Supplementary Information (SI) for Inorganic Chemistry Frontiers.

Electronic Supplementary Information

Heteronuclear Eu₂Pt₂ Luminescent Arrays: Composition–Thermometric Properties Correlations.

Marco Bazi,¹ Matteo Tomassoni¹ Luca Bellucci,¹ Gregorio Bottaro,^{2*} Marzio Rancan,² Simona Samaritani,¹

Lidia Armelao,^{3,4} and Luca Labella^{1*}

¹Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 ² CNR ICMATE and INSTM, presso Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 ³Dipartimento di Scienze Chimiche and INSTM, Università di Padova, via Marzolo 1, I-35131 ⁴Dipartimento di Scienze Chimiche e Tecnologie dei Materiali (DSCTM) Consiglio Nazionale delle Ricerche Piazzale A. Moro 7, 00185 Roma (Italy)

* Author to whom correspondence should be addressed:

luca.labella@unipi.it

gregorio.bottaro@cnr.it

Table of contents Supplementary Information

Spectroscopic data:

List of figures

Figure S1: IR spectra of 1 (blue), 3 (green) and [Eu(tta)₃(pyrzMO)]₂ (red).

Figure S2: IR spectra of 2 (blue), 4 (green) and [Gd(tta)₃(pyrzMO)]₂ (red).

Figure S3: IR spectra of 6 (blue), 7 (green) and [Eu(tta)₃(pyrzMO)]₂ (red).

Figure S4: ¹H NMR spectra of 5.

Figure S5: ¹H-¹H COSY NMR of 5.

Figure S6: Comparison of diffuse reflectance spectra of Gd₂(tta)₆(µ-pyrzMO)₂ and Eu₂(tta)₆(µ-pyrzMO)₂complexes.

Figure S7: Comparison of diffuse reflectance spectra of Eu₂Pt₂ and Gd₂Pt₂ complexes.

Figure S8: Extended range PL spectra of **1**, **3** and **6**. $\lambda_{exc} = 375$ nm.

Figure S9: PL spectra of 2, 4 and 7, collected at 80 K. $\lambda_{exc} = 375$ nm.

Figure S10: Experimental thermometric parameter D and fitted curves for 1 a), 3 b) and 6 c) and fitted curves.

Single crystal X-ray diffraction:

List of figures

Figure S11: The asymmetric unit for compound **1**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; P, violet; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

Figure S12: The asymmetric unit for compound **2**, thermal ellipsoids drawn at 30% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; P, violet; Pt, dark blue; Gd, azure. H atoms omitted for clarity.

Figure S13: The asymmetric unit for compound **3**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; As, pink; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

Figure S14: The asymmetric unit for compound **5**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; Cl, dark green; Pt, dark blue. H atoms omitted for clarity.

Figure S15: The asymmetric unit for compound **6**, thermal ellipsoids drawn at 30% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

List of Tables

Table S1: Crystal data and structure refinement.

Table S2 Unit cell parameters for compounds 4 and 7

Continuous shape measures analysis:

List of Tables

Table S3: Coordination geometries evaluated by SHAPE 2.1 considering an eight-coordination.

Table S4: Output of the SHAPE 2.1 software.

Figure S1: IR spectra of 1 (blue), 3 (green) and [Eu(tta)₃(pyrzMO)]₂ (red).

Figure S2: IR spectra of 2 (blue), 4 (green) and [Gd(tta)₃(pyrzMO)]₂ (red).

Figure S3: IR spectra of 6 (blue), 7 (green) and [Eu(tta)₃(pyrzMO)]₂ (red).

Figure S4: ¹H NMR spectra of 5.

Figure S5. ¹H-¹H COSY NMR of 5.

Figure S6. Comparison of diffuse reflectance spectra of $Gd_2(tta)_6(\mu$ -pyrzMO)₂ and $Eu_2(tta)_6(\mu$ -pyrzMO)₂complexes.

Figure S7. Comparison of diffuse reflectance spectra of Eu₂Pt₂ and Gd₂Pt₂ complexes.

Figure S8. Extended range PL spectra of 1, 3 and 6. $\lambda_{exc} = 375$ nm.

Figure S9. PL spectra of 2, 4 and 7, collected at 80 K. $l_{exc} = 375$ nm.

Figure S10. Experimental thermometric parameter Δ and fitted curves for 1 a), 3 b) and 6 c) and fitted curves.

Figure S11. The asymmetric unit for compound **1**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; P, violet; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

The compound crystallizes in the $P2_1/n$ space group. The asymmetric unit is constituted by half molecule. A CF₃ and thienyl group have been split into two parts the occupancies of which were constrained to sum to 1.0. RIGU, SADI and FLAT restraints to selected atoms as detailed reported in the CIF file. Reflections with |error/esd| > 5 were omitted. The final Fourier map revealed the presence of non-negligible residual peaks located in a large array of voids. A solvent mask (OLEX2¹ routine based on BYPASS²) was calculated (probe radius 1.2 Å), and 236 electrons were found in a volume of 838 Å³ per unit cell. This is consistent with the presence of four CHCl₃ per unit cell which account for 232 electrons.

Solvent masking output:

use_set_completion: True solvent_radius: 1.20 shrink_truncation_radius: 1.20 van der Waals radii: C Cl Eu F H N O P Pt S 1.70 1.75 2.00 1.47 1.09 1.55 1.52 1.80 1.72 1.80

Total solvent accessible volume / cell = 838.0 Ang^3 [14.0%] Total electron count / cell = 245.6

gridding: (64,180,72)

Void #Grid points Vol/A^3 Vol/% Centre of mass (frac) Eigenvectors (frac) 1 27339 197.4 3.3 (0.133, 0.325, 0.059) 1 (0.665, 0.136, 0.735) 2 (0.733, 0.075, -0.677)

30) 50)
60)
0)
30)
735)
'35)
0)
'35)
0)
7733

3 (-0.005, 1.000, -0.013)

Void Vol/Ang^3 #Electrons

1	197.4	59.0
2	12.1	0.0
3	12.1	0.0
4	197.4	63.9
5	197.4	60.4
6	12.1	0.0
7	197.4	62.3
8	12.1	0.0

Figure S12. The asymmetric unit for compound **2**, thermal ellipsoids drawn at 30% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; P, violet; Pt, dark blue; Gd, azure. H atoms omitted for clarity.

The compound crystallizes in the C2/c space group. The asymmetric unit is constituted by half molecule. Two CF₃, two thienyl and three phenyl groups have been split into two parts the occupancies of which were constrained to sum to 1.0. RIGU, SADI and FLAT restraints and EADP constraints were applied to selected atoms as detailed reported in the CIF file. Reflections with |error/esd| > 10 were omitted.

Figure S13. The asymmetric unit for compound **3**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; As, pink; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

The compound crystallizes in the *P*-1 space group. The asymmetric unit is constituted by half molecule. One thienyl group and the CH_2Cl_2 have been split into two parts, the occupancies of which were constrained to sum to 1.0. RIGU, SADI and FLAT restraints and EADP constraints were applied to selected atoms. Reflections with |error/esd| > 10 were omitted.

Refinement details for compound 5

Figure S14. The asymmetric unit for compound **5**, thermal ellipsoids drawn at 50% probability level. Color code: C, grey; O, red; N, blue; Cl, dark green; Pt, dark blue. H atoms omitted for clarity.

The refinement has been carried out as described above in the general description.

Figure S15. The asymmetric unit for compound **6**, thermal ellipsoids drawn at 30% probability level. Color code: C, grey; O, red; N, blue; F, light green; Cl, dark green; Pt, dark blue; Eu, orange. H atoms omitted for clarity.

The compound crystallizes in the $P2_1/n$ space group. The asymmetric unit is constituted by half molecule. In one β -diketonate ligand, a CF₃ group and the α -carbon have been split into two parts the occupancies of which were constrained to sum to 1.0. The thienyl groups were modelled with a combination of restraints as exemplified by the ring composed of atoms S1-C1-C2-C3-C4:

RIGU 0.002 0.002 DFIX 1.71 S1 C4 S1 C1 DANG 2.31 C4 C2 C3 C1 DFIX 1.36 C4 C3 C2 C1 DFIX 1.42 C3 C2 FLAT S1 C4 C3 C2 C1 DANG 2.54 S1 C3 S1 C2 SIMU S1 C4 C3 C2 C1

Reflections with |error/esd| > 10 were omitted. The final Fourier map revealed the presence of non-negligible residual peaks located in a large array of voids. A solvent mask (OLEX2¹ routine based on BYPASS²) was calculated (probe radius 1.2 Å), and 162 electrons were found in a volume of 700 Å³ in four voids per unit cell. This is consistent with the presence of four CH₂Cl₂ per unit cell which account for 168 electrons.

Solvent masking output:

use_set_completion: True solvent_radius: 1.20 shrink_truncation_radius: 1.20 van der Waals radii: C Cl Eu F H N O Pt S 1.70 1.75 2.00 1.47 1.09 1.55 1.52 1.72 1.80 Total solvent accessible volume / cell = 700.9 Ang^3 [14.5%] Total electron count / cell = 162.0 gridding: (72,80,100) Void #Grid points Vol/A^3 Vol/% Centre of mass (frac) Eigenvectors (frac)

20827 175.2 3.6 (0.147, 0.284, 0.756) 1 (-0.545, 0.713, -0.441) 1 2 (0.832, 0.524, -0.183) 3 (-0.101, 0.467, 0.879) 2 20827 175.2 3.6 (-0.147, 0.716, 0.244) 1 (-0.545, 0.713, -0.441) 2 (0.832, 0.524, -0.183) 3 (-0.101, 0.467, 0.879) 3 20827 175.2 3.6 (0.353, 0.784, 0.744) 1 (0.545, 0.713, 0.441) 2 (0.832,-0.524,-0.183) 3 (-0.101,-0.467, 0.879) 4 20827 175.2 3.6 (0.647, 0.216, 0.256) 1 (0.545, 0.713, 0.441) 2 (0.832,-0.524,-0.183) 3 (-0.101,-0.467, 0.879)

Void Vol/Ang^3 #Electrons

1	175.2	39.4
2	175.2	41.6
3	175.2	37.6
4	175.2	43.4

	1	2	3	5	6
Empirical formula	$C_{96}H_{66}Cl_{16}Eu_2F_{18}N_4O_{14}P_2Pt_2S_6$	C46H31Cl2F9GdN2O7PPtS3	C47H33AsCl4EuF9N2O7PtS3	C ₁₅ H ₁₂ ClN ₃ OPt	$C_{78}H_{46}Cl_2Eu_2F_{18}N_6O_{14}Pt_2S_6$
Formula weight/ g mol-1	3357.12	1445.12	1568.70	480.82	2590.57
Temperature/K	150(3)	298.3(9)	149(2)	295.8(3)	296.1(4)
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	$P2_1/n$	C2/c	P-1	$P2_1/c$	$P2_1/n$
a/Å	12.5622(3)	34.8427(11)	11.7915(4)	5.8219(2)	14.6534(7)
b/Å	34.5447(7)	16.2795(6)	14.0299(6)	25.1197(9)	16.0682(8)
c/Å	13.9645(4)	19.8361(8)	18.5196(4)	10.1551(4)	21.6641(9)
α/°	90	90	103.579(3)	90	90
β/°	98.839(3)	97.689(3)	90.735(2)	105.406(4)	108.190(5)
γ/°	90	90	114.440(4)	90	90
Volume/Å ³	5988.0(2)	11150.3(7)	2690.25(18)	1431.77(10)	4846.0(4)
Z	2	8	2	4	2
$ ho_{calc}$ / g cm ³	1.862	1.722	1.937	2.231	1.775
µ/mm⁻¹	16.927	3.999	17.379	9.987	16.938
F(000)	3248.0	5576.0	1512.0	904.0	2484.0
Crystal size/mm ³	$0.27\times0.16\times0.05$	$0.22\times0.2\times0.1$	$0.28 \times 0.18 \times 0.11$	0.12 imes 0.08 imes 0.01	$0.13 \times 0.11 \times 0.05$
Radiation	Cu K α (λ = 1.54184)	Mo Ka ($\lambda = 0.71073$)	Cu Kα (λ = 1.54184)	Mo Kα (λ = 0.71073)	Cu Kα (λ = 1.54184)
20 range for data collection/°	6.898 to 137.402	6.88 to 58.84	7.174 to 137.136	7.26 to 58.45	8.404 to 121.64
Index ranges	$\begin{array}{c} \textbf{-15} \leq h \leq 15, \textbf{-41} \leq k \leq 40, \textbf{-11} \leq \\ l \leq 16 \end{array}$	$\begin{array}{l} -45 \leq h \leq 47, -22 \leq k \leq 22, \\ -26 \leq l \leq 25 \end{array}$	$-11 \le h \le 14, -16 \le k \le 16, -22 \le l \le 22$	$-7 \le h \le 7, -33 \le k \le 34, -12 \le l \le 13$	$-16 \le h \le 16, -17 \le k \le 18, -24 \le 1 \le 22$
Reflections collected	28202	61464	20631	16230	17783
Independent reflections	$\begin{array}{c} 10788 \; [R_{int} = 0.0515, R_{sigma} = \\ 0.0527] \end{array}$	13531 [$R_{int} = 0.0678$, R_{sigma} = 0.0484]	9635 [$R_{int} = 0.0513$, $R_{sigma} = 0.0536$]	$3549 [R_{int} = 0.0465, R_{sigma} = 0.0370]$	7220 [$R_{int} = 0.0492$, $R_{sigma} = 0.0584$]
Data/restraints/parameters Goodness-of-fit on F ²	10788/126/732 1.064	13531/946/656 1.038	9635/649/670 1.028	3549/0/190 1.082	7220/764/618 1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0462, wR_2 = 0.1227$	$R_1 = 0.0696, wR_2 = 0.1831$	$R_1 = 0.0624, wR_2 = 0.1646$	$R_1 = 0.0344,$ $wR_2 = 0.0653$	$R_1 = 0.1326, wR_2 = 0.3486$
Final R indexes [all data]	$R_1 = 0.0515, wR_2 = 0.1293$	$R_1 = 0.0998, wR_2 = 0.2107$	$R_1 = 0.0639, wR_2 = 0.1662$	$R_1 = 0.0433,$ $wR_2 = 0.0687$	$R_1 = 0.1704, wR_2 = 0.3757$
Largest diff. peak/hole / e Å ⁻³	1.80/-1.17	1.93/-1.13	3.31/-2.29	0.96/-1.03	2.46/-1.23
CCDC number	2395042	2395043	2395044	2395089	2395045

 Table S1 Crystal data and structure refinement.

	4	7
a/Å	11.781(5)	14.675(5)
b/Å	14.058(4)	16.124(7)
c/Å	18.624(4)	21.731(8)
$\alpha/^{\circ}$	103.89(5)	90
β/°	90.86(3)	108.22(4)
$\gamma/^{\circ}$	114.52(4)	90

Table S2 Unit cell parameters for compounds 4 and 7

Continuous shape measures analysis

A continuous shape measures analysis of Ln ions coordination polyhedra has been performed with the SHAPE 2.1 software considering an eight-coordination. The closer the value is to zero, the better it fits to the ideal geometry (**Table S4**).

Table S3 Coordination	geometries	evaluated by	SHAPE 2.1	considering an	a eight-coor	dination.
	0		/	0	0	

Abbreviation	Symmetry	Ideal geometry
OP-8	\mathbf{D}_{8h}	Octagon
HPY-8	C_{7v}	Heptagonal pyramid
HBPY-8	D_{6h}	Hexagonal bipyramid
CU-8	O_h	Cube
SAPR-8	\mathbf{D}_{4d}	Square antiprism
TDD-8	D_{2d}	Triangular dodecahedron
JGBF-8	\mathbf{D}_{2d}	Johnson gyrobifastigium J26
JETBPY-8	D_{3h}	Johnson elongated triangular bipyramid J14
JBTPR-8	C_{2v}	Biaugmented trigonal prism J50
BTPR-8	$C_{2\nu}$	Biaugmented trigonal prism
JSD-8	\mathbf{D}_{2d}	Snub disphenoid
TT-8	T_d	Triakis tetrahedron
ETBPY-8	D_{3h}	Elongated trigonal bipyramid

 Table S4 Output of the SHAPE 2.1 software.

Compound	Ln	OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-8
•														
1	Eu	31.258	24.093	13.705	6.414	1.452	0.776	15.837	29.111	3.282	2.609	4.323	7.305	23.577
2	Gd	31.441	22.689	15.175	10.348	1.172	1.902	14.226	27.673	1.961	1.265	4.356	11.119	23.642
3	Eu	32.397	24.244	15.719	8.455	2.341	0.359	14.886	29.810	3.143	2.466	3.194	9.199	24.071
6	Eu	31.016	22.991	16.344	10.616	0.894	1.485	14.527	28.790	2.484	1.835	3.911	11.311	24.163

References

1) O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, (2009), J. Appl. Cryst. 42, 339-341.

2) P. van der Sluis and A. L. Spek, Acta Cryst. (1990). A46, 194-201