.60948033565743	3.08811222851790
Si	-0.14359933571555	1.68670966926851	-0.59129506409433
С	-3.07937152247155	-0.91687156175752	0.75315991382080
Н	-0.99388700585673	-0.20668643169434	-1.97619607118171
Н	1.35805333209479	3.56768277833083	0.05577998401816
Н	-3.74687282403989	-1.78306275867534	0.78831902943922
Н	0.17469804353350	4.26185047340617	3.93444568388182
Н	-2.93667849485432	1.41022621132231	3.33161910175029
Н	1.34569411389383	3.34217822566631	-1.69989809979601
Н	-0.07988071855922	0.94183649980542	-2.96134637967849
С	-2.35770430348859	2.32271517625416	3.17000796805269
Н	-2.99687256040501	-0.59992415778641	-0.28934273256115
Н	-3.55061031916967	-0.10530740377928	1.31256151758255
Н	0.12089747271768	4.12999668270603	2.17211514834466
Н	-2.64051841270679	3.03911880963409	3.94759395688603
С	-1.71810056657663	2.70953979036111	-0.69573424124463
Н	-2.64992720890443	2.74062424234390	2.20455479196280
Н	-2.60632145414806	2.09593024584534	-0.52836742241551
Н	-1.71659402642514	3.51049527715233	0.04754248840055
Н	-1.80835145834819	3.17136209152864	-1.68354389370906
Н	4.99290339702516	-0.45837344679180	4.30773294733710
Н	1.74974637451482	-1.34376526193984	6.14884730827343
Н	7.47197322801252	-2.04159893928664	4.12738592703994
Н	5.31230335516983	2.96317758482844	3.90298379897498
С	2.05097853835850	-1.04132835996705	7.15321648816000

		6	
01			
S	2.93651963738553	0.00750309846613	0.41296420014587
Si	0.84698344410901	0.07717002871758	-0.14172956897762
Н	3.06992791353126	1.33345932593543	0.57518726364394
С	0.44588797686043	-1.74291326741676	-0.47331210657351
С	0.60219649635978	1.14278713053394	-1.69376053260786
С	-0.17493915685072	0.71599679193705	1.31731770468296
Н	0.86907423605893	0.47281064404641	-2.52178539499823
С	1.51629259110264	2.36096012738190	-1.78389746251259
С	-0.86052416471159	1.55100538174326	-1.87129078061808
Н	0.76065498211520	-2.25954515567923	0.44335197368111
С	1.24605444639343	-2.32430761068023	-1.63542087668085
С	-1.04841293987198	-1.99526293950122	-0.66307091941322
С	-0.09201223048672	-0.21730602276208	2.52079452553523
Н	-1.21345217530494	0.72402839407921	0.95824912119242
С	0.19732936088274	2.14087945853409	1.71629451713992
Н	2.32136613060495	-2.18131720548635	-1.50927088867624
Н	0.96123226386269	-1.86026657991877	-2.58413998806913
Н	1.06028060782749	-3.39864302198370	-1.73375610309074
Н	-1.25471522656703	-3.06905895106377	-0.71454013580875
Н	-1.40898447676006	-1.55617502350109	-1.59738575553600
Н	-1.65041123667352	-1.58411478708041	0.15090607822773
Н	-1.00257141449129	2.06751349102335	-2.82608119761657
Н	-1.17941368897127	2.23845164228437	-1.08301010939101
Н	-1.54117241340644	0.69708016730619	-1.85581979740262
Н	1.34704472257562	2.89823707653566	-2.72282256147460
Н	2.57016841810730	2.07970354412002	-1.74771795635940
Η	1.32979159879710	3.06929037031591	-0.97184707893000
Н	0.07385390246680	2.85039818405965	0.89540703833790
Н	1.23710902875044	2.19557735331296	2.05200645543479
Н	-0.42702706353746	2.48681239061223	2.54646877176121
Н	-0.44618751271468	-1.22466368422507	2.29047880511946
Н	-0.69879801339906	0.16475584046204	3.34822122956609
Н	0.93845395595541	-0.30198619210868	2.87676153026839

37519865	0.39322519006501
21686232	-0.12969796022668
95463724	-0.47986530276290
72409141	-1.68801158210053
572968582	1.31554955417188
43642893	-2.49526373962085
15733944	-1.67965029621756
21994930	-1.97170989459132
37624037	0.38811045942050
59873488	-1.72317251064431
604749733	-0.54702680207066
79904203	2.53954450336439
06242154	0.98701671662122
38970165	1.66670489503324
28660166	-1.69004341569802
45800768	-2.63041890385846
16308134	-1.82653108589630
95977579	-0.63635308713768
808451788	-1.41889648465299
545505219	0.33895429593830
19370946	-2.91438318238469

*i*Pr₃SiSH

E= -1043.18144924 Eh H= -1043.12030454 Eh

0.1		-	-
01	0.02651062729552	0.00750200046612	0.4120
S C:	2.93031903738555	0.00/50509840015	0.4129
51	0.84698344410901	0.07717002871758	-0.1417
Н	3.06992791353126	1.33345932593543	0.5/51
C	0.44588/9/686043	-1./4291326/416/6	-0.4/33
C	0.60219649635978	1.142/8/13053394	-1.693/
C	-0.1/4939156850/2	0./15996/9193/05	1.31/3
Н	0.8690/423605893	0.47281064404641	-2.5217
C	1.51629259110264	2.36096012738190	-1.7838
С	-0.86052416471159	1.55100538174326	-1.8712
Н	0.76065498211520	-2.25954515567923	0.4433
С	1.24605444639343	-2.32430761068023	-1.6354
С	-1.04841293987198	-1.99526293950122	-0.6630
С	-0.09201223048672	-0.21730602276208	2.5207
Н	-1.21345217530494	0.72402839407921	0.9582
С	0.19732936088274	2.14087945853409	1.7162
Н	2.32136613060495	-2.18131720548635	-1.5092
Н	0.96123226386269	-1.86026657991877	-2.5841
Н	1.06028060782749	-3.39864302198370	-1.7337
Н	-1.25471522656703	-3.06905895106377	-0.7145
Н	-1.40898447676006	-1.55617502350109	-1.5973
Н	-1.65041123667352	-1.58411478708041	0.1509
Н	-1.00257141449129	2.06751349102335	-2.8260
Н	-1.17941368897127	2.23845164228437	-1.0830
Н	-1.54117241340644	0.69708016730619	-1.8558
Н	1.34704472257562	2.89823707653566	-2.7228
Н	2.57016841810730	2.07970354412002	-1.7477
Н	1.32979159879710	3.06929037031591	-0.9718
Н	0.07385390246680	2.85039818405965	0.8954
Н	1.23710902875044	2.19557735331296	2.0520
Н	-0.42702706353746	2.48681239061223	2.5464
Н	-0.44618751271468	-1.22466368422507	2.2904
Н	-0.69879801339906	0.16475584046204	3.3482

*i*Pr₃SiS[•]

E= -1042.54456035 Eh H= -1042.48406019 Eh

0.2

02			
S	2.92210832308561	0.08792337519865	0.39322519006
Si	0.84290578413642	0.06077621686232	-0.12969796022
С	0.42061995373019	-1.75988395463724	-0.47986530276
С	0.68779691490126	1.13883072409141	-1.68801158210
С	-0.19931700515651	0.69345672968582	1.31554955417
Н	1.04316680600152	0.48630443642893	-2.49526373962
С	1.57050391634752	2.38413015733944	-1.67965029621
С	-0.76815062268890	1.50212021994930	-1.97170989459
Н	0.81422846630063	-2.30497937624037	0.38811045942
С	1.12461278613992	-2.29119659873488	-1.72317251064
С	-1.08409780090719	-2.01441604749733	-0.54702680207
С	-0.02461665257848	-0.20171179904203	2.53954450336
Η	-1.24572832651284	0.63009106242154	0.98701671662
С	0.10605356889258	2.14593538970165	1.66670489503
Η	2.20105872592016	-2.11107028660166	-1.69004341569
Н	0.73541622107426	-1.82013345800768	-2.63041890385
Η	0.96464843401911	-3.36918016308134	-1.82653108589
Η	-1.28642189917151	-3.08664395977579	-0.63635308713
Η	-1.53224165815989	-1.53044808451788	-1.41889648465
Н	-1.61114401711821	-1.65414645505219	0.33895429593
Н	-0.84668201562805	2.05388019370946	-2.91438318238

Н	-1.12041332138535	3.09594917850647	3.36004365878316
С	-0.27911755435050	1.42924310382108	-2.42218185804992
С	-0.19424826183948	3.63047344122934	-0.30484237532436
С	-2.13308000587225	2.77729509026228	3.10343969587776
Si	-1.07227166653767	2.05768095353553	-0.83856410691591
С	-2.83385101747675	-1.68301673269598	-1.03551406877106
Н	-0.78480652807889	0.53698877087670	-2.79870260746032
Н	-0.60350715412031	4.02204835177641	0.62896247059926
Н	-3.07076692372729	-2.69100210490179	-1.38932646614901
Н	-2.78327730122876	2.99589616185112	3.95600560566090
Н	-4.03166248367891	-0.58734355016633	1.99933717254056
Н	-0.29456796037568	4.40457060539071	-1.07150670401832
Н	-0.32377203332356	2.19552782186831	-3.20186890323617
С	-3.93821869725937	0.48701874322092	2.17428305535838
Н	-2.68794585420885	-1.04675745698885	-1.91170230846911
Н	-3.70053677413368	-1.30629150472346	-0.48762056653052
Н	-2.47501837394140	3.37965275059007	2.25859060948056
Н	-4.65030643211610	0.75909732469745	2.95950781536627
С	-2.89053398903189	2.42067681853635	-1.14624485099209
Н	-4.23350529743577	1.00349091732709	1.25836407598000
Н	-3.43709563566714	1.51538699059636	-1.42054192737930
Н	-3.36531566478462	2.84593665100239	-0.25883429220875
Н	-3.00131381377910	3.14152200640776	-1.96180968793733

Me₃SiSH

E= -807.67465199 Eh H= -807.63087449 Eh

01

S	3.00380431065943	-0.05095337423937	-0.13088627962310
Si	0.84912406590392	-0.01617043224118	-0.04830921864569
Η	3.14523021704940	1.28028654162588	-0.02246823252862
С	0.34290926768795	-1.80797598342223	-0.18635972103132
С	0.16552674318241	0.98133495997650	-1.47299660188984
С	0.28458395752793	0.71800017528391	1.57477954124854
Η	0.49012262117018	0.56685538734433	-2.42960141811516
Η	0.50110690558509	2.02014317516394	-1.42395609585883
Η	-0.92844485186673	0.98163630737493	-1.45086590521620
Н	0.68750938677239	-2.24496331568746	-1.12617700198075
Η	-0.74710834644561	-1.89113096156819	-0.15451837861477
Η	0.75097227239822	-2.39994131622204	0.63577288463571
Η	0.68822622818036	0.15322284762543	2.41761943066360
Н	-0.80728874627758	0.70835513029092	1.64361629994292
Η	0.61676596847263	1.75447085869464	1.67270069701352

E= -806.99374916 Eh H= -807.03705311 Eh

02

S	2.99199578251031	-0.04678863873788	-0.12735998159497
Si	0.85166535008725	-0.00939119233510	-0.04804257049154
С	0.35316879294058	-1.81179499286769	-0.18750420434966
С	0.16235001058198	0.98092290000587	-1.47551407504078
С	0.28323719655807	0.71768023369609	1.57735700235083
Н	0.47316540625468	0.55402419683163	-2.43107273539918
Н	0.50956483770249	2.01601270329187	-1.43870657919659
Н	-0.93123820626807	0.99179585778485	-1.43980107233364
Н	0.69403615732998	-2.24855765244734	-1.12786007597372
Н	-0.73881856292393	-1.87821823134672	-0.15536280583311
Н	0.75598519404162	-2.40308487417618	0.63659727505050
Н	0.67182688493088	0.13945854152135	2.41792989297797
Н	-0.80937881223767	0.72277337260561	1.63399547280018
Н	0.62988996849181	1.74792777617360	1.68618445703370

Н	-1.18032339304586	2.14315290001449	-1.18786738973520
Н	-1.41276674415447	0.62424588055554	-2.05085357592665
Н	1.46532354260164	2.93229924122362	-2.62174143680574
Н	2.62684132457318	2.13251638195993	-1.55822056418105
Н	1.29982419772168	3.06924617587875	-0.87327440046046
Н	-0.14295118361292	2.82960167610784	0.85263659331188
Н	1.16638346104098	2.27722940322829	1.90150324782569
Н	-0.46639182401964	2.45994361860374	2.54569449778837
Н	-0.29808106349042	-1.24076806801435	2.34056718637697
Н	-0.64562296938912	0.15056059518887	3.36940829319741
Н	1.01485474914731	-0.19130612694682	2.88090618185720

PhSH

E= -630.05716043 Eh H= -630.01940342 Eh

01

· ·			
S	2.56588250164266	-0.00946555604700	-0.11531930938568
С	0.17508042134928	-1.27092288114327	-0.15668742065460
С	0.80871856464140	-0.03518442552593	-0.04892352087953
С	0.04039119315924	1.11495110460617	0.10670572771601
С	-1.34142289841786	1.02563387628877	0.15134462021337
С	-1.97317514667809	-0.20405840264503	0.04449013724095
С	-1.20646877463352	-1.34978033180712	-0.10946709187243
Н	0.76649386493813	-2.17155291388536	-0.27803180026055
Н	0.52050374549226	2.08297155505007	0.19343981903349
Н	-1.92739879715992	1.92967816926956	0.27123642032981
Н	-3.05373084267719	-0.26900252667760	0.08065475155316
Н	-1.68596022184374	-2.31807426782027	-0.19480973655502
Н	2.70721239018735	1.31921560033702	-0.00434759647898

$TS((Me_3Si)P_4 \rightarrow (Me_3Si)P_4H)$ with PhSH

02

S	2.14872124853627	0.46173831623764	2.91558115400222
С	3.06119641408370	0.54270015751460	0.34276553496687
С	2.02029893497958	0.85439035930127	1.22629481720517
С	0.88189071102449	1.50156559961553	0.73021229843234
С	0.79639414754645	1.83977503871454	-0.60779111286871
С	1.83836450621916	1.53099698233466	-1.47387461890103
С	2.96621012188961	0.87685674398997	-0.99684143425646
Н	3.94220059724210	0.04573102856969	0.72958479509927
Н	0.07634578242925	1.73718020701509	1.41497378404292
Н	-0.08583576692118	2.34795905906020	-0.97917055544858
Н	1.76854258681977	1.79808820606375	-2.52192509922021
Н	3.78039853504470	0.63590451793218	-1.67028550616176
Н	2.66178074590515	2.01679752898120	3.42065345227524
Н	6.17845647667509	7.42310815782314	-0.16260237000479
Р	5.28264286919392	4.96936211539747	2.07507437810249
Р	3.42126902182637	3.39850213771627	3.57162891628660
Н	8.49371483348101	5.75936957909196	1.13490996977730
С	5.93490256242087	6.55933434335756	-0.78553357646588
Н	4.86595615315137	6.59369192338781	-1.00797713203645
С	8.22015188937469	4.92777266064592	0.48150386033508
Si	6.39354360810251	4.95813811475053	0.06989869851327
Р	3.49324070554366	3.82440166660633	1.41671304269601
Р	5.14075266401901	2.77357605555609	2.35333288779409
Н	6.48117816026239	6.65750583180569	-1.72817901514177
Н	8.49117549681744	3.99815986481692	0.98726273170538
Н	8.81863693472835	5.00353531375850	-0.43108594316444
С	5.94805553985787	3.49042752907379	-1.00340738315224
Н	4.88380514595385	3.46960107569824	-1.24734050124800

Н	6.19853852608478	2.54456157593446	-0.51843090550467
Н	6.51141084770601	3.54966830924790	-1.94003516765930
			6
PhS	5.		
E= -	-629.43446638 Eh		·••••
H=	-629.39752933 Eh		, B_BB o
			é
0.2			
С	0.00000023103084	-0.00000015803615	-2.22512584858054
С	-0.0000000132722	1.20696485466739	-1.53175678442517
С	-0.00000060032364	1.21145705282857	-0.15242840981621
С	-0.00000035533568	-0.0000007195274	0.56906425574294
С	-0.00000000915220	-1.21145705331380	-0.15242818003967
С	-0.00000043482932	-1.20696499407865	-1.53175688634728
Н	0.00000072791710	0.00000063806544	-3.30893987047651
Н	0.00000020762139	2.14428389445272	-2.07556498285729
Н	-0.00000043226030	2.14151539188980	0.40260306927496
Н	0.0000003197047	-2.14151504275576	0.40260422281231
Н	-0.0000034636263	-2.14428399952163	-2.07556511298903
S	0.00000098105120	-0.00000051224520	2.27610452770149

1,4-CHD

С

E= -233.13043463 Eh H= -233.09575335 Eh 0.1

С	0.25914522071808	-1.34441116077819	-0.14734431717976
С	0.84127882912225	0.02690785806039	-0.04182267763781
С	0.10996900796243	1.12663617075972	0.08487002883856
С	-1.38266752527305	1.12448127732812	0.13552804067298
С	-1.96480488102972	-0.24682765513613	0.02988207292192
С	-1.23349413353694	-1.34655556660946	-0.09680874390628
Н	0.60414879856170	2.09121925932012	0.15669699122489
Н	1.92417765260425	0.10621841947398	-0.07165021541718
Н	0.60195439029541	-1.82498025546379	-1.07474662892349
Н	0.65995219640370	-1.98220942952743	0.65338412177901
Н	-1.72767560420367	-2.31112931905112	-0.16873059251744
Н	-3.04770804906985	-0.32613017658517	0.05961199467164
Н	-1.72539863432608	1.60492438967556	1.06302765226774
Н	-1.78354726822851	1.76238618853341	-0.66507772679477

$TS((Me_3Si)P_4 \rightarrow (Me_3Si)P_4H)$ with 1,4-CHD

E= -2007.07520011Eh im. freq. = 1491.20 *i*

0.2			
Н	6.45069229120128	7.85696029527981	0.26187859345653
Р	5.75833375129288	4.81261537934821	1.71899407196054
Р	3.94975174504601	2.84092306284788	2.77635086898715
Н	8.88806151021088	6.03383466597736	0.99373090561541
С	6.23420991305293	7.19281159804176	-0.57803898469380
Н	5.15815693416604	7.22474066986941	-0.76423376750398
С	8.63973100609805	5.40763174949084	0.13365633985571
Si	6.79939732411705	5.44206989826567	-0.21975116877177
Р	3.92777498593360	3.90914131917086	0.84617908237588
Р	5.60548008358464	2.63163169883529	1.33447052382302
Н	6.74310882575228	7.58884228236348	-1.46183024100763
Н	8.97709086235727	4.39089520030628	0.34816998420248
Н	9.20378196521689	5.77761461108120	-0.72767965827694
С	6.40468701560457	4.32781658863508	-1.67354441035270
Н	5.33883226542857	4.33640940605838	-1.91123819010467
Н	6.69916476763484	3.29413527173304	-1.47895636122828
Н	6.95216479468822	4.67510378183780	-2.55532193976559
Н	3.15294292839448	1.53189533135945	2.14358430428919
С	2.56688739076324	0.44722518449823	1.42127093429498

С	3.69675105759989	-0.40225889159735	1.09867218818043
Η	4.10648965113135	-1.03253234468048	1.88091667794827
С	1.91147397089717	1.09386889520231	0.30194459570971
Η	0.96748127224316	1.59841166168024	0.47866766576194
С	4.26552978943289	-0.39090831186980	-0.11446774989384
Н	4.51250102304725	1.22449434634250	-1.47944792264305
С	2.46232101658443	1.12178686735097	-0.91959639433361
Η	1.93164786385303	0.12843964233096	2.24506852146676
С	3.75962149179326	0.45729696318210	-1.23136669312147
Η	5.12964414942818	-1.01670269738227	-0.31129380103555
Η	1.95980415248927	1.64490725565637	-1.72641022998079
Н	3.66973420095495	-0.13872138121647	-2.15052774521434

1,4-CHD[.]

E= -232.52005407 Eh H= -232.48524300 Eh

02			
С	0.26948888905695	-1.36181394827597	-0.10152732807081
С	0.85738733115205	0.00655860256977	-0.06571913299054
С	0.08468850676011	1.12295235580218	-0.05713081963625
С	-1.32376223918753	1.04390231197007	-0.08008572548266
С	-1.94649216867039	-0.22153476614782	-0.11110917671395
С	-1.22009952573342	-1.36860901687294	-0.12086599572583
Н	0.55832250072825	2.09876130392976	-0.03163554246819
Н	1.93843809006007	0.09172732495963	-0.04697142237086
Н	0.65928175189093	-1.91579662566891	-0.97336761129940
Н	0.63855566764027	-1.95378671444347	0.75381894888813
Н	-1.72075799483254	-2.33031824855731	-0.14420161043242
Н	-3.02990206378874	-0.27650383843774	-0.12713575320029
Н	-1.92107874507603	1.94643125917276	-0.07234883049692