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Fig. S1 The photograph of Ni0.5Zn0.5Fe2O4/NF cell with ZVS induction heater for 

electrochemical measurements. The ZVS inductive heater was composed of a DC power 

supply and a ZVS inductive device that was purchased from Shenzhen Huali Electronic 

Technology Co., Ltd, China.
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Fig. S2 The standard potential of Hg/HgO reference electrode (Eθ
Hg/HgO) at different 

temperatures.
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Fig. S3 CV data of Ni0.5Zn0.5Fe2O4/NF, NiFe2O4/NF and ZnFe2O4/NF for their ECSA 

calculation.
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Fig. S4 The photographs of (a) Ni foam, (b) Ni0.5Zn0.5Fe2O4/NF, (c) NiFe2O4/NF and (d) 

ZnFe2O4/NF sample.
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Fig. S5 Low-magnification SEM image of Ni0.5Zn0.5Fe2O4/NF.
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Fig. S6 Raman spectra of Ni0.5Zn0.5Fe2O4, ZnFe2O4 and NiFe2O4 powders.
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Fig. S7 Survey XPS spectrum of Ni0.5Zn0.5Fe2O4/NF.
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Fig. S8 LSV curves of Ni0.5Zn0.5Fe2O4/NF and commercial RuO2 in 25℃ 1.0 M KOH.
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Fig. S9 ESCA-normalized current density (jECSA) curves of Ni0.5Zn0.5Fe2O4/NF, 

NiFe2O4/NF and ZnFe2O4/NF in 1.0 M KOH at different temperatures.
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Fig. S10 (a) Photographs of Ni0.5Zn0.5Fe2O4/NF-based cell for water electrolysis, thermal 

image of Ni0.5Zn0.5Fe2O4/NF-based cell (b) before and (c) after ZVS induction heating.
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Fig. S11 XRD patterns of Ni0.5Zn0.5Fe2O4 powders that collected from Ni0.5Zn0.5Fe2O4/NF 

before and after ZVS inductive heating for 1h and 5 h.
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Fig. S12 OCP curve of Ni0.5Zn0.5Fe2O4/NF in 1.0 M KOH with ZVS inductive heating on 

and off.
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Fig. S13 COMSOL Multiphysics software simulation for the formation of (a, b) thermal 

field, (c, d) electric field on nickel foil under ZVS inductive heating.
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Fig. S14 Mott-Schottky plots of Ni0.5Zn0.5Fe2O4/NF in (a) 25℃ and (b) 40℃ 1.0 M KOH 

without ZVS inductive heating, and in (c) 25℃ 1.0 M KOH with ZVS inductive heating.
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Fig. S15 LSV curve of Ni0.5Zn0.5Fe2O4/NF in 25℃ and 40℃ 1.0 M KOH without ZVS 

inductive heating, and in 25℃ under ZVS inductive heating.
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Fig. S16 logj-T-1 curves of Ni0.5Zn0.5Fe2O4/NF in OER Tafel range with and without ZVS 

inductive heating.
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Table S1 The linearity (R²) of anodic-cathodic current density (ΔI) and the scan rate (v) 

for ECSA measurements.

R2

Sample
15℃ 25℃ 40℃ 60℃ 80℃ ZVS

Ni0.5Zn0.5Fe2O4/NF 0.97 0.97 0.98 0.98 0.98 0.97

NiFe2O4/NF 0.98 0.98 0.98 0.99 0.98 0.99

ZnFe2O4/NF 0.98 0.97 0.98 0.99 0.98 0.99
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Table S2 OER activity comparison of the resultant Ni0.5Zn0.5Fe2O4/NF to the previously 

reported spinel ferrite electrocatalysts.

Electrocatalyst Overpotential Reference

Ni0.5Zn0.5Fe2O4/NF
276 mV@20 mA cm-2

293 mV@36 mA cm-2
This work

Co1.2Fe1.8O4 320 mV10 mA cm-2 1

ZCF-50(Cu0.5ZnFe2O4) 280 mV@10 mA cm-2 2

NiDy0.05Fe1.95O4 360 mV@36 mA cm-2 3

NiCo0.03Fe1.97O4 450 mV@10 mA cm-2 4

Co0.8Mn0.2Gd0.1Fe1.9O4 342 mV@10 mA cm-2 5

(Mn0.2Co0.2Ni0.2Cu0.2Fe0.2)Fe2O4 295 mV@10 mA cm-2 6

ZnFe2O4 330 mV@10 mA cm-2 7

Co2.25Fe0.75O4 350 mV@10 mA cm-2 8

(CoNiCuZnMg)Fe2O4 420 mV@10 mA cm-2 9

NiFe2O4 278 mV@10 mA cm-2 10

CoFe2O4 350 mV@10 mA cm-2 11

P‐Mo‐Co3O4@CC 276 mV@10 mA cm-2 12

SFO/Sm-NFO 228 mV@10 mA cm-2 13

Ta-NiFe LDH 260 mV@50 mA cm-2 14

CoNiFeOx-NC 265 mV@50 mA cm-2 15
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