25

26

Supplementary Information 1 2 3 3D-Printed Pre-filter with Crystal Violet-Gold 4 Nanocluster Hybrid for Reusable Visible-Light-5 Activated Antimicrobial Air Filtration 6 7 Jae Hak Shin^{1,†}, So Yeong Kim^{2,†}, Hyun Sung Kang², In Ho Kim¹, Joon Young Park¹, Ki Joon 8 Heo^{2*}, Gi Byoung Hwang^{3,4*}, Jae Hee Jung^{1,5*} 9 ¹ Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea 10 ² School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea 11 12 ³ Department of Chemistry, University College London, London, WC1H 0AJ, United 13 Kingdom 14 4 Lab.M.0, Seoul 04799, Republic of Korea 15 Department of Aerospace System Engineering, Sejong University, Seoul 05006, Republic 16 of Korea 17 18 19 [†]These authors contributed equally to this work. * Corresponding authors E-mail address: k.heo@jnu.ac.kr (Ki Joon Heo), gi-byoung.hwang.14@ucl.ac.uk (Gi Byoung 21 22 Hwang), jaehee@sejong.ac.kr (Jae Hee Jung) 23

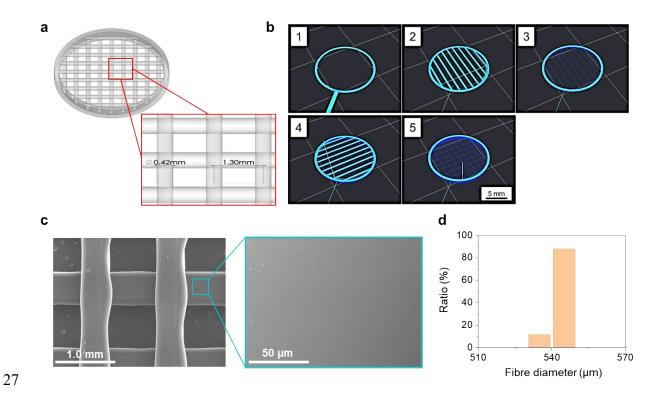
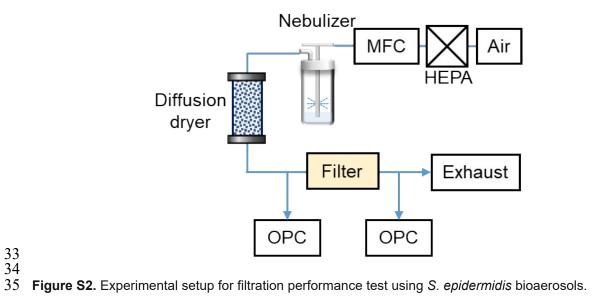
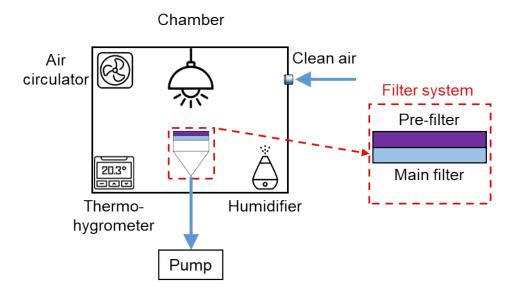
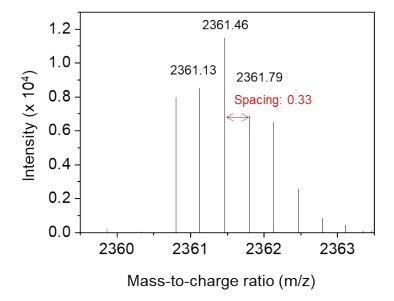





Figure S1. (a) CAD schematic of the pre-filter. (b) Simulated 3D printing path illustrating the layer-by-layer deposition sequence of the pre-filter. (c) SEM image of the printed pre-filter. (d) Distribution of fibre diameter through microscopic image analysis of the manufactured TPU pre-filter.

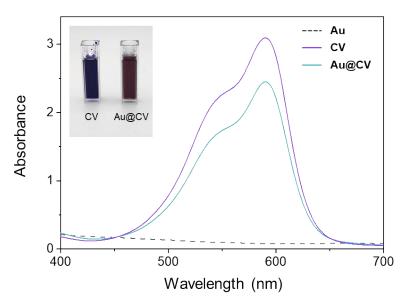
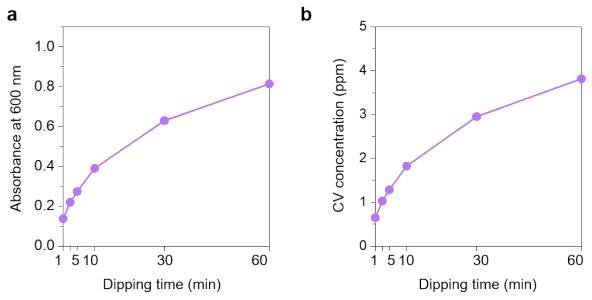

Figure S3. Schematic illustration of airflow-assisted antibacterial testing setup of antimicrobial air filter system under various face velocities.

Figure S4. Enlarged experimental isotope pattern of peak #1 in Figure 2c showing 0.33 spacing between 12 C and 13 C.

Table S1. Theoretical and experimental characteristic peak positions of [Au₂₅(Cys)₁₈] under ESI-MS,
with corresponding empirical formulations of gas-phase ions.


Peak number	Characteristic peak position (m/z)		Empirical formulations of gas-	Exact mass
	Theoretical	Experimental	phase ions formed under ESI	(Da)
#1	2361.43	2361.46	[Au ₂₅ (Cys) ₁₈ -3H ⁺] ³⁻	7084.38
#2	2368.08	2368.13	[Au ₂₅ (Cys) ₁₈ -4H+Na] ³⁻	7104.39
#3	2375.44	2376.12	[Au ₂₅ (Cys) ₁₈ -5H+2Na] ³⁻	7128.36
#4	2382.74	2382.75	[Au ₂₅ (Cys) ₁₈ -6H+3Na] ³⁻	7148.25
#5	2390.08	2390.46	[Au ₂₅ (Cys) ₁₈ -7H+4Na] ³⁻	7171.38
#6	2397.42	2397.31	[Au ₂₅ (Cys) ₁₈ -8H+5Na] ³⁻	7191.93

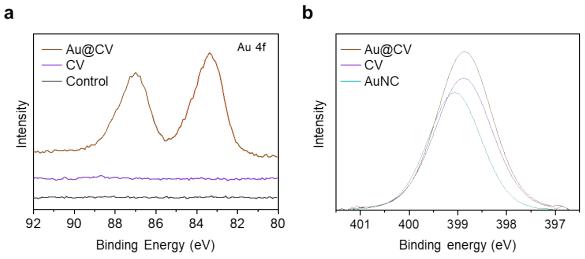
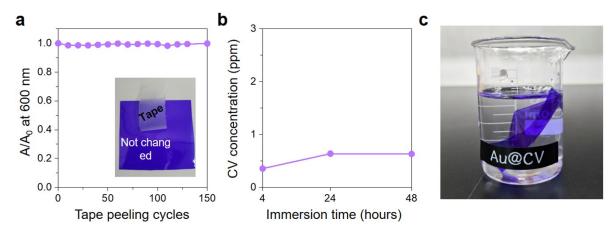
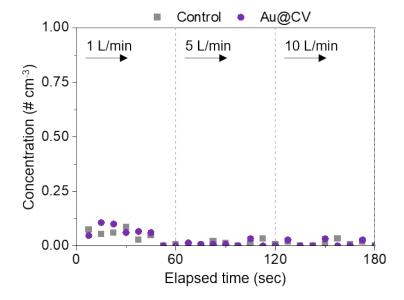
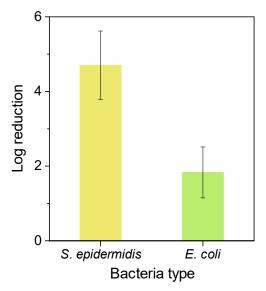

UV-vis absorbance spectra of only Au, only CV, and Au@CV-coated TPU film $\,$

Figure S5. UV-vis absorbance spectra of TPU pre-filters coated with Au, CV, and Au@CV. Inset: digital images of CV and Au@CV solutions.


52


Figure S6. (a) Absorbance at 600 nm of Au@CV-coated TPU film as a function of coating time. (b) The total coating amount (ppm) of CV determined from UV-vis calibration. For this measurement, a flat TPU film with the same polymer composition was used instead of the porous pre-filter employed in the paper.


Figure S7. (a) XPS Au 4f spectra of control, CV-coated, and Au@CV-coated pre-filters. (b) N 1s spectra of CV only, AuNC only, and Au@CV filter. The C 1s peak at 285.8 eV was used as the internal energy 65 reference.

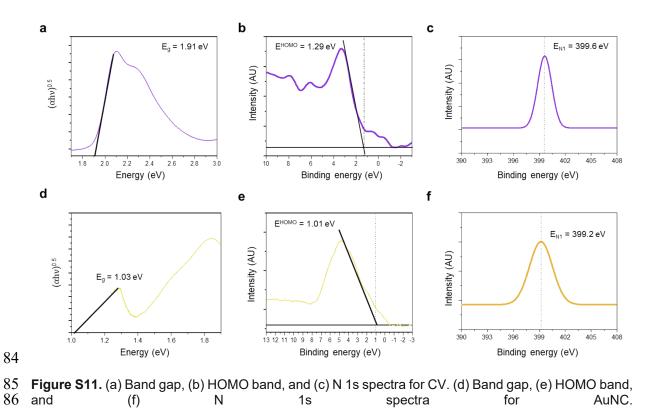

Figure S8. (a) Adhesive tape peeling test of the Au@CV-coated film (coating time: 24 h). A new piece of Sellotape was applied and removed for each peeling cycle. A and A₀ represent the absorbance at 600 nm after peeling (A) and before peeling (initial, A₀), respectively. (b) Leaching of CV from the Au@CV surface. The Au@CV films were cut into 3 x 3 cm portions and dipped into deionized water for 48 hours. (c) Photograph of the Au@CV-coated TPU film immersed in deionized water.

Figure S9. The particle number concentration was measured downstream of the control and Au@CV pre-filter at various flow rates. We examine the possible surface detachment or structural degradation of the Au@CV filter under airflow conditions. The residual particles released from the Au@CV pre-filter were measured using a condensation particle counter (CPC, Model 3750, TSI Inc.), which can detect particles larger than 7 nm. The Au@CV pre-filter was mounted in a sealed filter holder, and particle number concentrations downstream of the filter were continuously monitored under clean-air flow. The background signal from an empty filter holder (Control) was recorded under identical conditions for comparison.

81 Figure S10. Photobactericidal activity against Gram-positive (*S. epidermidis*) and Gram-negative (*E. coli*) bacteria at 11.9 mW cm-2 for 3 h.

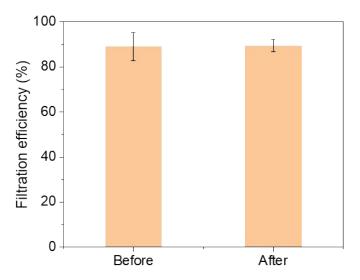


Figure S12. The filtration efficiency of the main filter measured before and after continuous exposure to ROS from the Au@CV pre-filter.

To evaluate the effect of ROS exposure on the main filter performance, the same experimental setup as in the airflow-assisted antibacterial test (Figure S3) was employed. The filter was irradiated with visible light for 3 h under continuous airflow (2.4 cm s⁻¹), and the filtration efficiency of the main filter was measured before and after exposure using an optical particle counter.