Supplementary Information

Enhanced Carrier Mobility-Driven Performance Improvement in

Colloidal Quantum Dot Solar Cells

Yongwoo Jeon^{a,bv}, Hong Gu Kang^{cv}, Seohee Park^{a,bv}, Younghyun Kim^d, Seong-Yong Cho^{c,d}, Dennis T. Lee^e, Younghoon Kim^f, Byeong Guk Jeong^{g*}, Sohee Jeong^{b*}, Jung Hoon Song^{h*}, Ju Young Woo^{a,c,i*}

- ^a Department of Autonomous Manufacturing & Process R&D, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
- ^b Department of Energy Science (DOES), Center for Artificial Atoms, Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- ^c HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea
- ^d Department of Photonics and Nanoelectronics, Hanyang University, Ansan 15588, Korea
- ^e Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
- ^f Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- g Institute for Environment and Energy, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- ^h Department of Semiconductor Engineering, Semiconductor Nanotechnology Research Institute, Mokpo National University, Muan 58554, Republic of Korea
- ⁱ School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

▼ These authors contributed equally to this work.

*e-mail: jywoo@kitech.re.kr (Dr. Ju Young Woo)

*e-mail: jhsong@mnu.ac.kr (Prof. Jung Hoon Song)

*e-mail: s.jeong@skku.edu (Prof. Sohee Jeong)

*e-mail: bgjeong@pusan.ac.kr (Prof. Byeong Guk Jeong)

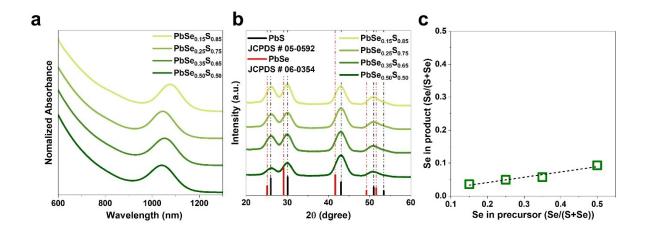
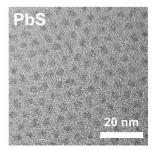
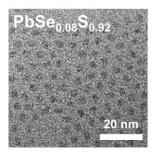




Figure S 1. (a) Absorption spectra, (b) XRD patterns, and (c) actual Se composition determined by ICP analysis of ternary PbSSe quantum dots synthesized without a highly reactive Se precursor, as a function of anion ratio.

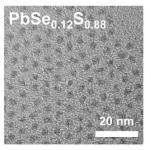


Figure S 2. TEM images of PbS quantum dots and ternary PbSSe quantum dots synthesized with the addition of a highly reactive Se precursor.

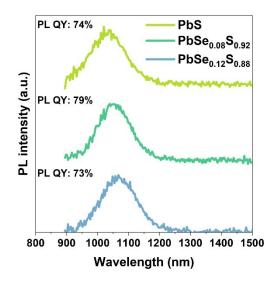


Figure S 3. Photoluminescence quantum yield (PL QY) comparison between binary PbS quantum dots and ternary PbSeS quantum dots.

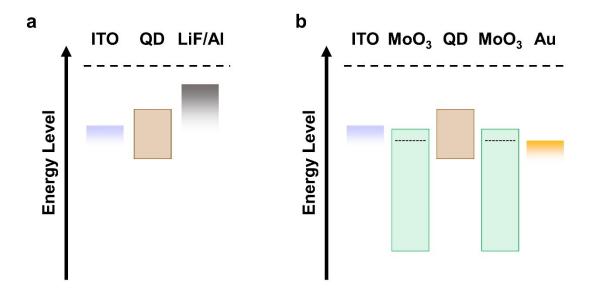


Figure S 4. Energy band diagrams for SCLC measurements: (a) electron-only device (EOD) and (b) hole-only device (HOD).

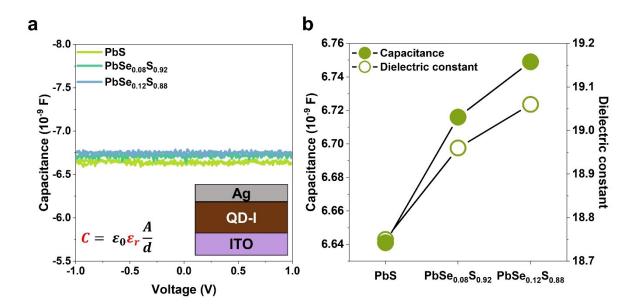


Figure S 5. (a) Capacitance as a function of voltage sweep for different anion compositions, and (b) dielectric constants calculated from the measured capacitance values.

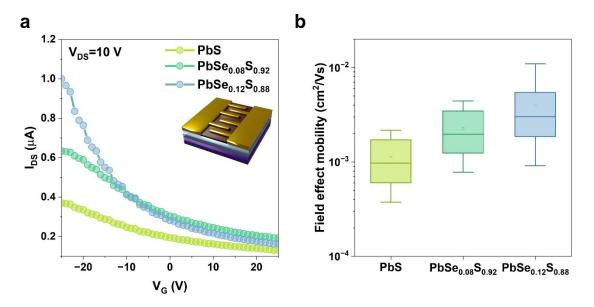


Figure S 6. (a) Transfer curves of FETs based on PbS and ternary PbSeS quantum dots. (channel length: $5 \mu m$; width: $300 \mu m$) (b) Field-effect mobility of majority carrier (hole) extracted in the linear regime.

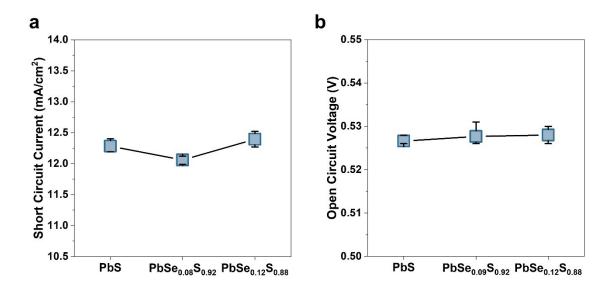
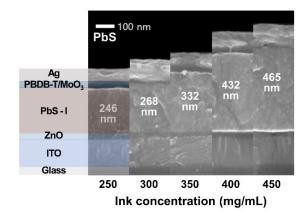
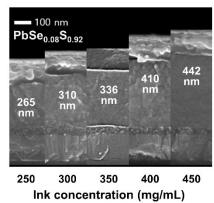




Figure S 7. (a) Short-circuit current density (J_{SC}) and (b) open-circuit voltage (V_{OC}) of fully depleted devices with identical active layer thickness, as a function of Se composition.

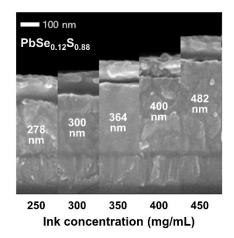


Figure S 8. Cross-sectional SEM images of devices fabricated with varying ink concentrations for each anion composition.

PbS	246 nm	268 nr	n 332	nm 43	32 nm	465 nm
Short circuit current (mA/cm²)	23.79	23.64	24.	85 2	25.83	23.60
Open circuit voltage (V)	0.556	0.550	0.5	50 0).554	0.539
Fill factor (%)	56.67	53.64	54.	05 5	1.82	45.75
Power conversion efficiency (%)	7.50	6.97	7.4	40	7.41	5.82
$PbSe_{0.08}S_{0.92}$	265 nm	310 nr	n 336	nm 41	0 nm	442 nm
Short circuit current (mA/cm²)	24.68	23.89	25.	11 2	27.23	26.70
Open circuit voltage (V)	0.558	0.551	0.5	49 0	0.554	0.551
Fill factor (%)	58.75	56.86	55.	58 5	3.95	51.79
Power conversion efficiency (%)	8.08	7.48	7.0	66	8.14	7.63
${ m PbSe_{0.12}S_{0.88}}$	278 nm	300 nm	364 nm	400 nm	482 nm	559 nm
Short circuit current (mA/cm²)	25.01	24.94	26.21	28.04	28.25	27.70
Open circuit voltage (V)	0.550	0.550	0.548	0.549	0.546	0.545
Fill factor (%)	59.48	58.33	56.42	55.50	55.64	54.78
Power conversion efficiency (%)	8.17	8.00	8.10	8.54	8.59	8.27

Table S 1. Summary of solar cell performance for devices with different anionic compositions and varied active layer thicknesses. The thickness values were estimated from cross-sectional SEM images.