A Novel Dual-mode Broadband Near-infrared Phosphor Mg₅Ga₂Sn₂O₁₂:Cr³⁺, Ni²⁺ Designed Based on Energy Transfer Strategy

Xin Xie^a, Wanyin Ge^{*a}, Ye Tian^a, Maohao Yang^a, Yongxiang Li^b

^a School of Materials Science and Engineering, School of Antiquities Preservation Science &

Technology, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China

^bSchool of Engineering, RMIT University, Melbourne, VIC 3000, Australia

* Corresponding author. Email: gewanyin@sust.edu.cn

Figures: 13

Tables: 3

Equations: 3

Figures:

Fig. S1. SEM images and element distribution mappings of MGSO: $0.1Cr^{3+}$, $0.01Ni^{2+}$.

Fig. S2 TEM and HRTEM image of MGSO:0.1Cr³⁺, 0.01Ni²⁺.

Fig. S3 PL spectra of MGSO:*x*Cr³⁺

Fig. S4. (a) PLE spectra of MGSO:xCr³⁺. (b) Tanabe-Sugano diagram of MGSO:0.1Cr³⁺.

Fig. S5. Fluorescence decay curves of MGSO:0.1Cr³⁺ monitored at various emission wavelengths under 424 nm excitation.

Fig. S6. (a) XPS spectrum of MGSO:0.1Cr³⁺. (b) High-resolution XPS spectrum of Cr³⁺ for MGSO:0.1Cr³⁺.

Fig. S7. (a) PLE spectra of MGSO:0.1Cr³⁺, yNi²⁺ monitored at 820 nm. (b) PLE spectra of MGSO:0.1Cr³⁺, yNi²⁺ monitored at 1450 nm.

Fig. S8. Fluorescence decay curves of MGSO:0.1Cr³⁺, xNi²⁺.

Fig. S9. Tanabe-Sugano diagram of MGSO: $0.01Ni^{2+}$.

Fig. S10. Internal quantum efficiency and external quantum efficiency of MGSO:0.1Cr³⁺, 0.01Ni²⁺.

Fig. S11. Electroluminescence spectra of NIR-pc-LED.

Fig. S12. Thermal imaging photos of NIR-pc-LED at different driving currents

Fig. S13. Schematic diagram of using NIR-pc-LED for the non-destructive detection of organic solutions.

Tables:

Table S1 Rietveld refinement results of MGSO un-doped.

Sample	MGSO un-doped				
Space group	<i>Fd-3m</i> (227) cubic				
Crystal structure					
<i>a</i> (Å)	8.515				
<i>b</i> (Å)	8.515				
<i>c</i> (Å)	8.515				
v (Å ³)	617.477				
$\alpha = \beta = \gamma$ (°)	90				
$R_{ m wp}$	15.46				
$R_{ m p}$	11.57				
χ^2	1.87				

	MGSO: <i>x</i> Cr ³⁺	0.02	0.0)4	0.06	0.08	0.1	0.15	0.2
	$Dq (cm^{-1})$	1471.9	1462.5		1459.5	1449.2	1443.1	1447.7	1429.2
	$B(\mathrm{cm}^{-1})$	704.3	720.4		733.4	743.2	747.7	804.3	826.1
	Dq/B	2.09	2.0	03	1.99	1.95	1.93	1.80	1.73
Table S3 Luminescence properties of several Ni2+-doped NIR phosphors.									
Phosphors		λ_{ex}	λ_{em}	FWHM	IQE	EQE	Thermal	D.C	
			(nm)	(nm)	(nm)	(%)	(%)	stability(%)	Refs
Ca ₃ Ga ₂ Ge ₃ O ₁₂ :Cr ³⁺ ,Ni ²⁺		450	1470	255	24.6	13.3	I _{385K} @50	1	
La ₂ MgSnO ₆ :Mn ⁴⁺ ,Ni ²⁺		365	1470	250	/	/	I _{398K} @43.1	2	
Mg ₃ Ga ₂ GeO ₈ :Cr ³⁺ ,Ni ²⁺		420	1425	300	62	18.1	I _{373K} @58.1	3	
Zn ₃ Ga ₂ GeO ₈ :Cr ³⁺ ,Ni ²⁺		410	1300	255	37.5	21.1	I _{360K} @27	4	
$MgIn_2O_4{:}Ni^{2+}$		365	1520	311	47.93	34.66	I _{373K} @45	5	
	Li ₂ ZnSn ₃ O ₈ :Cr ³⁺	,Ni ²⁺	426	1465	300	43.31	18.24	I _{373K} @30.14	6
	Ga ₂ O ₃ :Cr ³⁺ ,Ni	2+	430	1460	300	53.5	21.2	I _{373K} @25.6	7
N	/Ig7Ga2GeO12:Cr ³	+,Ni ²⁺	448	1480	375	11.3	/	/	8
	Mg ₂ SnO ₄ :Ni ²	!+	405	1480	297	21.6	4.9	I _{373K} @41.2	9
	Ba ₂ MgWO ₆ :N	i^{2+}	365	1630	250	16.67	/	I _{423K} @50	10
N	Ig ₅ Ga ₂ Sn ₂ O ₁₂ :Cr ²	³⁺ ,Ni ²⁺	424	1450	320	68.2	30	I _{383K} @38	This work

Table S2 Crystal field strength parameters of MGSO:*x*Cr³⁺.

Equations:

-

The equations for calculating the crystal field strength parameter are as follows:¹¹ Λ S

$$10Dq = E({}^{4}T_{2}) = E({}^{4}A_{2} \rightarrow {}^{4}T_{2}) - \frac{\Delta S}{2} \#(S1)$$
$$\frac{B}{Dq} = \frac{\left(\frac{\Delta E_{4T}}{Dq}\right)^{2} - 10\left(\frac{\Delta E_{4T}}{Dq}\right)}{15\left(\frac{\Delta E_{4T}}{Dq} - 8\right)} \#(S2)$$
$$\Delta E_{4T} = E({}^{4}T_{1}) - E({}^{4}T_{2}) \#(S3)$$

where Dq represents the crystal field strength, B is the Rach parameter, ΔS is the Stokes shift, and ΔE_{4T} is the energy difference between the ${}^{4}A_{2}$ to ${}^{4}T_{1}$ and ${}^{4}T_{2}$ transitions.

References

- F. Zhao, Y. Shao, Q. Liu and J. Zhong, Blue-light-excitable broadband Ca₃Ga₂Ge₃O₁₂:Cr³⁺,Ni²⁺ phosphor for the applications in NIR-II window, *Laser Photonics Rev.*, 2024, **18**, 2400447.
- Y. Liu, C. Dou, F. Dou, Z. Zhang, X. Gao, H. Zhang, S. Wang, X. Wang and H. Jiao, Enhanced NIR emission and thermal stability of La₂MgSnO₆:Mn⁴⁺,Ni²⁺ via energy transfer, *J. Mater. Chem. C*, 2024, **12**, 13508-13515.
- 3. C. Wang, Y. Niu, Y. Wang, F. Wu, Q. Zhang, Y. Teng, H. Dong and Z. Mu, Multifunctional near-infrared phosphors Cr³⁺/Ni²⁺ codoped Mg₃Ga₂GeO₈ based on energy transfer from Cr³⁺ to Ni²⁺, *Inorg. Chem.*, 2024, **63**, 14383-14391.
- L. Zheng, H. Wu, K. Zhao, Y. Liu, S. Wen, G. H. Pan, H. Wu, Z. Hao, L. Zhang and J. Zhang, Ultrabroadband near-infrared Zn₃Ga₂GeO₈:Cr³⁺, Ni²⁺ phosphor for PiG pc-LED, *Adv. Opt. Mater.*, 2024, **12**, 2401521.
- F. Zhu, Y. Deng, Y. Gao and J. Qiu, Long-wavelength near-infrared MgIn₂O₄:Ni²⁺ phosphor with 47.93% IQE and 34.66% EQE for night vision lighting, nonvisual detection, and biological imaging, ACS Materials Letters, 2024, 6, 4555-4563.
- Z. Gao, Y. Zhang, Y. Li, S. Zhao, P. Zhang, X. Dong, D. Deng and S. Xu, Blue light-excited broadband NIR-II-emitting Li₂ZnSn₃O₈:Cr³⁺,Ni²⁺ phosphor for multifunctional optical applications, *Inorg. Chem. Front.*, 2024, 11, 4711-4720.
- Y. Zhang, Z. Gao, Y. Li, H. Wang, S. Zhao, Y. Shen, D. Deng, S. Xu and H. Yu, Energy-transfer-enhanced Cr³⁺/Ni²⁺ co-doped broadband near-infrared phosphor for fluorescence thermometers and near-infrared window imaging, *ACS Appl. Mater. Interfaces*, 2024, 16, 57316-57324.
- Y. Tang, P. Lyu, D. Yin, Z. Liu, N. Pan, K. Li, Y. Ye, C. Xu and L. Sun, Ultrabroadband emission from Mg₇Ga₂GeO₁₂:Ni²⁺,Cr³⁺ phosphor spanning the NIR I–III regions for spectroscopy applications, *Materials Today Chemistry*, 2024, 42, 102364.
- B. M. Liu, X. X. Guo, L. Huang, R. F. Zhou, R. Zou, C. G. Ma and J. Wang, A super-broadband NIR dual-emitting Mg₂SnO₄:Cr³⁺,Ni²⁺ phosphor for ratiometric phosphor-converted NIR light source applications, *Advanced Materials Technologies*, 2022, 8, 2201181.
- 10. X. Lu, Y. Gao, J. Chen, M. Tan and J. Qiu, Long-wavelength near-infrared divalent nickel-activated double-perovskite Ba₂MgWO₆ phosphor as imaging for human fingers, *ACS Appl. Mater. Interfaces*, 2023, **15**, 39472-39479.
- T. Liu, H. Cai, N. Mao, Z. Song and Q. Liu, Efficient near-infrared pyroxene phosphor LiInGe₂O₆:Cr³⁺ for NIR spectroscopy application, *J. Am. Ceram. Soc.*, 2021, **104**, 4577-4584.