Crosslinked Ion-conducting Hybrid Coating Layers for Robust Artificial Solid-electrolyte Interphase Towards High-Performance Silicon Anodes

4 Yuhui Weng^{ab}, Xingyu Sun^a, Siying Li^a, Zhuoying Wu^a, Ziwei Chen^{ab}, Yongqun Ma^{ab}, Zefan

5 Zheng^{ab}, Feng Lin^c, Ming Zhang^d, Kejun Zhang^e, Min Ling^{*a}, Keli Yang^{*f}, Chengdu Liang^{*a},

6 Jun Chen^{*ab}.

7 a Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture

8 Technology, College of Chemical and Biological Engineering, Yu Hang Tong Road 866,

9 Zhejiang University, Hangzhou 310027, China.

10 b Institute of Zhejiang University-Quzhou, Zheda Road 99, Quzhou 324000, China.

11 c College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, China

12 d Quzhou Jingzhou Technology Development Co., Ltd, Quzhou, 324000, China.

13 e Huayou New Energy Technology (Quzhou) Co., Ltd, Quzhou, 324000, China.

14 f Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute

15 of Salt Lakes, Chinese Academy of Sciences, Beijing, 100864, China.

16 * Corresponding author. E-mail address: Minling@zju.edu.cn (Min Ling); yangkl@isl.ac.cn

17 (Keli Yang); cdliang@zju.edu.cn (Chengdu Liang); qiujinchen@zju.edu.cn (Jun Chen).

3 Fig. S1. TGA curves of Si@PL-10 and SiNPs

5 Fig. S2 HRTEM image of Si@PAA particles.

Fig. S3. SEM image of Si@PL-10 particles and the corresponding EDS Mapping results.
4
5

7 Fig. S5. Nyquist plots of (a) pure Si, (b) Si@PAA electrode after 10, 20, 50, and 100 cycles at
8 1 A/g. (c) Impedance of different Si electrodes at varied cycles. Warburg impedance plots at
9 low frequency after (d) 10 cycles and 20 cycles and (e) 50 cycles and 100 cycles.

5 Fig. S6. (a) Galvanostatic intermittent titration technique (GITT) curves of Si@PL-10, 6 Si@PAA and pure Si in both charge and discharge processes. (b) The Li-ion diffusion 7 coefficients (D_{Li^+}) during the charge process calculated from the GITT profile.

9 Fig. S7. Ex-situ XPS spectra of the Si@PL-10 electrode on the initial cycle. (a) C 1s spectra,
10 (b) O1s spectra, (c) F 1s spectra.

- 2 Fig. S8. Top-viewed SEM images of various Si electrodes before cycling. (a) Si@PL-10, (b)
- 3 Si@PAA, and (c) pure Si. AFM images of surface morphology of various Si electrodes before
- 4 cycling. (d) Si@PL-10, (e) Si@PAA, and (f) pure Si. Cross-sectional SEM images of various
- 5 Si electrodes before cycling. (g) Si@PL-10, (h) Si@PAA, and (i) pure Si.

Fig. S9. FTIR spectra of the SiNPs, PAA, PL-10, Si@PL-5, Si@PL-10 and Si@PL-15

 $D_{Li^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$ (1)

3 Equation S1. Where R is the gas phase constant, T is room temperature, A is the surface area 4 of the electrode, n (1) is the charge transfer number, F is the Faraday constant (9.6486×10⁴), C 5 is the Li⁺ concentration in the Si electrode, σ is the Warburg coefficient, which is the slope of 6 the lines depicted in $\omega^{-1/2}$ -Z'.

$D_{Li^{+}} = \frac{4}{\pi \tau} \left(\frac{n_M V_M}{S} \right)^2 \left(\frac{\Delta E_s}{\Delta E_s} \right)^2$	(2)
$(-\tau)$	(2)

15 Equation S2. where τ represents the pulse time (600 s), n_M is the number of moles, V_M is the 16 molar volume of the active material, S stands for the electrode-electrolyte contact area (1.13 17 cm⁻²), ΔE_S is the potential change at the end of two subsequent relaxation periods, ΔE_{τ} 18 represents the potential change during the current pulse.¹

	-			8
		Si@PL-10	Si@PAA	Pure Si
	R _s	2.078	3.089	2.827
10th	R _{SEI}	0.579	0.785	1.569
	R _{CT}	2.842	3.313	4.84
	R _s	2.06	2.588	2.144
20th	R _{SEI}	1.754	1.945	2.578
	R _{CT}	2.956	3.467	7.125
	R _s	2.137	3.359	2.262
50th	R _{SEI}	1.998	5.084	7.255
	R _{CT}	2.499	3.218	7.249
	R _s	2.192	2.944	3.821
100th	R _{SEI}	4.94	7.547	11.35
	R _{CT}	3.069	6.851	7.243

3 Table S1. The corresponding resistance [ohm] results obtained by fitting to the circuit.

5 Table S2. The calculated D_{Li^+} [cm² s⁻¹] from electrochemical impedance analysis.

Electrode	10th	20th	50th	100th
Si@PL-10	6.03E-12	6.1E-12	6.67E-12	4.58E-12
Si@PAA	5.27E-12	4.71E-12	4.47E-12	2.12E-12
Pure Si	5.13E-12	2.38E-12	2.39E-12	2E-12

Materials	Cycle stability (mAh g ⁻¹)		Rate performa nce (mAh g ⁻¹)	Ref.
Si@PL-10	1.0 A g ⁻¹ 2297 (200th)	4.0 A g ⁻¹ 1978 (100th)	6.0 A g ⁻¹ 1905	This work
SiO _x /C@void@Si/C	0.20 A g ⁻¹ 1094 (550th)	5.0 A g ⁻¹ 351 (2000th)	5.0 A g ⁻¹ 450	2
B-3DCF/Si@C	0.40 A g ⁻¹ 1288.5 (600th)	1.0 A g ⁻¹ 1084.3 (800th)	2.0 A g ⁻¹ 988	3
Si@TTFPB 3%	0.84 A g ⁻¹ 1778.7 (500th)	/	42 A g ⁻¹ 1869.4	4
Si@PP	1.0 A g-1 1295 (300th)	4.0A g ⁻¹ 1718 (60th)	8.0 A g ⁻¹ 1333	5
Si@PP@CA	0.2 A g ⁻¹ 2530 (100 th)	1 A g ⁻¹ 1590 (100 th)	3.2 A g ⁻¹ 1606	6
Si@NC@SnO ₂	0.3 A g ⁻¹ 1056 (200th)	2 A g ⁻¹ 510.7 (100th)	2 A g ⁻¹ 764.1	7
Si@void@mes o-C	$0.42 \text{ A g}^{-1} \\ 1250 \\ (100 \text{ th})$	$\begin{array}{c} 0.42 \ {\rm A} \ {\rm g}^{\text{-1}} \\ 1250 \\ (150 \ {\rm th}) \end{array}$	4.2 A g ⁻¹ 720	8
Si@SA@Borax	0.5 A g ⁻¹ 1655.8 (500th)	/	/	9
Si@FG/C	0.2 A g ⁻¹ 510 (100 th)	0.2 A g ⁻¹ 500 (150 th)	5 A g ⁻¹ 200	10
Si@C core-shell na- nocomposite	1.26 A g ⁻¹ 1040 (100 th)	$1.26 \text{ A g}^{-1} \\ 1030 \\ (150 \text{ th})$	/	11

3	Table S3. A comparison of cycle stability and rate performance between th	e Si@PL-10
4	electrode and the other representatively reported Si anodes for LIBs.	

Si@C	2.1 A g ⁻¹ 1150 (100 th)	/	/	12
Si@10C	0.5 A g ⁻¹ 1500 (150 th)	/	/	13
si@AC/OC	0.36 A g ⁻¹ 1250 (150 th)	/	7.2 A g ⁻¹ 200	14
H-SiLC-2	1 A g ⁻¹ 1250 (150 th)	2 A g ⁻¹ 1240 (100 th)	5 A g ⁻¹ 1200	15
Si@CMR	0.4 A g ⁻¹ 1700 (120 th)	/	2 A g ⁻¹ 1400	16
Si@PANI/SPA	1.2 A g ⁻¹ 1500 (100 th)	/	4 A g ⁻¹ 250	17
Si@SiO2@C	1 A g ⁻¹ 800 (100 th)	/	/	18
Si-NP@	0.3 A g ⁻¹ 1000 (150 th)	/	1.6 A g ⁻¹ 900	19
SiNP@CT	/	/	8 A g ⁻¹ 650	20

2 References

- 3 1. A. A. Cardenas, N. Herlin-Boime, C. Haon and L. Monconduit, *Electrochimica Acta*, 2024, 475, 143691.
- 4 2. W. Chen, S. Kuang, H. Wei, P. Wu, T. Tang, H. Li, Y. Liang, X. Yu and J. Yu, *Journal of Colloid and Interface Science*, 2022, 610, 583-591.
- 6 3. J. Zhao, B. Wang, Z. Zhan, M. Hu, F. Cai, K. Świerczek, K. Yang, J. Ren, Z. Guo and Z. Wang, *Journal of Colloid and Interface Science*, 2024, 664, 790-800.
- 8 4. Z. Cao, X. Zheng, Y. Wang, W. Huang, Y. Li, Y. Huang and H. Zheng, *Nano Energy*, 2022, 93, 106811.
- 9 5. K. Wang, H. Li, X. Chen, Z. Wan, T. Wu, W. Ahmad, D. Qian, X. Wang, J. Gao and R. Khan, *Small Methods*,
 2024, 8, 2301667.
- 11 6. B. Chen, D. Xu, S. Chai, Z. Chang and A. Pan, *Advanced Functional Materials*, 2024, **34**, 2401794.
- 12 7. K. Tian, X. Li, Q. Zhou, Z. Song, C. Guan, S. Zhuang, M. Zhang and M. Lu, *ACS Sustainable Chemistry*
- 13 Engineering, 2024, **12**, 959-969.
- 14 8. J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu, J. Fan, W.-x. Zhang, H. Kun Liu, D. Zhao and S. Xue

- 1 Dou, *Nano Energy*, 2015, **18**, 133-142.
- 2 9. T. He, Y. Ding, H. Zhang, C. Liu, X. Lou, S. Zhu, X. Yang, L. Yang and H. Bai, *ACS Sustainable Chemistry Engineering*, 2025, 13, 4093-4107.
- 4 10. H. Wang, J. Xie, S. Zhang, G. Cao and X. Zhao, RSC Advances, 2016, 6, 69882-69888.
- 5 11. Z. Lu, B. Li, D. Yang, H. Lv, M. Xue and C. Zhang, *RSC Advances*, 2018, **8**, 3477-3482.
- 6 12. W. Tan, F. Yang, Z. Lu and Z. Xu, ACS Applied Energy Materials, 2022, 5, 12143-12150.
- 7 13. W. Luo, Y. Wang, S. Chou, Y. Xu, W. Li, B. Kong, S. X. Dou, H. K. Liu and J. Yang, *Nano Energy*, 2016,
 27, 255-264.
- 9 14. G. Fang, X. Deng, J. Zou and X. Zeng, *Electrochimica Acta*, 2019, 295, 498-506.
- 10 15. J. Shi, H. Gao, G. Hu and Q. Zhang, Energy Storage Materials, 2022, 44, 239-249.
- 11 16. Q. Ma, H. Xie, J. Qu, Z. Zhao, B. Zhang, Q. Song, P. Xing and H. Yin, *ACS Applied Energy Materials*, 2020,
 3, 268-278.
- 13 17. H.-Y. Lin, C.-H. Li, D.-Y. Wang and C.-C. Chen, *Nanoscale*, 2016, 8, 1280-1287.
- 14 18. Y. Zhang, B. Li, B. Tang, Z. Yao, X. Zhang, Z. Liu, R. Gong and P. Zhao, *Journal of Alloys and Compounds*,
 2020, 846, 156437.
- 16 19. X. Zhou, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, Advanced Energy Materials, 2012, 2, 1086-1090.
- 17 20. H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui, *Nano Letters*, 2012, 12, 904-909.