Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Simultaneously enhanced mechanical and thermoelectric performance of Ag₉GaSe₆ argyrodites via tailoring chemical compositions

Siqi Lin^{1#}, Zhenyu Lai^{1#}, Shoumei Liu¹, Linlin Guo^{1,2}, Yanjiao Li¹, Shiyun Wang¹, Hezhu Shao^{3*}, Min Jin^{1,4*}

¹College of Materials, Shanghai Dianji University, Shanghai 201306, China

² School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

³ Wenzhou Key Laboratory of Micro-nano Optoelectronic Devices, Zhejiang Key Laboratory of Smart Low-Voltage Apparatus

and New Energy Application, College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China

⁴ Wuzhen Laboratory, Tongxiang 314500, China

*Email: hzshao@wzu.edu.cn (HS), jmaish@aliyun.com (MJ)

Figure S1. The estimated lattice constants for (a) Ag₉Ga_{1-x}Mn_xSe₆ and (b) Ag_{9-y}Mn_yGaSe₆ samples.

Figure S2. SEM image and corresponding EDS mapping for (a-d) $Ag_9Ga_{1-x}Mn_xSe_6$ samples with (a) x=0, (b) x=0.02, (c) x=0.04, (d) x=0.06, respectively.

Figure S3. SEM image and corresponding EDS mapping for $Ag_{9-y}Mn_yGaSe_6$ samples with (a) y=0.05, (b) y=0.10, (c) y=0.20, respectively.

Figure S4. Temperature dependent (a) Hall carrier concentration and (b) Hall mobility for $Ag_9Ga_{1-x}Mn_xSe_6$ ($0 \le x \le 0.10$) samples.

Figure S5. Temperature dependent (a) Hall carrier concentration and (b) Hall mobility for $Ag_{9-y}Mn_yGaSe_6$ ($0 \le y \le 0.20$) samples.

Figure S6. Temperature dependent deformation potential coefficient E_{def} and density-of-state effective mass m_d^* for (a) Ag₉Ga_{1-x}Mn_xSe₆ and (b) Ag_{9-y}Mn_yGaSe₆ samples. Hall carrier concentration dependent (c) Seebeck coefficient and (d) Hall mobility for Mn-doped Ag₉GaSe₆ samples.

Table	S1 .	The	hardness,	elastic	modulus	and	room	temperature	lattice	thermal	conductivity	for	typical
thermo	oelec	tric r	naterials.										

Materials	Hardness (GPa)	Elastic modulus (GPa)	<i>к</i> _L (W/m-K)	References		
Ag_9GaSe_6	1.65	21.8	0.2	This work		
MgAgSb	3.3	55	0.75	1, 2		
$Si_{80}Ge_{20}$ alloy	14.5	147	4.71	3, 4		
$Mg_{3.2}Sb_{1.5}Bi_{0.5}$	1.05	44.4	0.95	5		
$\label{eq:Half-heusler} Half-heusler\\ Hf_{0.44}Zr_{0.44}Ti_{0.12}CoSb_{0.8}Sn_{0.2}$	13.9	231	2.45	6, 7		
Half-heusler Hf _{0.25} Zr _{0.75} NiSn	9.9	213.9	4.24	6, 8		

$Bi_{0.4}Sb_{1.6}Te_3$	1.5	48.7	0.76	6, 9
$Bi_2Te_{2.7}Se_{0.3}$	1.4	42.8	0.73	6, 10
Skutterudites Yb _{0.35} Co ₄ Sb ₁₂	7.1	152.2	1.9	6
PbSe	0.7	74.1	1.7	6, 11
РbТе	3.7	26.6	1.81	12, 13
GeTe	6.9	119.4	1.0	12, 14
SnTe	1.89	51.1	1.93	15

Table S2. The measured transverse (v_t) and longitudinal (v_l) sound velocities, and the estimated mean (v_s) sound velocities, bulk modules (B), shear modules (G), Young's modulus (E), Grüneisen parameter (γ) for Ag₉Ga_{1-x}Mn_xSe₆ ($0 \le x \le 0.10$) and Ag_{9-y}Mn_yGaSe₆ ($0 \le y \le 0.20$) samples.

Mn-doped	ν _T	vL	vs	В	G	Ε	
Ag9GaSe6	(m/s)	(m/s)	(m/s)	(GPa)	(Gpa)	(GPa)	γ
x=0.02	1128	2714	1276	39.8	8.9	24.9	2.57
x=0.04	1111	2656	1256	37.9	8.7	24.1	2.56
x=0.06	1140	2643	1288	36.8	9.1	25.2	2.47
x=0.08	1145	2734	1295	40.49	9.27	25.8	2.55
x=0.10	1120	2762	1268	41.8	8.8	24.6	2.64
y=0.05	1120	2741	1268	41.53	8.93	25.00	2.62
y=0.10	1123	2771	1271	42.64	8.97	25.17	2.65
y=0.15	1127	2864	1277	46.21	9.04	25.47	2.73
y=0.20	1124	2810	1273	44.16	9.00	25.27	2.68

Calculated elastic modulus for all the samples

The transverse (v_t) and longitudinal (v_l) sound velocities are measured to estimate the elastic modulus for all the Ag₉Ga_{1-x}Mn_xSe₆ (0 \leq x \leq 0.10) samples. The equations are given as below, where ρ is the density¹⁶⁻¹⁸:

$$v_{s} = \left[\frac{3}{2\left(\frac{1}{v_{t}}\right)^{3} + \left(\frac{1}{v_{l}}\right)^{3}}\right]^{1/3}$$
(1)

Shear modules:

$$G = v_t^2 * \rho \tag{2}$$

Bulk modules:

$$B = v_l^2 * \rho - \frac{4}{3}G \tag{3}$$

Young's Elastic modules:

$$E = \frac{9BG}{3B+G} = \frac{\rho v_t^2 (3v_l^2 - 4v_t^2)}{(3v_t^2 - 4v_l^2)}$$
(4)

Grüeneisen parameter:

$$\gamma = \frac{3}{2} * \frac{3v_l^2 - 4v_t^2}{v_l^2 + 2v_t^2} \tag{5}$$

References:

1. Z. Liu, W. Gao, X. Meng, X. Li, J. Mao, Y. Wang, J. Shuai, W. Cai, Z. Ren and J. Sui, Scripta Mater., 2017, 127, 72-75.

2. H. Z. Zhao, J. E. Sui, Z. J. Tang, Y. C. Lan, Q. G. Jie, D. Kraemer, K. N. McEnaney, A. Guloy, G. Chen and Z. F. Ren, *Nano Energy*, 2014, 7, 97-103.

- 3. A. C. Kallel, G. Roux and C. L. Martin, *Materials Science and Engineering: A*, 2013, 564, 65-70.
- 4. D. P. White and P. G. Klemens, J. Appl. Phys., 1992, 71, 4258.
- 5. J. Li, S. Zhang, F. Jia, S. Zheng, X. Shi, D. Jiang, S. Wang, G. Lu, L. Wu and Z.-G. Chen, Materials Today Physics, 2020, 15.
- 6. R. He, S. Gahlawat, C. Guo, S. Chen, T. Dahal, H. Zhang, W. Liu, Q. Zhang, E. Chere, K. White and Z. Ren, *physica status solidi (a)*, 2015, **212**, 2191-2195.
- 7. X. Yan, W. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen and Z. Ren, Advanced Energy Materials, 2013, 3, 1195-1200.
- 8. S. Chen, K. C. Lukas, W. Liu, C. P. Opeil, G. Chen and Z. Ren, Advanced Energy Materials, 2013, 3, 1210-1214.
- 9. Y. Y. Li, X. Y. Qin, D. Li, J. Zhang, C. Li, Y. F. Liu, C. J. Song, H. X. Xin and H. F. Guo, Appl. Phys. Lett., 2016, 108.
- 10. S. Yang, H. Ming, D. Li, T. Chen, S. Li, J. Zhang, H. Xin and X. Qin, Chem. Eng. J., 2023, 455.
- 11. H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, Adv. Mater., 2011, 23, 1366-1370
- 12. M. Shtern, A. Sherchenkov, Y. Shtern, N. Borgardt, M. Rogachev, A. Yakubov, A. Babich, D. Pepelyaev, I. Voloshchuk, Y.

Zaytseva, S. Pereverzeva, A. Gerasimenko, D. Potapov and D. Murashko, J. Alloys Compd., 2023, 946.

- 13. A. D. LaLonde, Y. Pei and G. J. Snyder, Energ Environ Sci, 2011, 4, 2090–2096.
- 14. J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang and Y. Pei, NPG Asia Materials, 2017, 9, e353.
- 15. T. Zhang, W. Pan, S. Ning, N. Qi, Z. Chen, X. Su and X. Tang, Adv. Funct. Mater., 2022, 33.

- 16. D. S. Sanditov and V. N. Belomestnykh, Technical Physics, 2011, 56, 1619-1623.
- 17. S. Lin, W. Li, X. Zhang, J. Li, Z. Chen and Y. Pei, Inorg. Chem. Front., 2017, 4, 1066-1072.
- 18. O. L.Anderson, J. Phys. Chem. Solids, 1963, 24, 909-917.