jiaoyq617@outlook.com

14

Supplementary Information 1 2 Ru species decoration on hierarchical Nb₂O_{5-x} modulates product selectivity for CO₂ photoreduction Yeqiang Zhai, Guimin Wang, Nan Wang, Yanqing Jiao*, Dongxu Wang, Haijing Yan, Yuxian Jiang, Aiping Wu, and Honggang Fu* 7 Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, National Center for International Research on Catalytic Technology, Heilongjiang University, Harbin 150080, China 11 *E-mail: fuhg@hlju.edu.cn; fuhg@vip.sina.com; jiaoyanqing@hlju.edu.cn; 12

1 Experiment details

2 Materials and reagents

- 3 Niobium oxalate (C₁₀H₅NbO₂₀·xH₂O), L-arginine (C₆H₁₄N₄O₂), RuCl₃·xH₂O and
- 4 niobium oxide (Nb₂O₅) were purchased from Aladdin Reagent Co., Ltd. Citric acid and
- 5 NaBH₄ were purchased from Tianjin Kemio Chemical Reagent Co., Ltd. Ethanol was
- 6 obtained from Tianjin Fuyu Fine Chemical Co., Ltd. All purchased chemicals and
- 7 reagents were of analytical grade and used without further purification.

8 Preparation of Nb₂O_{5-x}

- 9 1 mmol of C₁₀H₅NbO₂₀·xH₂O was dissolved in a mixture of 15 mL deionized water
- and 10 mL ethanol. The suspension was then heated to 60°C under magnetic stirring
- 11 for 20 min until a clear solution (solution A) was formed. Then, 0.25 mmol of L-
- 12 arginine dissolved in 5 mL deionized water was added to solution A, followed by
- 13 continued stirring for another 20 min. The resulting mixture was transferred into a 50
- 14 mL Teflon-lined autoclave and heated at 180 °C for 12 h, then allowed to cool naturally
- 15 to room temperature. After repeated centrifugation and drying at 60 °C, the product was
- 16 collected and denoted as the NbO precursor. Finally, the NbO precursor was calcined
- 17 in air at 350 °C for 3 h in a muffle furnace, with a heating rate of 10 °C min⁻¹. The
- 18 resulting yellow solid was denoted as Nb₂O_{5-x}.

19 Preparation of Ov-Nb₂O₅

- 20 Similar to the synthesis of Nb₂O_{5-x}, 4 mmol of citric acid was used instead of arginine.
- 21 The resulting yellow solid was denoted as Ov-Nb₂O₅.

22 Preparation of Ru-Nb₂O_{5-x}

- 23 Typically, 1 mL of RuCl₃·xH₂O (1 mg mL⁻¹) was dispersed into 20 mL of a solution
- 24 containing Nb₂O_{5-x} (25 mg), and stirred for 20 min at room temperature. During the
- 25 stirring process, 2 mL of NaBH₄ solution (0.1 M) was added, followed by continuous
- 26 stirring for 1 h. The resulting sample was then washed with water and ethanol. After
- 27 drying at 60 °C overnight, the final sample, denoted as Ru-Nb₂O_{5-x}, was obtained. The
- as-synthesized Ru-Nb₂O_{5-x} photocatalyst exhibited an actual Ru content of 1.02 wt%,

- 1 as determined by ICP-OES. Furthermore, adjusting the volume of RuCl₃·xH₂O
- 2 solution to 0.25, 0.5, and 2 mL, resulted in actual Ru contents of 0.33, 0.65, and 1.22
- 3 wt%, respectively.

Characterization

Powder X-ray diffraction (XRD) measurements were performed on a Bruker D8 Advanced diffractometer with nickel-filtered Cu $K\alpha$ radiation ($\lambda = 1.5406$ Å) at room temperature. The transmission electron microscope (TEM) measurement of the samples was explored using a Hitachi S-4800 field emission scanning electron microscope operating at 15 kV and a JEOL model JEM-F200 transmission electron microscope with an acceleration voltage of 200 kV. X-ray photoelectron spectra (XPS) were acquired using a VG ESCALAB MK II spectrometer with a monochromatic Mg Ka source (1253.6 eV). Nitrogen and CO₂ adsorption/desorption measurements were carried out on a Tristar II 3020 surface area and porosity analyzer (Micromeritics). The specific surface area was calculated using the Brunauer–Emmett–Teller (BET) method. Room temperature UV/Vis diffuse reflectance spectra (DRS) were recorded on a 12 Shimadzu UV-2550 UV/Vis spectrophotometer using BaSO₄ as the reference. Photoluminescence (PL) spectra of the photocatalysts were recorded on a LS55 Perkin-14 Elmer fluorescence spectrophotometer. PL lifetimes were determined using a single 15 photon counting spectrometer with a microsecond pulse lamp as the excitation source (350 nm). Time-resolved photoluminescence (TRPL) spectra were also recorded by a 17 transient fluorescence spectrometer (HORIBA Nanolog) equipped with a low 18 temperature thermostatic tank as a sample pool in air and in vacuum, by using the excitation wavelength of 365 nm. Electron paramagnetic resonance (EPR) was tested 20 using a Bruker EMX plus model spectrometer operated at room temperature. CO₂/CO 21 temperature-programmed desorption (CO₂/CO-TPD) was obtained on a PX200 series multi-purpose adsorption instrument. Inductively coupled plasma-atomic Omission spectrometry (ICP-OES) was calculated using the PerkinElmer Optima 7000DV, all 24 samples to be tested were dissolved in HF solution.

26 Photoelectrochemical measurements

- 27 Photoelectrochemical measurements were performed on a electrochemical workstation
- system (Princeton Versa STAT) with a conventional three-electrode cell. A Pt plate and
- 29 a Ag/AgCl electrode were used as the counter and reference electrode, respectively.

- 1 The working electrodes were each prepared by coating a fluorine-doped tin oxide (FTO,
- 2 $1.0 \times 1.0 \text{ cm}^2$) substrate with an as-prepared sample, followed by drying in an oven. A
- 3 $0.5~M~Na_2SO_4$ aqueous solution (purged with N_2 for 1 h) was used as the electrolyte.
- 4 The light source was a 300 W Xe lamp. Transient photocurrent responses and EIS were
- 5 recorded under intermittent visible-light irradiation. Mott-Schottky plots at the
- 6 frequencies of 500, 800 and 1000 Hz were obtained using the three-electrode cell with
- 7 saturated 0.5 M Na₂SO₄ as the electrolyte. Applied potential (E) with respect to NHE
- 8 was calculated using the following equation: $E_{\rm NHE} = E_{\rm Ag/AgCl} + 0.197$.

9 Photocatalytic experiments

The photocatalytic CO2 reduction activity was tested in a gas-solid reactor and the reduction gas phase product was measured out in a CEL-PAEM-D8-Plus closed circulation system (China Education Au Light, Beijing). 5 mg catalyst was dispersed into 1 mL ethanol and then the dispersion was spin-dropped uniformly onto a homemade quartz watch glass. After heating at 60 °C for several min, a thin film was 14 prepared onto the watch glass homogeneously and placed on a triangle glass rack at the 15 upper layer of a reactor, adding 10 mL water without any other extra photosensitizer or 16 sacrificial reagent. A 300 W Xenon lamp (China Education Au Light, Beijing) was 17 employed as the light source. Before irradiation, the reactor was vacuumed and was 18 subsequently back filled with 20 mL ultra-pure CO₂ (99.999%), maintained for 30 min to a CO2 adsorption and desorption equilibrium. The photocatalytic reactor was 20 connected to an online gas chromatograph for hourly gas collection and analysis. The 21 gas products were analyzed by a gas chromatograph (GC 7920-TF2A, China Education Au Light, Beijing) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The quantification of all gases was performed based on calibration established using the curves corresponding standard gases. Chromatographic Standard Curves for Gas Detection: Standard curves for each product 26 were established by manually injecting standard gases (CO and CH₄) in volumes of 1, 3, 5, 7, and 9 µL into the system three times. The average peak area from these three injections was utilized to construct the standard curves.

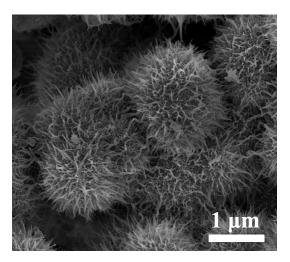
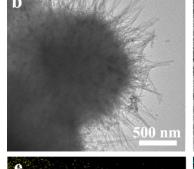
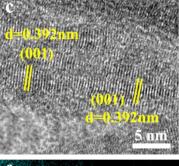
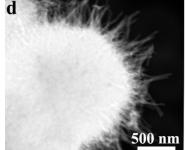
- 1 The product selectivity for CO₂ reduction to CO has been calculated using the
- 2 following equation: Product selectivity of CO (%) = $[n(CO)] / [n(CO) + n(CH_4)] \times$
- 3 100%, where n(CO) and n(CH₄) are the amounts of produced CO and CH₄.
- 4 The following control experiments were performed alongside the photocatalytic test:
- 5 (1) without a light source, (2) without the photocatalyst, (3) without water, and (4) with
- 6 high-purity Ar replacing CO₂. No photocatalytic products were detectable in any of
- 7 these control experiments. Control experiments were essential to rule out any
- 8 background contribution from the experimental system, solvent, or catalyst. The above
- 9 tests confirm that the products unequivocally originated from CO₂ photoreduction, and
- 10 not from carbon-based impurities in this system.
- 11 The photocatalytic water splitting performance was tested under solid-liquid reaction
- 12 conditions. An on-line photocatalytic activity evaluation system (μGAS1000, Beijing
- 13 Perfectlight) was used, which was connected with an on-line gas chromatograph
- 14 (GC456i, Scion, Tcchcomp), argon as carrier gas. The photocatalytic overall water
- splitting performance was evaluated by dispersing 5 mg of photocatalyst in 30 mL of
- 16 distilled water. No sacrificial agents or co-catalysts were added. Prior to the reaction,
- 17 the reaction system was evacuated to remove air from the reaction system and dissolved
- 18 air from the water. The irradiation was carried out using a 300 W Xenon lamp.

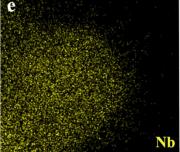
19 Determination of H₂O₂ concentration

- The production of H_2O_2 was analyzed by the iodometry. 1 mL 0.1 mol L⁻¹ potassium
- 21 hydrogen phthalate (C8H5KO4) aqueous solution and 1 mL 0.4 mol L⁻¹ potassium iodide
- 22 (KI) aqueous solution was added into the H₂O₂, which was hold for 30 min. The H₂O₂
- 23 molecules react with iodide anions under acidic condition to give triiodide anions which
- 24 show a strong adsorption at around 350 nm. The concentration of triiodide anion was
- 25 detected by UV-vis spectroscopy. A standard solution was prepared by diluting
- 26 hydrogen peroxide 500-fold. Subsequently, aliquots of 6, 7, 8, and 10 μL of this diluted
- 27 solution were taken to establish the calibration curve for estimating the the quantity of
- 28 produced H₂O₂.

1 In situ diffuse reflectance infrared Fourier transform spectroscopy

In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was measured by a Thermo Scientific iS50 FTIR spectrometer, with 64 scans accumulated at a resolution of 8 cm⁻¹. Prior to the measurement, the samples were flushed with Ar with a gas-flow rate of 30 mL·min⁻¹ for 30 min. Then, the cell needs to be under conditions containing distilled water and then vacuumed to remove the gas. Besides, 1 MPa of CO₂ was introduced into the cell with a gas flow rate of 30 mL min⁻¹ for 30 min and stabilized. Then, it was recorded and saved as background spectrum. After 30 min dark adsorption, turned on the lamp for illumination. At last, the DRIFTS of samples under irradiation were recorded for 60 min.


Fig. S1. SEM of the NbO precursor.

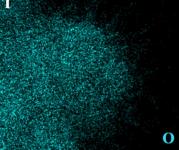

500 nm

Fig. S2. (a) SEM, (b) TEM, and (c) HRTEM images, (d) STEM image and the corresponding EDX elemental mappings of (e) Nb and (e) O for Nb₂O_{5-x}.

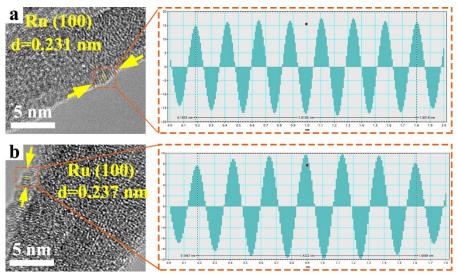


Fig. S3. (a, b) HRTEM images and the corresponding lattice fringes of Ru-Nb₂O_{5-x} in different regions.

3 different reg4

Notably, lattice fringes with an interplanar spacing of 0.231 and 0.237 nm were observed on the outer surface of the nanothorns in Ru–Nb₂O_{5-x}, which can be attributed to the (100) plane of metallic Ru, confirming the presence of Ru⁰ species.

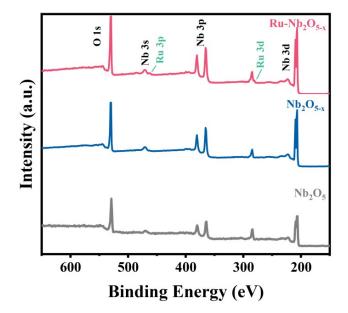


Fig. S4. XPS survey spectra of the Ru-Nb₂O_{5-x}, Nb₂O_{5-x} and Nb₂O₅.

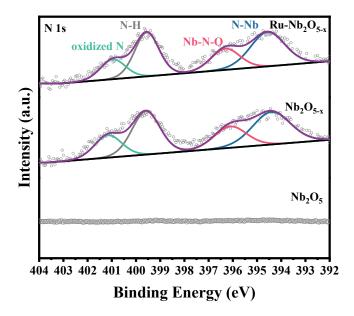


Fig. S5. High-resolution XPS spectra of N 1s for Ru-Nb₂O_{5-x}, Nb₂O_{5-x} and Nb₂O₅.

As shown in Fig. S5, the N 1s spectra can be deconvoluted into four signals at 394.41, 396.33, 399.56, and 400.94 eV, corresponding to N-Nb (substitutional N-doping), Nb-N-O (interstitial N-doping), N-H, and oxidized N, respectively.

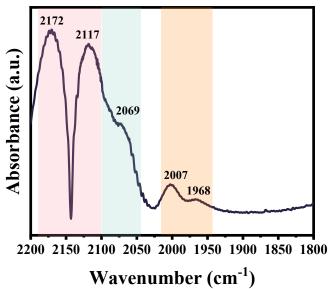


Fig. S6. CO-DRIFTS for the Ru-Nb₂O_{5-x}.

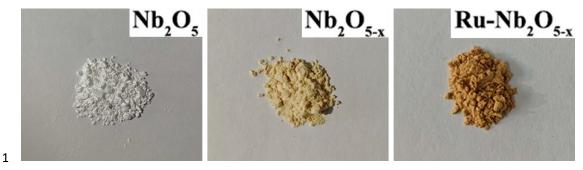


Fig. S7. The sample color of Nb₂O₅ (white), Nb₂O_{5-x} (yellow) and Ru-Nb₂O_{5-x} (brown).

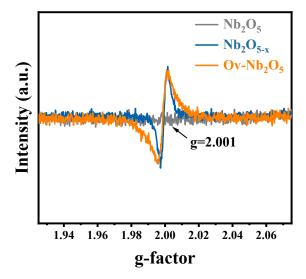
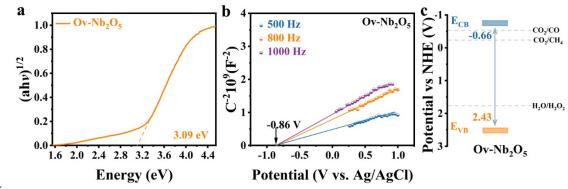



Fig. S8. EPR spectra of Nb₂O₅, Nb₂O_{5-x} and Ov-Nb₂O₅.

To explore the individual roles of N-doping and O_V, a reference sample Nb₂O₅ that contains only Ov without N species (denoted as Ov-Nb₂O₅) was synthesized using citric acid instead of arginine as the precursor, thereby excluding the nitrogen source. Initially, EPR spectroscopy was employed to confirm the presence and evaluate the concentration of O_V in the sample. As shown in Fig. S8, both Ov-Nb₂O₅ and Nb₂O_{5-x} exhibit a characteristic EPR signal at a g value of 2.001, which is attributed to unpaired electrons associated with Ov. Moreover, the comparable signal intensities indicate that both samples possess a similar concentration of Ov.

Fig. S9. (a) The Tauc plot, (b) Mott-Schottky plots and (c) Schematic energy band structure of Ov-Nb₂O₅.

 UV-visible diffuse reflectance spectroscopy and Mott-Schottky tests were further carried out to determine the band structure. As shown in Fig. S9a, the corresponding bandgap energy of Ov-Nb₂O₅ are 3.09 eV, respectively. The slightly narrower bandgap of Ov-Nb₂O₅ compared with Nb₂O₅ (3.17 eV) indicates that Ov contributes to bandgap narrowing, whereas its larger bandgap relative to Nb₂O_{5-x} (2.88 eV) suggests that N-doping plays a crucial role in further modulating the electronic structure. Based on the flat band potential of Ov-Nb₂O₅ measured to be -0.86 V vs. Ag/AgCl (Fig. S9b), the band alignment of Ov-Nb₂O₅ is depicted, with the conduction and valence band positions at -0.66 and +2.43 V, respectively (Fig. S9c). By comparison, it is evident that N-doping significantly affects the position of the valence band, likely due to N-doping creating new electronic states and modulating the local electronic environment, which results in an upward shift of the valence band maximum. In summary, the Ov and N-doping exert a synergistic effect on the electronic structure of Nb₂O₅, thereby effectively reforming the band structure.

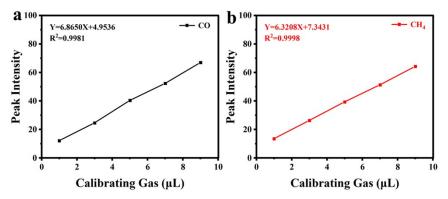
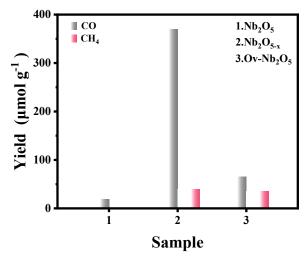


Fig. S10. Standard curves for CO (a) and CH₄ (b) on the FID detector.

The specific standard curves and their corresponding R^2 values are as shown in Fig.

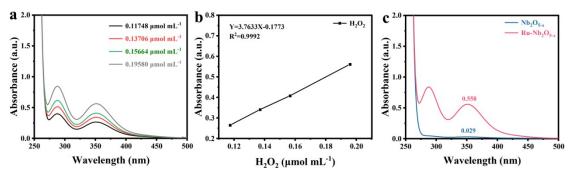
4 S10: X denotes the volume of the injected standard gas, while Y represents to the

5 corresponding peak area.


1

2

6


7

8

Fig. S11. The photocatalytic CO₂ reduction activities of Nb₂O₅, Nb₂O_{5-x} and Ov-Nb₂O₅ during 4 h.

As shown in Fig. S11, after 4 h of illumination, CO is the only product detected over 9 pristine Nb₂O₅ (18.8 µmol g⁻¹). While, Ov-Nb₂O₅ exhibits markedly enhanced activity, 10 producing 65.2 μ mol g⁻¹ of CO and 35.2 μ mol g⁻¹ of CH₄. The CO yield over Ov-Nb₂O₅ is 3.5 times higher than that of pristine Nb₂O₅, which can be entirely attributed to the 12 contribution of Ov. In sharp contrast, the Nb₂O_{5-x} sample shows significantly enhanced CO₂ reduction performance, which mainly produced CO (369.4 µmol g⁻¹) ccompanied 14 by a small amount of CH₄ (39.1 μmol g⁻¹). For Nb₂O_{5-x}, the CO yield is 5.7 times higher 15 than that of Ov-Nb₂O₅, reflecting the significant effect of N-doping. Taken together, these results indicate that the enhanced CO₂ photoreduction performance of Nb₂O_{5-x} 17 arises from the synergistic effect of Ov and N-doping, with the latter playing a key role 18 in modulating the electronic structure.

Fig. S12. (a-b) Standard curve for the measurement of H_2O_2 and (c) UV-vis spectra for detecting generated H_2O_2 over Nb_2O_{5-x} and $Ru-Nb_2O_{5-x}$.

As shown in Fig. S12, iodometric analysis of the hydrogen peroxide produced over Nb₂O_{5-x} and Ru-Nb₂O_{5-x} gave absorbance values of 0.558 and 0.029, respectively. According to the standard calibration curve, the corresponding H₂O₂ yields were calculated to be 1.582 and 0.444 μmol, respectively. The significantly higher yield obtained with Ru-Nb₂O_{5-x} corroborates that the incorporation of Ru species effectively promotes water oxidation.

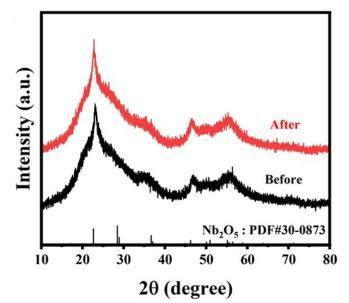
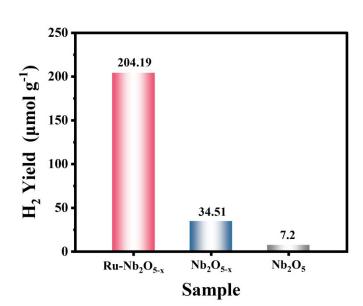



Fig. S13. XRD patterns of the Ru-Nb₂O_{5-x} before and after photocatalysis.

Fig. S14. SEM image of the Ru-Nb₂O_{5-x} after photocatalysis.

6 Fig. S15. The photocatalytic water splitting performance for Ru-Nb₂O_{5-x}, Nb₂O_{5-x} and 7 Nb₂O₅.

The introduction of metallic Ru substantially improved the photocatalytic water-splitting efficiency, with Ru-Nb₂O_{5-x} achieving an H₂ evolution of 204.19 μ mol g⁻¹, far surpassing that of Nb₂O_{5-x} (34.51 μ mol g⁻¹). The result indicates that Ru is essential for facilitating the processes of water activation and dissociation.

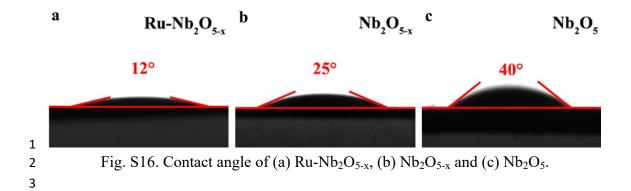


Table S1. Ru content in the different catalysts was determined by inductively coupled
 plasma optical emission spectrometry (ICP-OES).

Sample	Ru (mg L ⁻¹)	Ru content (wt%)
Ru-Nb ₂ O ₅₋₂	_x -1 0.167	0.33
Ru-Nb ₂ O ₅₋₅	x-2 0.324	0.65
Ru-Nb ₂ O ₅	0.512	1.02
Ru-Nb ₂ O ₅₋	x-4 0.609	1.22

9 5 mg sample was digested with HF until a clear solution was obtained. The resulting solution was quantitatively transferred to a 100 mL volumetric flask, diluted to the mark, and homogenized by ultrasonication.

Table S2. Comparison of the reaction conditions and performances with other catalysts

2 for photocatalytic CO₂ reduction.

for photocatalytic	COZTEGUCII				
Catalysts	Light source	Reaction condition	Products	Activity (μmol g ⁻¹ h ⁻¹)	Reference
Ru-Nb ₂ O _{5-x}	300 W Xe lamp	Soild-gas	CO, CH ₄	165.9	This work
Nb ₂ O _{5-x}	300 W Xe lamp	Soild-gas	CO, CH ₄	92.4	This work
black Nb ₂ O _{5-x} NFs	300 W Xe lamp	Soild-liquid H ₂ O	CO, CH ₄	10.59	1
V _O -Nb ₂ O ₅ nanosheets	300 W Xe lamp	Soild-gas	CO, CH ₄	4.30	2
Pd-Nb ₂ O ₅ nanosheets	300 W Xe	Soild-gas	CO, СН ₄ , С ₂ Н ₄ , СН ₃ СООН	13.2	3
$ m V_{Nb-O}~NA$	300 W Xe lamp	Soild-liquid H ₂ O	CO	43.9	4
Ag-20@Nb ₂ O _{5-x}	300 W Xe lamp (420 nm cut filter)	Soild-liquid H ₂ O+NaHCO ₃ + Ru(bpy) ₃ ²⁺ + ascorbic acid	CO, CH₄	5.913	5
NB@CN (1:5)	5 W white LED light	Soild-liquid H ₂ O+NaHCO ₃ + Ru(bpy) ₃ ²⁺ + ascorbic acid	CO, CH ₄	0.155	6
V _{O,N} -NBCN	300 W Xe lamp (420 nm cut filter)	Soild-liquid H ₂ O+TEOA	CO, CH ₄	0.89	7
${ m Nb_2O_5/W_{18}O_{49}}$	300 W Xe lamp	Soild-gas	СО	40.15	8
Nb ₂ O ₅ -0.5%Cu	300 W Xe lamp	Soild-liquid H ₂ O	CO, CH ₄	2.84	9
HBNO	300 W Xe lamp	Soild-gas	CO, CH ₄	5.28	10
Nb-BBN120	300 W Xe lamp	Soild-gas	CO, C ₂ H ₄	2.8	11
1ANbO	UV-light	Soild-gas	CO, CH ₄	66.5	12
Bi ₃ TiNbO ₉ nanosheets with OVs	300 W Xe	Soild-gas	СО	20.91	13

Oxygen-vacancies tuned Bi ₂ MoO ₆	300 W Xe lamp	Soild-gas	CO	1.7	14
WO ₃ –C-OV	300 W Xe lamp (AM 1.5G filter)	Soild-gas	CO, CH ₄	23.2	15
Oxygen-vacancies tuned BiOIO ₃ single crystals	300 W Xe	Soild-gas	CO	17.33	16
Co single atoms/ oxygen-doped boron nitride	300 W Xe	Soild-liquid H ₂ O+TEOA	CO	32	17
Vo-R Bi ₂₄ O ₃₁ Br ₁₀ nanosheets	300 W Xe lamp	Soild-liquid H ₂ O	СО	14.8	18
BiOBr-1	300 W Xe lamp	Soild-gas	CO, CH ₄	71.23	19
Ag/BiOCl-OV NFs	300 W Xe lamp	Soild-gas	CO, CH ₄	76	20
Sur-Vo-BWO	300 W Xe lamp	Soild-gas	CO, CH ₄	18.73	21
BiO _{1-x} Cl- OH	300 W Xe lamp	Soild-liquid H ₂ O+CoCl ₂	CO, CH ₄	1.8	22
BIO-LOV2	300 W Xe lamp	Soild-gas	CO, CH ₄	17.33	23
DUC PBOC-0.5	300 W Xe lamp	Soild-gas	CO, CH ₄	16.02	24

- **Table S3.** The possible reaction path for the catalytic system of Nb_2O_{5-x} and $Ru-Nb_2O_{5-x}$
- 2 _x samples.

$CO_2 + e^- + H^+ \rightarrow COOH^*$	(1)
$COOH^* + e^- + H^+ \rightarrow CO^* + H_2O$	(2)
$CO^* \rightarrow CO \uparrow + * \text{ or } CO^* + e^- + H^+ \rightarrow CHO^*$	(3)
$CHO^* + e^- + H^+ \rightarrow CH_2O^*$	(4)
$CH_2O^* + e^- + H^+ \rightarrow CH_3O^*$	(5)
$CH_3O^* + e^- + H^+ \rightarrow CH_4 \uparrow + O^*$	(6)

1 Reference

- 2 [1] Lin, X.; Xia, S. H.; Zhang, L.; Zhang, Y. Y.; Sun, S. M.; Chen, Y. H.; Chen, S.;
- 3 Ding, B.; Yu, Ji. Y.; Yan, J. H. Fabrication of Flexible Mesoporous Black Nb₂O₅
- 4 Nanofiber Films for Visible-Light-Driven Photocatalytic CO₂ Reduction into CH₄. Adv.
- 5 *Mater.* **2022**, 34, 2200756.
- 6 [2] Wu, J. C.; Zhu, J. C.; Fan, W. Y.; He, D. P.; Hu, Q. Y.; Zhu, S.; Yan, W. S.; Hu, J.;
- 7 Zhu, J. F.; Chen, Q. X.; Jiao, X. C.; Xie, Y. Selective Photoreduction of CO₂ to CH₄
- 8 Triggered by Metal-Vacancy Pair Sites. *Nano Lett.* **2024**, 24, 696-702.
- 9 [3] Ding, J. Y.; Du, P. J.; Li, P. P.; Liu, W. X.; Xu, J. Q.; Yan, W. S.; Pan, Y.; Hu, J.;
- 10 Zhu, J. F.; Chen, Q. X.; Jiao, X. C.; Xie, Y. Highly Active Photoreduction of
- 11 Atmospheric-Concentration CO₂ into CH₃COOH over Palladium Particles on Nb₂O₅
- 12 Nanosheets. Angew. Chem. Int. Ed. 2025, 64, e202414453.
- 13 [4] Di, J.; Chen, C.; Wu, Y.; Chen, H.; Xiong, J.; Long, R.; Li, S. Z.; Song, L.; Jiang,
- 14 W.; Liu, Z. Asymmetric Electron Redistribution in Niobic-Oxygen Vacancy Associates
- 15 to Tune Non-Covalent Interaction in CO₂ Photoreduction. Adv. Mater. 2024, 36,
- 16 2401914.
- 17 [5] Jiang, J. W.; Wang, X. F.; Guo, H. Enhanced Interfacial Charge Transfer/Separation
- 18 By LSPR-Induced Defective Semiconductor Toward High CO₂RR Performance. *Small*.
- 19 **2023**, 19, 2301280.
- 20 [6] Wang, X. F, Jiang, J. W.; Wang, L. L.; Guo, H. Efficient Nb₂O₅@g-C₃N₄
- 21 heterostructures for enhanced photocatalytic CO₂ reduction with highly selective
- 22 conversion to CH₄. *Inorg. Chem. Front.* **2024**, 11, 123.
- 23 [7] Jiang, J. W.; Wang, X. F.; Xu, Q. J.; Mei, Z. Y.; Duan, L. Y.; Guo, H. Understanding
- 24 dual-vacancy heterojunction for boosting photocatalytic CO₂ reduction with highly
- 25 selective conversion to CH₄. Appl. Catal. B: Environ. 2022, 316, 121679.
- 26 [8] Wang, Y. X.; Tao, R.; Mu, Y. Q.; Piao, T. Y.; Li, J. L.; M, Y.; F, X. X.; Y, Q. Z.
- 27 Enhanced solid-gas-phase carbon dioxide photoreduction efficiency through in-situ
- 28 growth of W₁₈O₄₉ on one-dimensional Nb₂O₅ nanofibers for forming ell-connected S-
- 29 scheme heterojunction. *Fuel.* **2025**, 386, 134287.
- 30 [9] Chen, J. L.; Wang, T.; Yang, Z. Q.; Gao, P. Cu-modified Nb₂O₅ photocatalysts for
- 31 high performance of CO₂ reduction. *Mater. Res. Bull.* **2025**, 184, 113288.
- 32 [10] Su, F. Y.; Wang, Z. S.; Tian, M. Z.; Liu, K. C.; Xie, H. Q.; Tu, W. G.; Zhang, Y.
- 33 Z.; Li, X.; Jin, X. L.; Kong, X. Y. Constructing a crystalline-amorphous hydrated
- 34 niobium pentoxide homojunction for superior photocatalytic CO₂ reduction into CH₄
- with high selectivity. *Sci. Technol.* **2023**, 13, 5048-5057.
- 36 [11] J'essica A, O.; Juliana A, T.; Renato V, G.; Caue, R.; Francisco G. E, N.; Luís
- 37 A.M, R. Photocatalytic CO₂ reduction over Nb₂O₅/basic bismuth nitrate
- 38 nanocomposites. Mater. Res. Bull. 2021, 133, 111073.
- 39 [12] Zeng, M.; Wu, Y. T.; Wang, Y.; Zhang, Z. Z.; Fu, X. Z.; Dai, W. X. Silver
- 40 nanoparticle-enhanced photocatalytic CO₂ reduction over Ag/Nb₂O₅ under UV-vis
- 41 light irradiation. Appl. Catal. A. 2023, 666, 119412.
- 42 [14] Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K.
- 43 Y.; Mao, E. Y.; Mei, Bastian.; Mul, G. D.; Ma, T. Y.; Zhang, Y. H. Synergy of

- 1 ferroelectric polarization and oxygen vacancy to promote CO₂ photoreduction. Nat.
- 2 Commun. 2021, 12, 4594.
- 3 [14] Zhang, Y. Z.; Zhi, X.; Harmer, J. R.; Xu, H. L.; Davey, K.; Ran, J. R.; Qiao, S. Z.
- 4 Facet-specific Active Surface Regulation of Bi_xMO_v (M= Mo, V, W) Nanosheets for
- 5 Boosted Photocatalytic CO₂ reduction. *Angew. Chem. Int. Ed.* **2022**, 61, e202212355.
- 6 [15] Lei, B.; Cui, W.; Chen, P.; Chen, L. C.; Li, J. Y.; Dong, A. C-Doping Induced
- 7 Oxygen-Vacancy in WO₃ Nanosheets for CO₂ Activation and photoreduction. ACS
- 8 Catal. 2022, 12, 9670-9678.
- 9 [16] Chen, F.; Ma, Z. Y, Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H.
- 10 W. Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies
- 11 Collaboratively Boosting CO₂ Photoreduction on BiOIO₃ Single Crystals. Adv. Mater.
- 12 **2020**, 32, 1908350.
- 13 [17] Liang, J. L.; Zhang, H. B.; Song, Q. Q.; Liu, Z. Y.; Xia, J.; Yan, B. H.; Meng, X.
- 14 M.; Jiang, Z. F.; Lou, X. W.; Lee, C. S. Modulating Charge Separation of Oxygen-
- 15 Doped Boron Nitride with Isolated Co Atoms for Enhancing CO₂-to-CO
- 16 Photoreduction. Adv. Mater. 2024, 36, 2303287.
- 17 [18] Li, J. W, Sun, X. R.; Duan, Y. Q.; Ma, J. J.; He, C. Z.; Li, S. J. Oxygen vacancy-
- 18 engineered ultrathin Bi₂₄O₃₁Br₁₀ for visible light-driven CO₂ reduction with nearly
- 19 100% CO selectivity in pure water. *Chem. Eng. J.* **2023**, 473 145383.
- 20 [19] Xie, J.; Lu, Z. J.; Feng, Y.; Huang, J. G.; Hu, J. D.; Hao, A. Z.; Cao, Y. L. A
- 21 small organic molecule strategy for remedying oxygen vacancies by bismuth defects
- 22 in BiOBr nanosheet with excellent photocatalytic CO₂ reduction. Nano Res. 2024, 17,
- 23 297-306.
- 24 [20] Wang, F.; Guo, J. C.; Han, L. H.; Shen, H. X.; Zhu, L. L.; Chen, S. Oxygen
- 25 vacancy-engineered BiOCl nanoflake with silver decoration for enhanced
- 26 photocatalytic CO₂ reduction at solid-gas interface. *Chem. Eng. J.* **2023**, 478, 147365.
- 27 [21] Liu, H. H.; Chen, Y. X.; Wang, W. T.; He, X. Y.; He, Z. X.; Li, L.; Zeng, S. Y.;
- 28 Cao, R. G.; Zhang, G. Q. In situ solvothermal reduction engineering enables delicate
- 29 control over surface-rich oxygen vacancies on Bi₂WO₆ for highly efficient
- 30 photocatalytic CO₂ reduction. *EES Catal.* **2023**, 1, 495.
- 31 [22] Sun, H. Y.; Lin, H. L.; Jia, X. M.; Li, X. Y.; Li, S.; Jin, X.; Wang, Q. L., Chen, S.
- 32 F.; Cao, J. Dual structure cobalt sites on surface hydroxyl and oxygen vacancy of BiOCl
- 33 for cooperative CO₂ reduction and tetracycline oxidation. Appl. Catal. B: Environ.
- **2024**, 359, 124514.
- 35 [23] Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H.
- 36 W. Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies
- 37 Collaboratively Boosting CO₂ Photoreduction on BiOIO₃ Single Crystals. *Adv. Mater.*
- **2020**, 32, 1908350.
- 39 [24] Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y. X.; Li, H. M.; Chu, P. K.;
- 40 Xia, J. X. Excited Electron-Rich Bi_(3-x)⁺ Sites: A Quantum Well-Like Structure for
- 41 Highly Promoted Selective Photocatalytic CO₂ Reduction Performance. Adv. Funct.
- 42 *Mater.* **2022**, 32, 2202885.