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Material characterization

Phase compositions of the as-made materials were taken on D 8 advance
(Germany Bruker) X-ray diffractometer (XRD) with Cu Ka radiation (A=0.15405 nm).
Morphologies of the samples were obtained on a field-emission scanning electronic
microscopy (FE-SEM, Hitachi S-4800 microscope) and a high-resolution
transmission electronic microscopy (HR-TEM, Hitachi H600 microscope) at an
acceleration voltage of 200 kV. At the same time, the elemental content and
distribution of the compounds were analyzed by X-ray energy dispersive spectroscopy
(EDX) and elemental mapping (HR-TEM, Hitachi H600 microscope). Transmission
electron microscopy (TEM) were performed on a Hitachi H600 microscope. X-ray
photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher
Scientific Escalab 250 Xi system operated at 15 kW with a monochromatic Al Ka
source, and a base pressure less than 1x10 Mpa under ultra-high vacuum (UHV) and

no dust conditions (pass energy = 50.0 eV, dwell time = 136 s, number of scan = 1,
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spot size = 500 um). Raman spectra were obtained on a confocal microscope-based
Raman spectrometer (HR Evlution, incident power of 0.15 mW, laser wavelength of
532 nm).
Electrochemical measurements

All electrochemical measurements were tested on CHI-760E electrochemical
workstation wich a standard three-electrode system. The obtained materials (1 cmx0.5
cm), Hg/HgO and Graphite rod electrode were used as the working electrode,
reference electrode and counter electrode, respectively. All electrochemical tests,
including linear sweep voltammograms (LSV), cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) were performed in an 1.0 M KOH
aqueous solution at room temperature. All measured potentials were calibrated to a
reversible hydrogen electrode (RHE) by using the Nernst equation:

E (RHE) = E (Hg/HgO) + (0.098 + 0.059 pH) V Equation (1)
Laviron equation:

RT anF RT\ .
E,= E1/2_(—) X In ( )_(T)C X Iniwi(9)

ank RTk Equation (1)

E, is the reduction potential of metal redox, E, is the formal potential of metal
redox, R is universal gas constant, T is temperature in Kelvin, n is number of
electrons transferred, F is the Faraday constant, a is the transfer coefficient, ks is the
rate constant of metal redox, and v is scan rate in the CV measurement. The ks and o
values can be obtained from the intercept and slope of the linear graph of E, against In
().

Faraday efficiency calculation
The Faraday efficiencies of the S,V-Ni,P/NF during the HER/OER were calculated

based on the ratio of the volume of actual (V,cwa) H2/O; evolved to the theoretical one

(Vtheoretical) .
%

actual
Faraday efficiency = Viheoretical x 100%
The actual volumes of generated H,/O, gas was gathered using the drainage method.

The theoretical volume can be calculated using the formula:



I-t-V,,

Vineoreticat = 2" F
where I is current (A), t is time (s), Vy, is molar volume of H,/O, gas (28.004 L mol-!,
303.15 K, 90 kPa in Urumqi, Xinjiang), F is the Faraday constant (96485 C mol'), z
is electron number transferred per molecule (z is 2 and 4 for HER and OER,
respectively).
Calculation method

All calculations were carried out using spin-polarized and periodic DFT
implemented in the Vienna Ab initio Simulation Package (VASP) code'. The
exchange-correlation potential was treated by using a generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization®. The
van der Waals correction of Grimme’s DFT-D3 model was also adopted®. Meanwhile,
a vacuum region of about 15 A was applied to avoid the interaction between adjacent
images. The energy cutoff was set to be 450 eV. The Brillouin-zone integration was
sampled with a I'-centered Monkhorst-Pack mesh* of 3 x 3 x 1. The structures were

fully relaxed until the maximum force on each atom was less than 0.02 eV/A, and the

energy convergent standard was 10~ eV. The different charge density can be defined
as Ap = psurface_patoms_pslab’ where psurface’ patoms’ and Pslab are the electron

densities of the Ni,P and S,V-Ni,P, the isolated Ni and P (V and S )atoms, and except
for the rest of the surface behind the Ni and P (V and S )atoms, respectively. The

AE=E, ,~E, —E

Adsorption energy (AE) is defined as, H where E.u is the energy

adsorbed by the *H on the surface, E, is the energy of the surface, and Ey is the

energy of the H atom under vacuum. The Gibbs free energy change (AG) for each
elementary steps of proton-coupled electron (H" + ) transfer (PCET) was calculated ,
which has proved to be the valid first-principles computational electrochemistry
technique: AG = AE + AEzpg — TAS + AG,y , where AE, AEzpg, and AS are the
electronic energy, zero-point energy, and entropy change obtained from DFT
calculations, T is the temperature (T =298.15 K), AG,n = kgTIn10xpH(pH=14 in this

work) corresponding to the correction of free energy due to the variation in H*



concentration.

Figure S1. SEM images of (a, b) S, V-Ni,P/NF; (c, d) V-Ni,P/NF; (e, f) S-Ni,P/NF.
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Figure S2. LSV curves of S,V-Ni,P/NF with different S contents (a) HER; (b) OER.
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Figure S3. CV curves of (a) S, V-Ni,P/NF, (b) S-Ni,P/NF, (c) V-Ni,P/NF, (d)
Ni,P/NF at different scan rates for OER.
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Figure S4. OER performance of samples: (a) the roughness factor (RF) and (b) the
normalized polarization curve of ECSA.
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Figure S5. CV curves of (a) S, V-Ni,P/NF, (b) S-Ni,P/NF, (c) V-Ni,P/NF, (d)
Ni1,P/NF at different scan rates for HER.
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Figure S6. HER performance of samples: (a) the roughness factor (RF) and (b) the

normalized polarization curve of ECSA.
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Figure S7. SEM images of the S, V-Ni,P/NF (a-c) after OER 5000 cycles test and (e-
f) after HER 5000 cycles test
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Figure S8. XRD patterns (a) and XPS spectra (b) of initial, after HER and OER test
of S,V-Ni,P/NF in 1 M KOH.
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Figure S9. XRD patterns (a) and XPS spectra (b) of initial and after OER test of
S,V-Ni,P/NF in 1 M KOH+ 1 M NaCl.
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Figure S10. CV test at different scan rates for S-Ni,P/NF (a); V-Ni,P/NF (b);

Ni,P/NF (c).
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Figure S12. Nyquist plots at different potentials for S-Ni,P/NF (a); V-Ni,P/NF (b);
Ni,P/NF (c).
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Figure S13. Bode plot at different potentials for S-Ni,P/NF (a); V-Ni,P/NF (b).
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Figure S14. Equivalent circuit diagram of V-Ni,P/NF and Ni,P/NF.
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Figure S15. The structure models of Ni,P/NF(a,b) and S,V-Ni,P/NF (c,d).



Figure S16. Differential charge diagram of Ni,P/NF.
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Figure S17. The H* adsorption models at Ni site (a,b) and P site (c,d) on Ni,P/NF.
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Figure S18. The H* adsorption models at Ni site (a,b), P site (c,d), V site (e,f) and S
site (g,h) on S,V-Ni,P/NF.
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Figure S19.

The OH* adsorption models at on Ni,P/NF (a,b) and S,V-Ni,P/NF
(c,d).
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Figure S20. The O* adsorption models at on Ni,P/NF (a,b) and S,V-Ni,P/NF (c,d).
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Figure S21. The OOH* adsorption models at on Ni,P/NF (a,b) and S,V-Ni,P/NF
(c,d).
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Table S1. Energy dispersive X-ray spectroscopy data of S,V-Ni,P/NF

Element Wt%
C 8.22
O 7.95
P 23.44
S 0.26
\Y 0.41
Ni 59.72




Table S2. Comparison of OER of S,V-Ni,P/NF with other reported Transition metal
phosphides electrocatalys in 1 M KOH

(CC?ZIIZZZS) (ri A Overpotential | Tafel slope | Stability Reference
> (mV) (mV decc™) (h)
cm™@)

S,V-Ni2P/NF 100 208 30.9 200 This Work
Ni,P/Ni foam 100 316 75 24 [1]
Zn,-CoP 10 290 56 - [2]
V-FeNi,P/NF 10 200 74 48 [3]
Mo-NiCoP 100 261 58 24 [4]
NFF(V, Na)-P 100 303 52.8 180 [5]
Ni,P-CoCH/CFP 100 320 76 50 [6]
Mo- 100 270 60.6 40 [7]

Ni3S,/NixPy/NF

Fe,Rh-Ni,P/NF 30 228 52.7 24 [8]
NiFeOP 10 217 62.7 40 [9]
Ni,P-Fe,P/NF 100 261 58 24 [10]




Table S3. Comparison of HER of S,V-Ni,P/NF with other reported Transition metal
phosphides electrocatalys in 1 M KOH

(CC?ZIIZZZS) (ri A Overpotential | Tafel slope | Stability Reference
> (mV) (mV decc™) (h)
cm™@)

S,V-Ni2P/NF 100 185 91.2 200 This Work
Ni,P/Ni foam 100 222 68 24 [1]
Zn,-CoP 10 98 44 - [2]
V-FeNi,P/NF 100 222 53 48 [3]
Mo-NiCoP 100 225 86 48 [4]
NFF(V, Na)-P 10 117 42.6 120 [5]
Ni,P-CoCH/CFP 100 143 36 50 [6]
Mo- 10 109 68.4 24 [7]

Ni3S,/NixPy/NF

Fe,Rh-Ni,P/NF 10 73 117.3 24 [8]
NiFeOP 10 153 105.3 40 [9]
Ni,P-Fe,P/NF 100 261 58 24 [10]




Table S4. Comparison of overall water splitting activities of S,V-Ni,P/NF with
other reported Ni-based electrocatalys in 1 M KOH

Catalysts Catalysts J Potential
(Cathode) (anode) (mA cm- Reference
2) V)

S,V-Ni2P S,V-Ni2P 10 1.42 This Work
Ni,P/Ni foam Ni,P/Ni foam 10 1.63 [1]
Zn, -CoP Zng -CoP 10 1.57 [2]
V-FeNi,P/NF V-FeNi,P/NF 10 1.57 [3]
Mo-NiCoP Mo-NiCoP 10 1.61 [4]
NFF(V, Na)-P NFF(V, Na)-P 10 1.56 [5]
Ni,P-CoCH/CFP Ni,P-CoCH/CFP 10 1.53 [6]
Mo-Ni3S,/NixPy/NF | Mo-Ni;S,/NiP,/NF 10 1.46 [7]
Fe,Rh-Ni,P/NF Fe,Rh-Ni,P/NF 10 1.62 [8]
NiFeOP NiFeOP 10 1.57 [9]
Ni,P-Fe,P/NF Ni,P-Fe,P/NF 10 1.561 [10]
NiFeP/CC NiFeP/CC 10 1.57 [11]
NiCoP/rGO NiCoP/rGO 10 1.59 [12]
CoFeP/rGO CoFeP/rGO 10 1.58 [13]
Fe,-NiCoP/CC Fe,-NiCoP/CC 10 1.61 [14]
Nig.96C0g,04P Nig.96C0g,04P 10 1.45 [15]




Table S5. Comparison of overall water splitting activities of S,V-Ni,P/NF with
other reported Ni-based electrocatalys in 1.0 M KOH+0.5 M NaCl

Catalysts Electrolyte J(mA cm?) | Potential(V) Reference
S,V-Ni2P 1.0 M KOH+ 10 1.48 This Work

0.5 M NaCl

NFF(V, Na)-P 1.0 M KOH+ 10 1.58 [5]
0.5 M NaCl

FMCO/NF 1.0 M KOH+ 10 1.58 [16]
0.5 M NaCl

Co-Ni-S/NF 1.0 M KOH+ 10 1.67 [17]
0.5 M NaCl

CoSe/MoSe, 1.0 M KOH+ 10 1.69 [18]
0.5 M NaCl

NiNS 1.0 M KOH+ 10 1.8 [19]
0.5 M NaCl

NiCoP 1.0 M KOH+ 10 1.82 [20]
0.5 M NaCl

PBA/NF-2h 1.0 M KOH+ 10 1.83 [21]
0.5 M NaCl

NiCoHPi@Ni;N/N | 1.0 M KOH+ 10 1.86 [22]
F 0.5 M NaCl

Mo-CoP,/NF 1.0 M KOH+ 10 1.95 [23]
0.5 M NaCl

CoNi,S4/CC 1.0 M KOH+ 10 2.04 [24]
0.5 M NaCl

Table S6. Fitting results of S,V-Ni,P/NF electrodes impedance spectra

leziy /I:IF Rs CPE1-T | CPEI-P Rct CPE2-T | CPE2-P Rmt
0.9 1.872 | 0.035 0.794 0.300 0.034 0.927 275.2
0.95 1.820 | 0.005 0.936 0.201 0.017 0.872 151.9
1.00 1.819 | 0.009 0.877 0.237 0.016 0.891 41.11
1.05 1.818 | 0.013 0.82 0.293 0.014 0.920 4.458
1.10 1.181 0.013 0.820 0.293 0.014 0.920 4.458
1.15 1.802 | 0.009 854 0.269 0.013 0.931 3.373
1.20 1.804 | 0.004 0.94 0.185 0.014 0.896 1.541
1.25 1.805 | 0.004 0.94 0.198 0.013 0.919 0.059




Table S7. Fitting results of S-Ni,P/NF electrodes impedance spectra

S-
Ni,P/N | Rs CPE1-T | CPEI-P Rct CPE2-T | CPE2-P Rmt
F
0.9 1.882 | 0.00183 1.029 0.11087 | 0.034542 | 0.8079 401.8
0.95 | 1.885] 0.0011627 | 1.081 | 0.097881 | 0.03406 | 0.81668 | 141.5
1.00 | 1.894 | 0.012469 | 0.81638 | 0.19556 | 0.028678 | 0.88275 | 22.97
1.05 | 1.904 | 0.012666 | 0.81632 | 0.20277 | 0.02725 | 0.89981 6.83
1.10 | 1.914 | 0.015221 | 0.8052 | 0.19112 | 0.028263 | 0.89795 | 3.038
1.15 | 1.915 | 0.0073608 | 0.87311 | 0.16205 | 0.029343 | 0.88849 | 1.717
1.20 | 1.912 | 0.0029722 | 0.97534 | 0.12498 | 0.029809 | 0.86189 1.16
1.25 | 1.912 | 0.0058063 | 0.8986 | 0.16629 | 0.025465 | 0.92252 | 0.80488
Table S8. Fitting results of V-Ni,P/NF electrodes impedance spectra
V-Ni,P Rs CPE1-T CPE1-P Ret
0.9 2.086 0.0048413 0.66215 1126
0.95 1.874 0.0085788 0.56331 109
1.00 1.842 0.0076139 0.5718 20.35
1.05 1.854 0.005965 0.60946 14.48
1.10 1.912 0.0037152 0.67509 10.86
1.15 1.953 0.0023914 0.73048 7.739
1.20 1.96 0.0016651 0.76894 52
1.25 1.969 0.0010008 0.82593 3.409
Table S9. Fitting results of Ni,P/NF electrodes impedance spectra
Ni,P Rs CPE1-T CPE1-P Ret
0.9 2.129 0.00446 0.9085 952.7
0.95 2.123 0.0046 0.9081 953.1
1.00 2.082 0.005 0.869 134.2
1.05 2.019 0.003 0.862 31.37
1.10 2.022 0.003 0.861 31.43
1.15 1.986 0.003 0.831 13.02
1.20 1.941 0.003 0.8096 5.904
1.25 1.902 0.0025 0.799 3.252
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