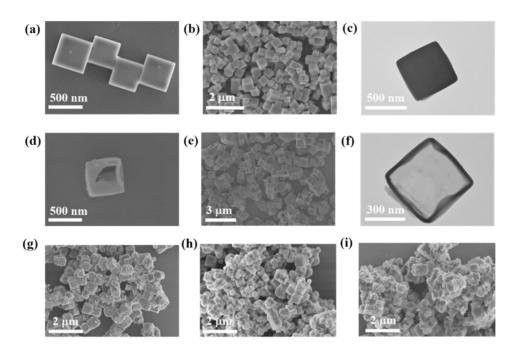
Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Engineering multiscale hollow core-shell nanostructures via in-situ surface functionalization for advanced electrochemical energy storage applications

Wang Yana, Wang Hanboa, Xu Yahuia, Zhu Dongyua, Wang Ziminga, Li Yiduoa,d, Tian Yumeia*, Lu Haiyana,b,c*


- a College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
- b College of Chemistry, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, Jilin University, Changchun 130012, PR China.
- c Advanced Energy Systems and Intelligent Detection Technological Innovation University Enterprise Joint Laboratory of Jilin Province, PR China.
- d College of Instrumentation and Electrical Engineering, Jilin University, Changchun, 130021, China.
- * Indicates co-corresponding author.

Materials and instruments

The following chemical reagents and materials were employed in the course of this investigation. Cobalt nitrate $(Co(NO_3)_2 \cdot 6H_2O, 99.9\%)$, nickel nitrate $(Ni(NO_3)_2 \cdot 6H_2O, 98\%)$, 2-methylimidazole $(C_4H_6N_2, 98\%)$, tannic acid $(C_{76}H_{52}O_{46}, ACS)$, cetyltrimethylammonium bromide (CTAB, 99%), ammonium fluoride $(NH_4F, 99.5\%)$, activated carbon (AC), acetylene carbon black (99.95%), and polytetrafluoroethylene (PTFE) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd, China. Ethyl alcohol $(C_2H_5OH, 99.8\%)$, ammonium hydroxide (30%), and potassium hydroxide (KOH, 98%) were sourced from Beijing Chemical Works. All chemical reagents were used as received without further purification. Throughout the entire experiment, ultrapure water (resistivity of 18.25 M Ω cm) was employed as the solvent for all chemical reagents.

Scanning electron microscopy (SEM) analysis was conducted using a HITACHI SU020 microscope operating at 3 kV. Transmission electron microscopy (TEM) imaging was performed utilizing a Philips

FEI Tecnai G2S-Twin microscope equipped with a field emission gun, operating at 200 kV. The phase structures of the samples were characterized by X-ray diffraction (XRD) using a Rigaku X-ray diffractometer with Cu K α radiation (λ = 1.54178 Å) at 50.0 kV and 200.0 mA. The diffraction data were recorded in the 2θ range of 5-80° with a scan rate of 5° min-1. Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet 400 Fourier transform infrared spectrometer. Raman analysis was conducted using a Horiba LabRAM HR Evolution spectrometer, with laser excitation at 532 nm. Nitrogen physisorption tests were carried out at 77 K using a QuantachromeAutosorb-IQ-Mplxq instrument. X-ray photoelectron spectra (XPS) were recorded on a Thermo Fisher Scientific ESCALAB 250Xi unit with Al-Kα (1486.6 eV) as the X-ray source. For electrochemical measurement, CHI660E electrochemical workstation (Shanghai, Chenhua) equipped with a conventional three-electrode system was employed.

Fig. S1. (a,b) The different-sized SEM images of ZIF-67 NCs; (c) The TEM image of ZIF-67 NCs; (d,e) The different-sized SEM images of HZIF-1.2; (f) The TEM image of HZIF-1.2; (g) The SEM images of Co₃O₄-HNC@NiCo-LDH-0.5 at low magnification; (h) The SEM images of Co₃O₄-HNC@NiCo-LDH-1 at low magnification; (i) The SEM images of Co₃O₄-HNC@NiCo-LDH-2 at low magnification.

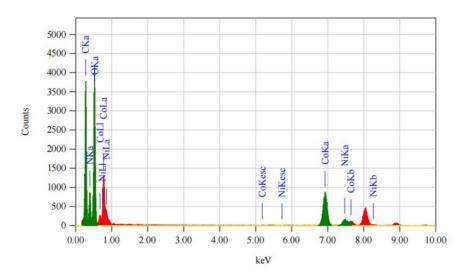


Fig. S2. The Energy spectrum of Co₃O₄-HNC@NiCo-LDH-1.

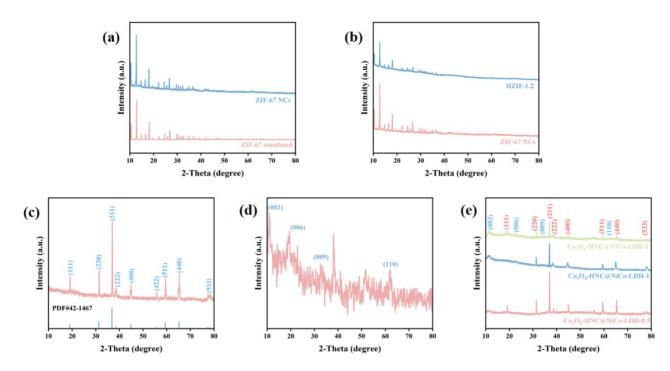


Fig. S3. The XRD patterns of (a) ZIF-67 NCs; (b) HZIF-1.2; (c) Co₃O₄-HNCs; (d) NiCo-LDH; (e) Co₃O₄-HNC@NiCo-LDH.

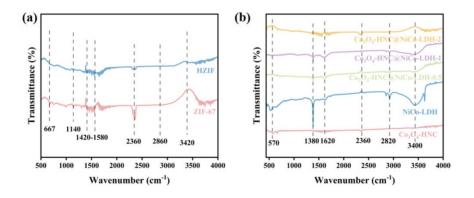


Fig. S4. FT-IR spectra of different samples. (a) ZIF-67 NCs and HZIF-1.2; (b) Co₃O₄-HNCs, NiCo-LDH, Co₃O₄-HNCs, and Co₃O₄-HNCs@NiCo-LDH.

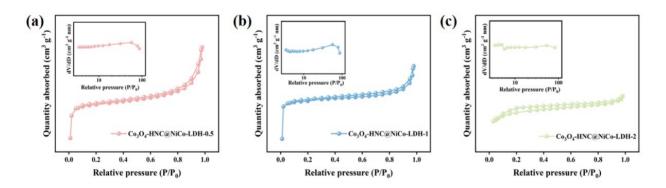


Fig. S5. The N_2 adsorption-desorption isotherm loops and related pore size plots of (a) Co_3O_4 -HNC@NiCo-LDH-0.5; (b) Co_3O_4 -HNC@NiCo-LDH-1; (c) Co_3O_4 -HNC@NiCo-LDH-2.

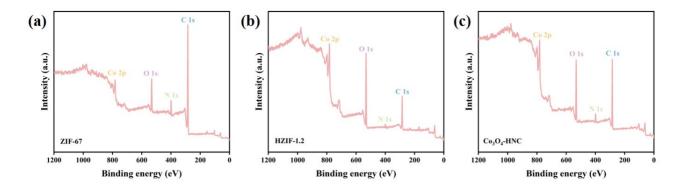


Fig. S6. The XPS survey spectra of (a) ZIF-67 NCs; (b) HZIF-1.2; (c) Co₃O₄-HNCs

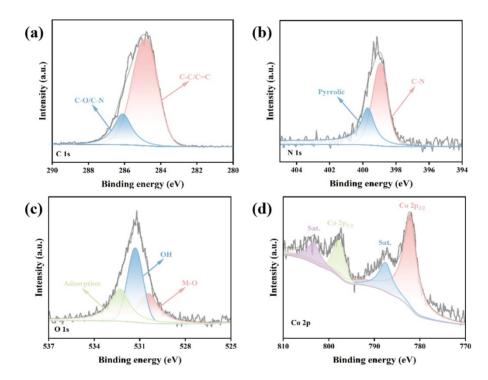


Fig. S7. (a-d) C 1s, N 1s, O 1s, and Co 2p spectra of the ZIF-67 NCs.

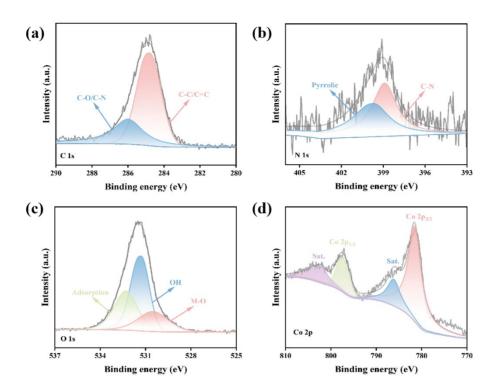
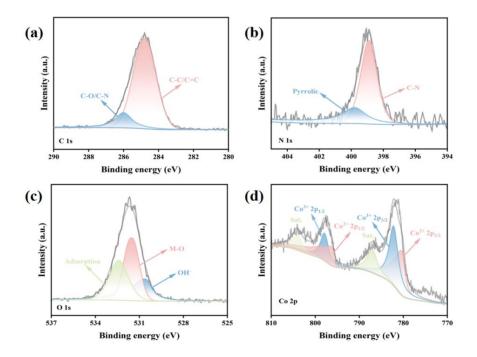
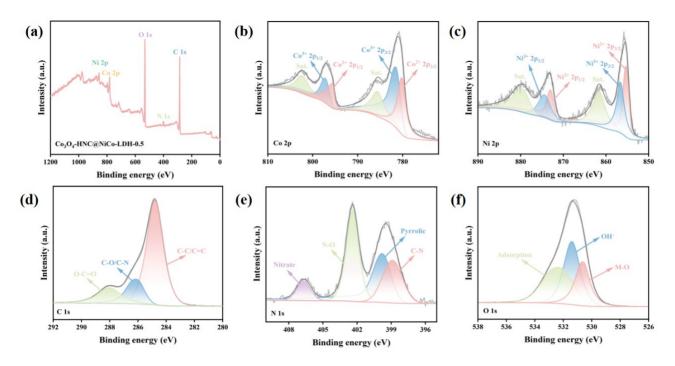
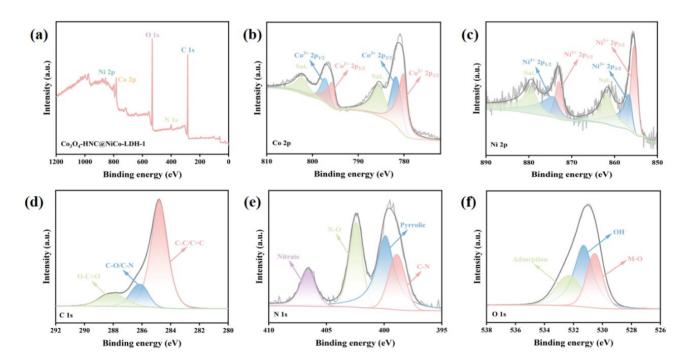


Fig. S8. (a-d) C 1s, N 1s, O 1s, and Co 2p spectra of the HZIF-1.2.

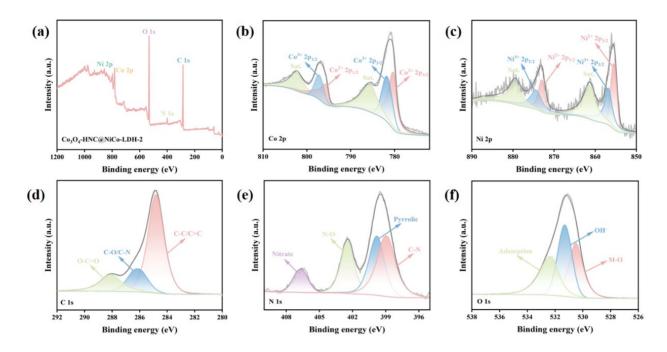

Fig. S9. (a-d) C 1s, N 1s, O 1s , and Co 2p spectra of the $\text{Co}_3\text{O}_4\text{-HNCs}.$

Fig. S10. (a) XPS survey spectra of the composites Co₃O₄-HNC@NiCo-LDH-0.5; (c-f) Co 2p, Ni 2p, C 1s, N 1s, and O 1s spectra of the composites Co₃O₄-HNC@NiCo-LDH-0.5.

Fig. S11. (a) XPS survey spectra of the composites Co₃O₄-HNC@NiCo-LDH-1; (c-f) Co 2p, Ni 2p, C 1s, N 1s, and O 1s spectra of the composites Co₃O₄-HNC@NiCo-LDH-1.

Fig. S12. (a) XPS survey spectra of the composites Co₃O₄-HNC@NiCo-LDH-2; (c-f) Co 2p, Ni 2p, C 1s, N 1s, and O 1s spectra of the composites Co₃O₄-HNC@NiCo-LDH-2.

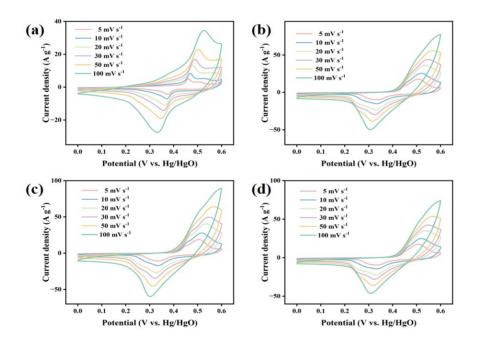


Fig. S13. CV of the (a) ZIF-67 NCs; (b) HZIF-0.9; (c) HZIF-1.2; (D) HZIF-1.5 at different scan rates.

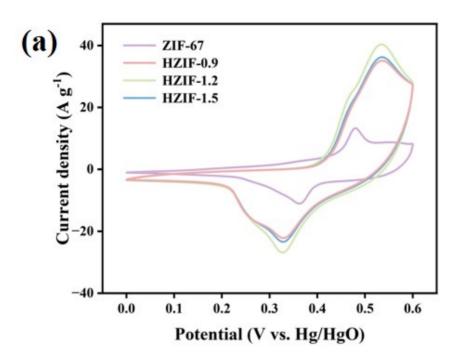


Fig. S14. Comparison of CV curves at a scan rate of 20 mV s⁻¹.

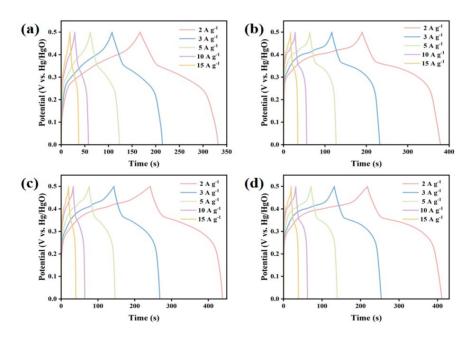


Fig. S15. GCD of the (a) ZIF-67 NCs; (b) HZIF-0.9; (c) HZIF-1.2; (d) HZIF-1.5 at different current densities.

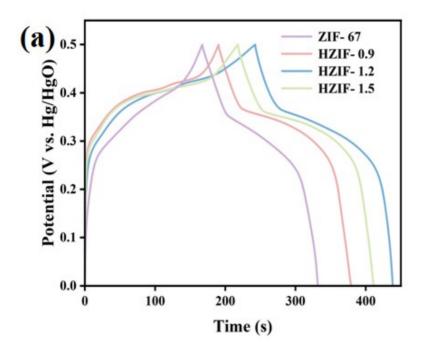


Fig. S16. Comparison of GCD curves at the current density of 2 A g^{-1} .

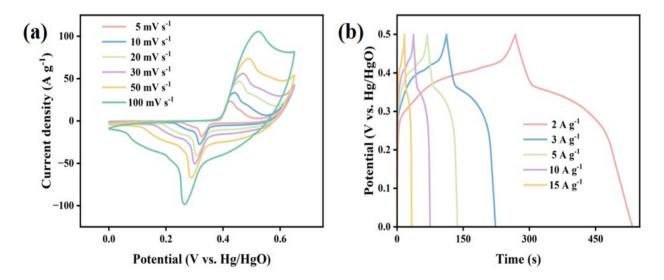


Fig. S17. (a) CV of the Co₃O₄-HNCs at different scan rates; (b) GCD of the Co₃O₄-HNCs at different current densities.

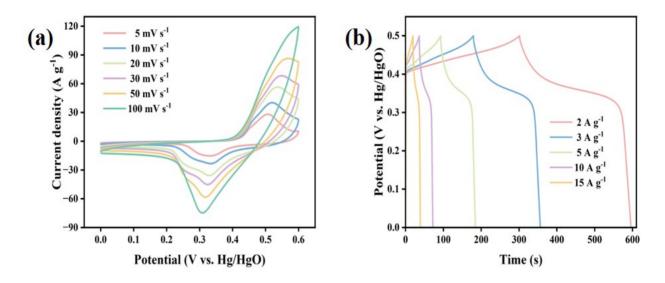
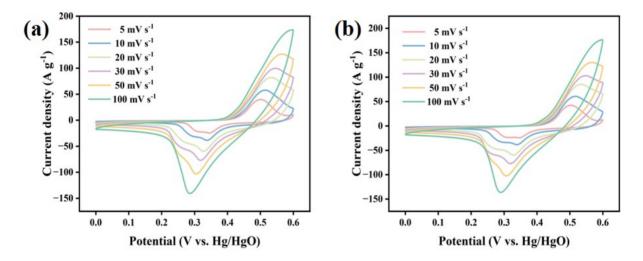



Fig. S18. (a) CV of the NiCo-LDH at different scan rates; (b) GCD of the NiCo-LDH at different current densities.

 $\textbf{Fig. S19.} \ \ \text{CV of the (a) Co}_3O_4 - \text{HNC@NiCo-LDH-0.5; (b) Co}_3O_4 - \text{HNC@NiCo-LDH-2 at different scan rates.}$

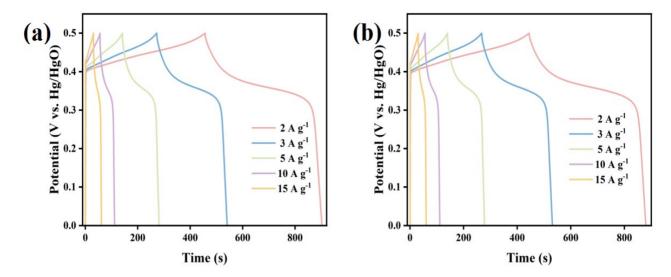
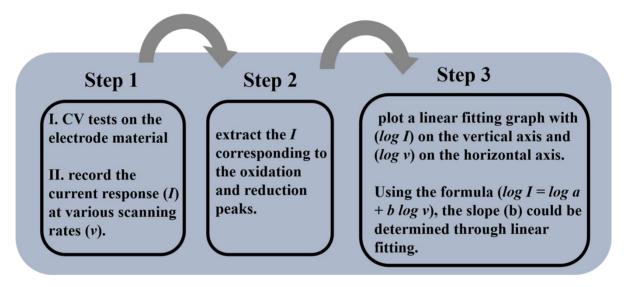



Fig. S20. GCD of the (a) Co₃O₄-HNC@NiCo-LDH-0.5; (b) Co₃O₄-HNC@NiCo-LDH-2 at different current densities.

Scheme S2 A simplified diagram of the calculation process for the b value.

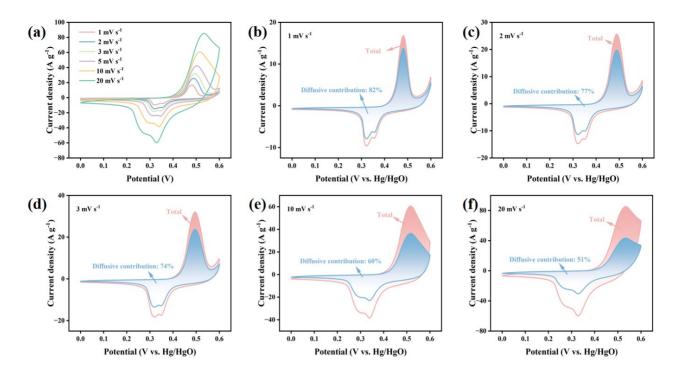


Fig. S21. (a) CV of the Co₃O₄-HNC@NiCo-LDH-1 at 1-20 mV s⁻¹; (b-f) The area proportion diagrams of diffusion control at other sweep speeds.

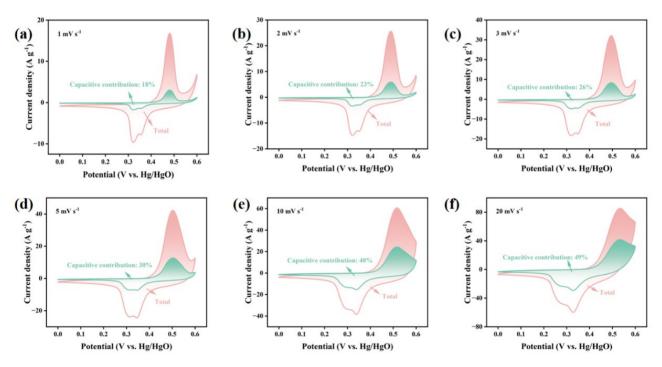


Fig. S22. (a-f) The area proportion diagrams of capacitive control at different sweep speeds.

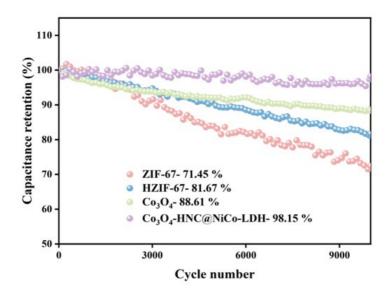


Fig.S23. Cycle performance comparison at 15A g⁻¹.

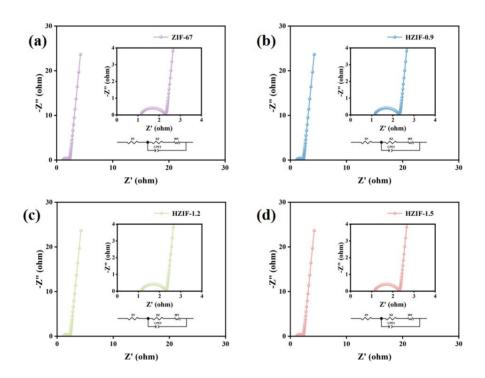


Fig. S24. Nyquist plots of (a) ZIF-67 NCs; (b) HZIF-0.9; (c) HZIF-1.2; (d) HZIF-1.5.

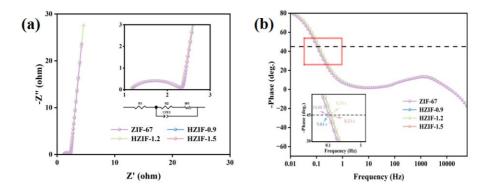
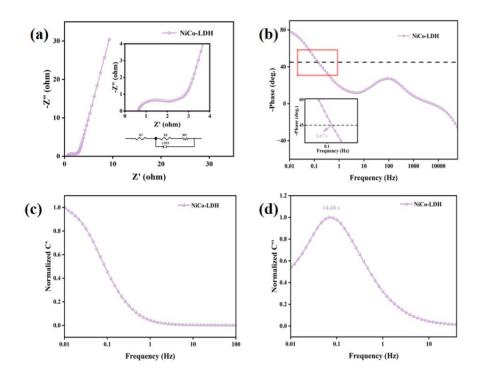
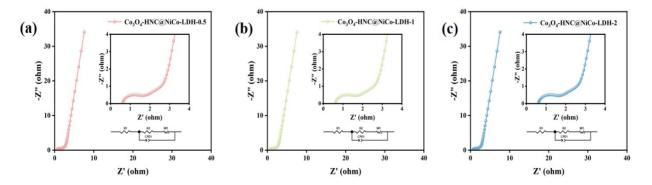




Fig. S25. ZIF and HZIF (a) Nyquist plots; (b) Bode plots of phase angle versus frequency.

Fig. S26. NiCo-LDH (a) Nyquist plots; (b) Bode plots of phase angle versus frequency; The normalized real (c) and imaginary (d) part capacitance versus frequency.

 $\textbf{Fig. S27.} \ \ \text{Nyquist plots of (a) Co}_3O_4 - \text{HNC@NiCo-LDH-0.5; (b) Co}_3O_4 - \text{HNC@NiCo-LDH-1; (c) Co}_3O_4 - \text{HNC@NiCo-LDH-2.} \\$

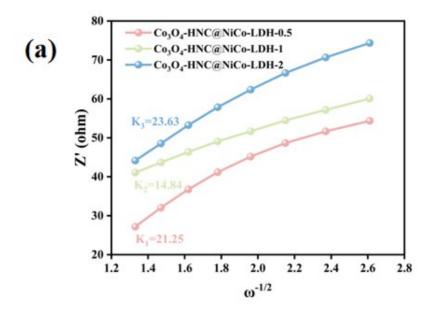


Fig. S28. Low-Frequency Warburg plots of Co₃O₄-HNC@NiMn-LDH electrodes.

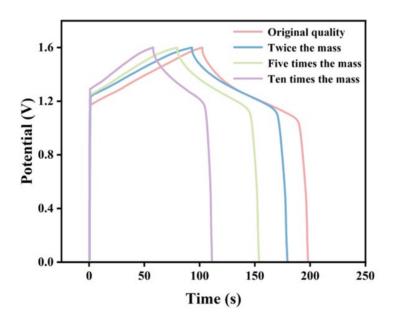
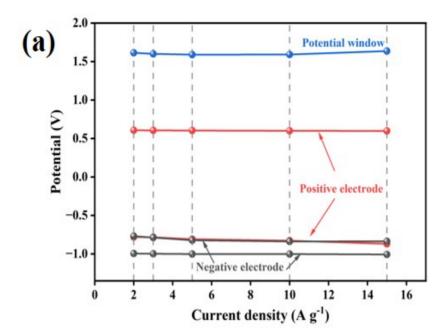



Fig. S29. High mass loading test.

Fig. S30. The sum of the potential window provided by the positive electrode and negative material by the floating test at different current densities.

Table S1. The thickness of the LDH shell in Co₃O₄-HNC@NiCo-LDH.

Sample	Thickness of the LDH shell		
	(nm)		
Co₃O₄-HNC@NiCo-LDH-0.5	127		
Co ₃ O ₄ -HNC@NiCo-LDH-1	138		
Co₃O₄-HNC@NiCo-LDH-2	162		

Table S2. The proportion of elements of Co_3O_4 -HNC@NiCo-LDH-1.

Element	Series	Mass	Counts	Sigma	Atom
		[%]			[%]
С	K-Series	45.15	18712.83	0.25	62.48
N	K-Series	5.99	4220.74	0.10	7.11
o	K-Series	21.98	21391.31	0.19	22.83
Со	K-Series	24.68	12167.19	0.37	6.96
Ni	K-Series	2.21	2095.57	0.08	0.63
Total		100.00			100.00