Supplementary Information

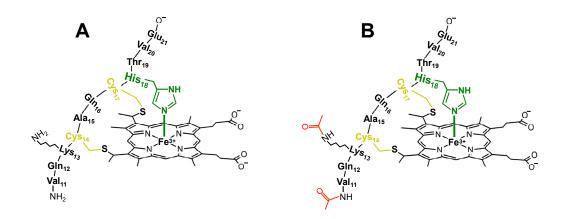
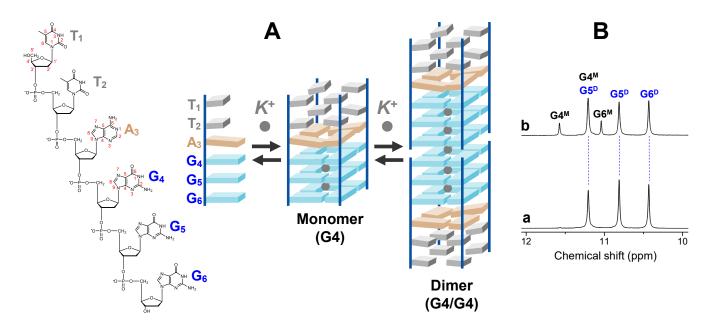
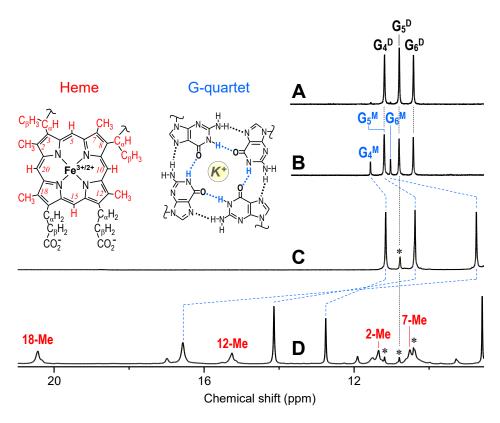
Controlling interactions between peptide-heme and G-quadruplex DNA using Fe-bound NH₃ and H₂O ligands

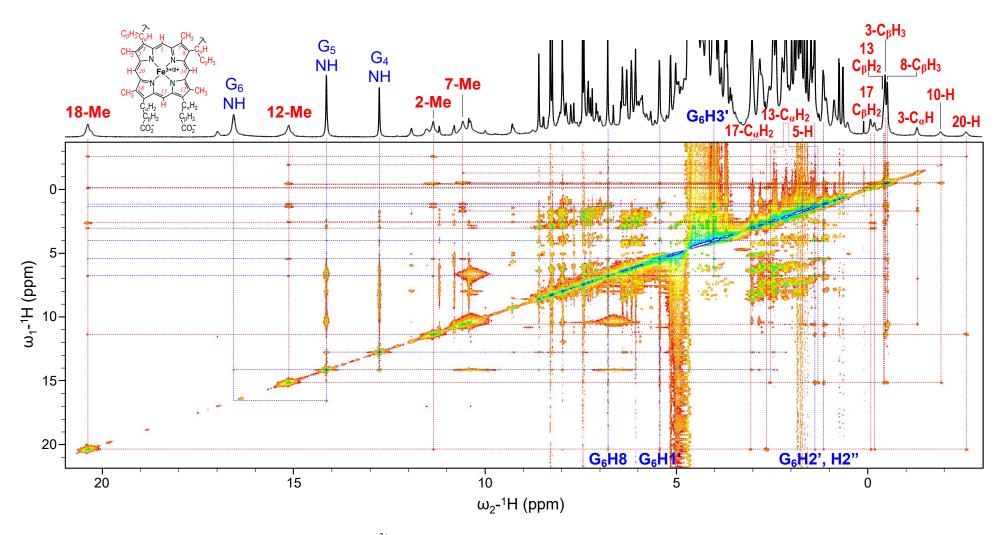
Jing Liu, Jinyang Feng, Ze Sun, Chang Xin, and Hulin Tai*

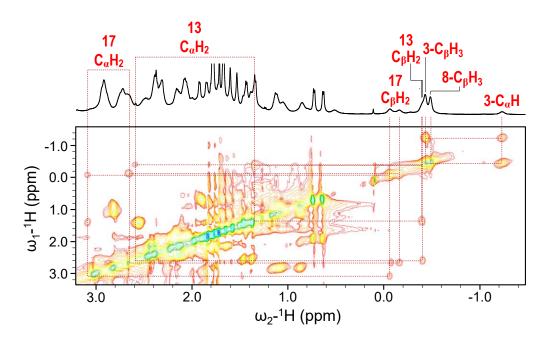
* taihulin@ybu.edu.cn

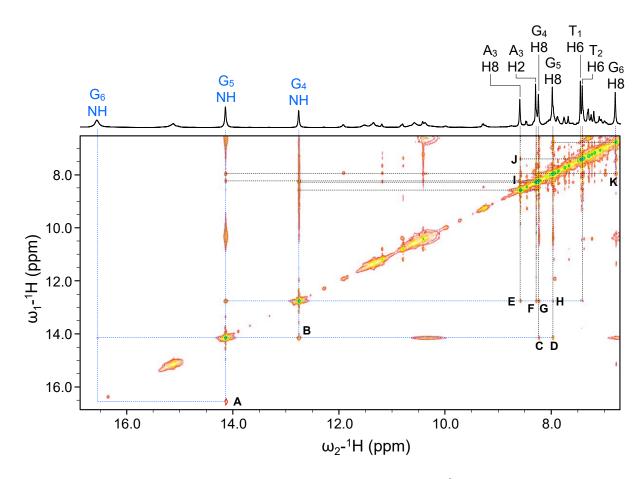
Table of Contents

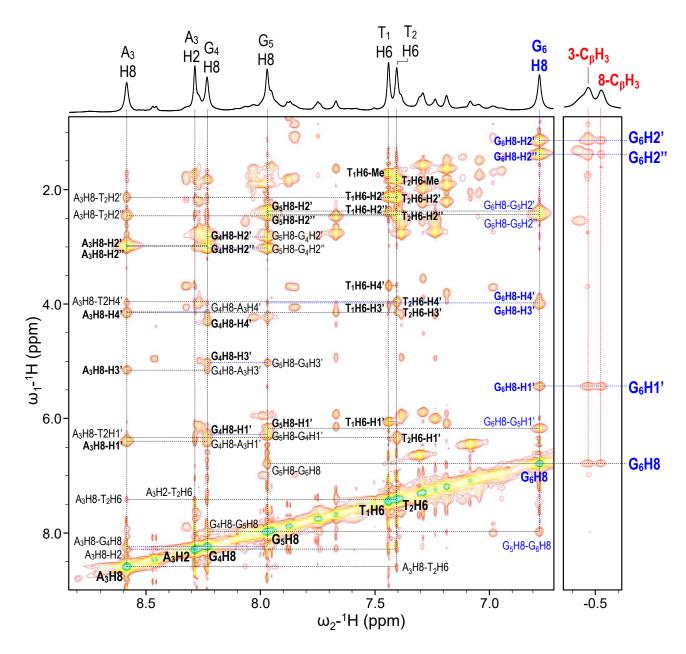
Figure S1	Molecular structures of MP11 and AcMP11	p. S2
Figure S2	Schematic representation of [d(TTAGGG)] ₄	p. S3
Figure S3	¹ H NMR spectra of free-G4 and Peptide-Heme(Fe ^{3+/2+})-NH ₃ /G4 hybrid complex	p. S4
Figure S4	Heme side chain proton signal assignment of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S5
Figure S5	TOCSY connectivity of heme protons of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S6
Figure S6	DNA base proton signal assignment of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S7
Figure S7	DNA ribose proton signal assignment of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S8
Figure S8	TOCSY connectivity of ribose protons of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S9
Table S1	Chemical shifts of the Peptide-Heme(Fe ³⁺)-NH ₃ /G4 hybrid complex	p. S10
Table S2	Chemical shifts of the Peptide-Heme(Fe ²⁺)-NH ₃ /G4 hybrid complex	p. S10
Figure S9	NH ₄ Cl-dependent Vis absorption spectra (470-720 nm) of the Peptide-Heme(Fe ³⁺)-H ₂ O/G4 hybrid complex at 25 °C	p. S11
Figure S10	NH ₄ Cl-dependent absorption spectra of Peptide-Heme(Fe ³⁺)-H ₂ O/G4 hybrid complex at 15–35 °C	p. S12
Figure S11	NH ₄ Cl-dependent absorption spectra of Peptide-Heme(Fe ³⁺)-H ₂ O at 15–35 °C	p. S13
Table S3	Ammonia substitute constant (<i>K</i> _s)	p. S14
Figure S12	G4-dependent absorption spectra of Peptide-Heme(Fe ³⁺)-NH ₃ at 15–35 °C	p. S15
Figure S13	G4-dependent absorption spectra of Peptide-Heme(Fe ³⁺)-H ₂ O at 15–35 °C	p. S16
Table S4	Binding constant (K_a) of complexation reaction	p. S17
Figure S14	Temperature-dependent CD spectra	p. S18
Figure S15	pH-dependent absorption spectra	p. S19
Table S5	The p $K_{\rm obs}$ values of NH ₄ ⁺ in aqueous solution	p. S20


Figure S1 Molecular structures of the MP11 (A) and AcMP11 (B).


Figure S2 (A) Schematic representation of a parallel G-quadruplex DNA ([d(TTAGGG)]₄) formed from d(TTAGGG). (B) Downfield-shifted portions of the ¹H NMR spectra of the [d(TTAGGG)]₄ in 90% H₂O/10% D₂O, 50 mM potassium phosphate buffer (pH 7.00, 25°C), with (a) and without (b) 300 mM KCl.


Figure S3 Down-shifted portions of the 1 H NMR spectra of [d(TTAGGG)]₄ (A and B), reduced Peptide-Heme(Fe²⁺)-NH₃/G4 hybrid complex (C), and oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex (D) in 90% H₂O/10% D₂O, 50 mM potassium phosphate buffer (pH 7.0 and 25 °C), and with (A, C, D) and without (B) of 300 mM KCl. The reduced and oxidized Peptide-Heme(Fe^{2+/3+})-NH₃/G4 hybrid complex (C and D) were prepared in 150 mM NH₄Cl with and without of 150 equivalents Na₂S₂O₄. G_n^D and G_n^M , where n = 4, 5, 6, represent the dimer and monomer of the DNA. The molecular structures of c-type heme and G-quartet are shown in the upper left corner. The guanine imino proton signals of the free DNA and complexes are connected by broken lines. Peaks denoted asterisks in spectra C and D are due to the dimer DNA remaining in the samples.


Figure S4 NOESY spectrum of the oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex in 90% H₂O/10% D₂O, 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C). A mixing time of 200 ms was used to record the spectrum. Assignments of heme side chain proton signals are shown. Assignments of DNA base proton signals are shown in Figures S5-S8.

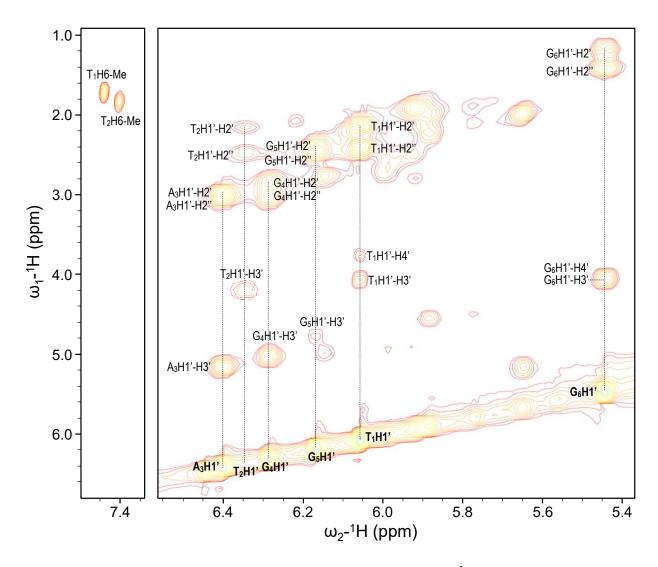

Figure S5 Portion of the TOCSY spectrum of the oxidized Peptide-Heme(Fe $^{3+}$)-NH $_3$ /G4 hybrid complex in 90% H $_2$ O/10% D $_2$ O, 150 mM NH $_4$ Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C). A mixing time of 80 ms was used to record the spectrum. Assignments of selected proton signals are shown.

Figure S6 Portion of the NOESY spectrum of the oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex in 90% H₂O/10% D₂O, 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C). A mixing time of 200 ms was used to record the spectrum. Cross peaks A–K indicate the NOE connectivities of the following proton pairs: (A) G₆NH-G₅NH; (B) G₅NH-G₄NH; (C) G₅NH-G₄H8; (D) G₅NH-G₅H8; (E) G₄NH-A₃H8; (F) G₄NH-A₃H2; (G) G₄NH-G₄H8; (H) G₄NH-G₅H8; (I) A₃H8-G₄H8; (J) A₃H8-T₂H6; (K) G₅H8-G₆H8. Assignments of DNA base proton signals are shown.

Figure S7 Portions of the NOESY spectrum of the oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex in 90% H₂O/10% D₂O, 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C). A mixing time of 200 ms was used to record the spectrum. Intramolecular NOE connectivities between base and ribose proton signals are shown in the left portion. Intermolecular NOE connectivities between heme side chain (3-C_βH₃ and 8-C_βH₃) and G₆-quartet (H8, H1', H2', and H2'') proton signals are shown in the right portion.

Figure S8 Portions of the TOCSY spectrum of the oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex in 90% $H_2O/10\%$ D_2O , 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C). A mixing time of 80 ms was used to record the spectrum. Assignments of selected base (thymine (T₁ and T₂), left portion) and ribose (right portion) proton signals are shown.

Table S1 Chemical shifts of the oxidized Peptide-Heme(Fe³⁺)-NH₃/G4 hybrid complex in 90% H₂O/10% D₂O, 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.00, 25°C).

DNA	Base protons		Ribose protons				
	NH, Me,or H2	H6 or H8	H1'	H2'/H2"	H3'	H4'	
T ₁	1.72	7.44	6.06	2.13, 2.39	4.03	3.67	
T ₂	1.84	7.41	6.34	2.14, 2.45	4.14	3.97	
A_3	8.29	8.59	6.40	2.97, 3.02	5.14	4.17	
G_4	12.75	8.23	6.29	2.84, 3.01	5.01	4.31	
G_5	14.14	7.97	6.17	2.39, 2.40	4.24	n.d.ª	
G_6	16.56	6.78	5.43	1.15, 1.38	4.03	3.99	
Hemin	Methyl protons		Thioeth	Thioether groups		Meso protons	
	18-Me 12-Me	7-Me 2-Me	3-C _α H 3-C _β H ₃	8-C _α H 8-C _β H ₃	5-H 10-H	15-H 20-H	

-0.47

-0.53

n.d.a

1.69

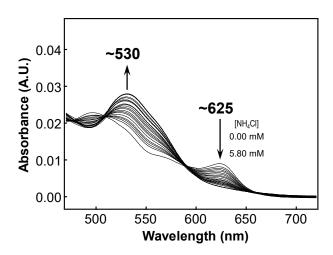
-1.92

n.d.a -2.58

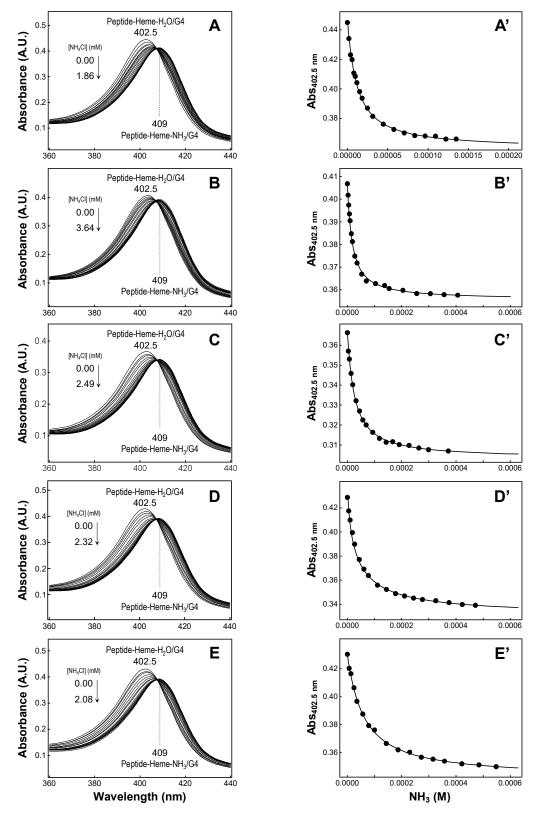
20.37

15.12

10.58


11.34

-1.30


Table S2 Chemical shifts of the reduced Peptide-Heme(Fe²⁺)-NH₃/G4 hybrid complex in 90% H₂O/10% D₂O, 150 mM NH₄Cl, 300 mM KCl, and 50 mM potassium phosphate buffer (pH 7.0, 25°C).

DNA	Base protons			
DNA	NH, Me,or H2	H6 or H8		
T ₁	1.59	7.30		
T ₂	1.64	7.20		
A_3	7.97	8.28		
G_4	11.18	7.71		
G_5	10.40	7.55		
G ₆	8.77	7.99		

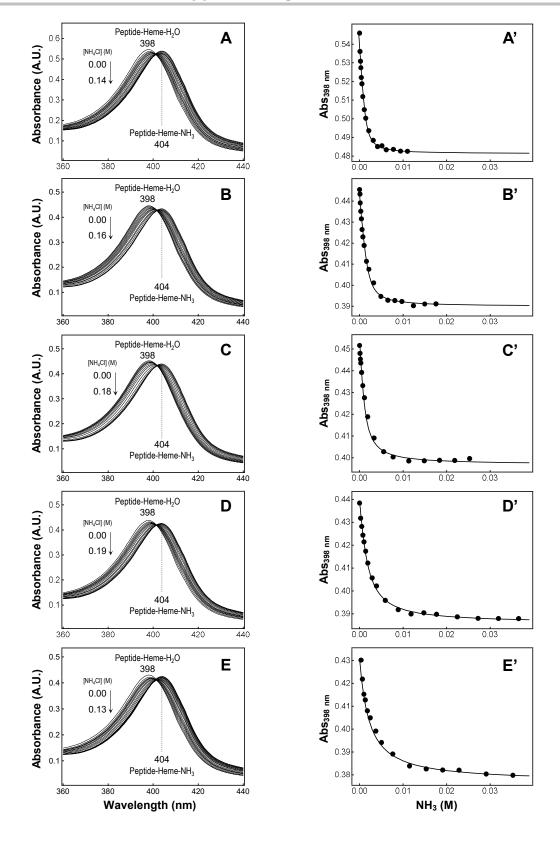

^a Not determined.

Figure S9 Absorption spectra (470–720 nm) of Peptide-Heme(Fe³⁺)-H₂O/G4 hybrid complex in the presence of various concentrations of NH₄Cl, in 300 mM KCl and 500 mM Tris-HCl buffer (pH 8.50 at 25 °C) containing 0.08 w/v% TritonX-100 and 0.5 v/v% dimethyl sulfoxide. For sample preparation of the Peptide-Heme(Fe³⁺)-H₂O/G4 hybrid-complex, 400 μL of 6 μM Peptide-Heme-H₂O was mixed with 400 μL of 30 μM [d(TTAGGG)]₄.

Figure S10 (A-E) Absorption spectra (360–440 nm) of Peptide-Heme(Fe³⁺)-H₂O/G4 hybrid complex in the presence of various concentrations of NH₄Cl, in 300 mM KCl and 500 mM Tris-HCl buffer (pH 8.50 at 15–35 °C) containing 0.08 w/v% TritonX-100 and 0.5 v/v% dimethyl sulfoxide. (A'-E') A plot of the 402.5 nm absorbance against NH₃ concentration. (A and A') 15 °C, [Peptide-Heme] = 3.6 μM, [G4] = 16.5 μM; (B and B') 20 °C, [Peptide-Heme] = 3.3 μM, [G4] = 13.8 μM; (C and C') 25 °C, [Peptide-Heme] = 3.0 μM, [G4] = 12.5 μM; (D and D') 30 °C, [Peptide-Heme] = 3.5 μM, [G4] = 10.5 μM.

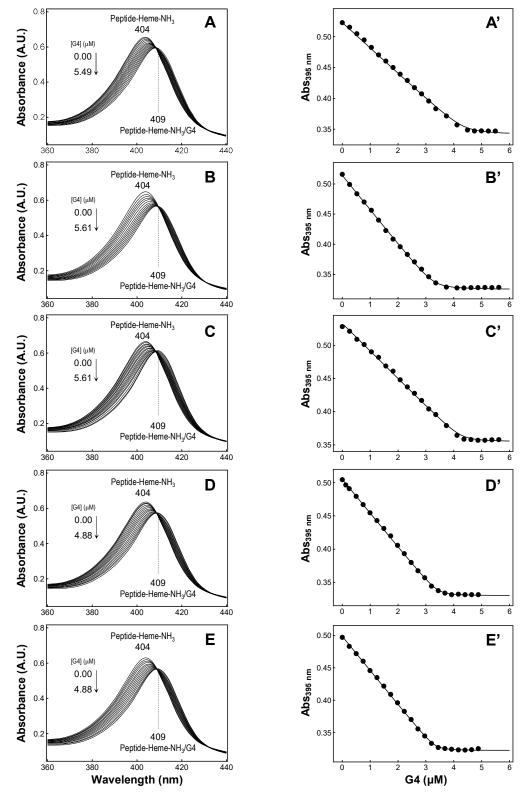


Figure S11 (A-E) Absorption spectra (360–440 nm) of Peptide-Heme(Fe³⁺)-H₂O in the presence of various concentrations of NH₄Cl, in 300 mM KCl and 500 mM Tris-HCl buffer (pH 8.50 at 15–35 °C) containing 0.08 w/v% TritonX-100 and 0.5 v/v% dimethyl sulfoxide. (A'-E') A plot of the 398 nm absorbance against NH₃ concentration. (A and A') 15 °C, [Peptide-Heme] = 4.2 μ M; (B and B') 20 °C [Peptide-Heme] = 3.4 μ M; (C and C') 25 °C, [Peptide-Heme] = 3.5 μ M; (D and D') 30 °C, [Peptide-Heme] = 3.4 μ M; (E and E') 35 °C, [Peptide-Heme] = 3.3 μ M.

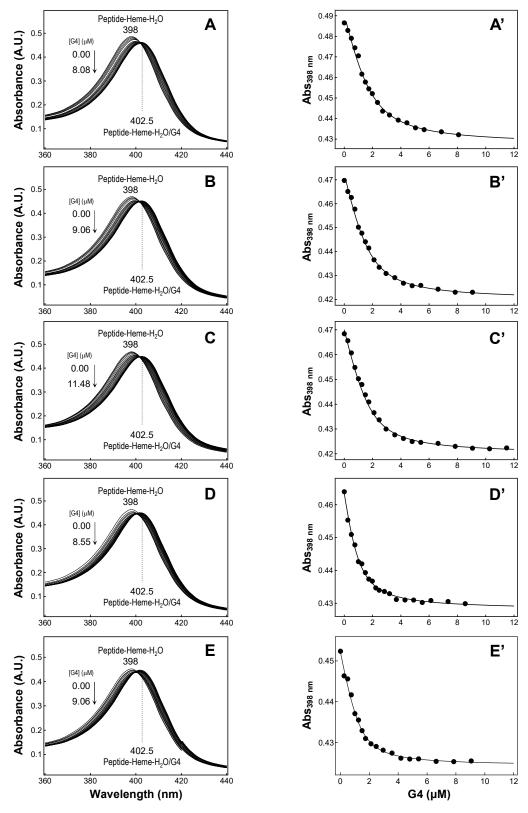

Supplementary Information

Table S3 NH₃ binding constants (K_s) for ligand substitution reaction.

Temperature	K _s (M ⁻¹)			
(°C)	Peptide-Heme	Peptide-Heme/G4		
15	4438 ± 164	98733 ± 7141		
20	2706 ± 159	61221 ± 2011		
25	1606 ± 303	41227 ± 1368		
30	825 ± 41	27873 ± 2084		
35	528 ± 42	18357 ± 284		

Figure S12 (A-E) Absorption spectra (360–440 nm) of Peptide-Heme(Fe³⁺)-NH₃ in the presence of various concentrations of [d(TTAGGG)]₄, in 100–180 mM NH₄Cl, 300 mM KCl, and 500 mM Tris-HCl buffer (pH 8.50 at 15–35 °C) containing 0.08 w/v% TritonX-100 and 0.5 v/v% dimethyl sulfoxide. (A'-E') A plot of the 395 nm absorbance against [d(TTAGGG)]₄ concentration. (A and A') 15 °C, [Peptide-Heme] = 5 μM, [NH₄Cl] = 100 mM; (B and B') 20 °C, [Peptide-Heme] = 5 μM, [NH₄Cl] = 100 mM; (C and C') 25 °C, [Peptide-Heme] = 5 μM, [NH₄Cl] = 100 mM; (D and D') 30 °C, [Peptide-Heme] = 5 μM, [NH₄Cl] = 150 mM; (E and E') 35 °C, [Peptide-Heme] = 5 μM, [NH₄Cl] = 180 mM.

Figure S13 (A-E) Absorption spectra (360–440 nm) of Peptide-Heme(Fe³⁺)-H₂O in the presence of various concentrations of [d(TTAGGG)]₄, in 300 mM KCl and 500 mM Tris-HCl buffer (pH 8.50 at 15–35 °C) containing 0.08 w/v% TritonX-100 and 0.5 v/v% dimethyl sulfoxide. (A'-E') A plot of the 398 nm absorbance against [d(TTAGGG)]₄ concentration. (A and A') 15 °C, [Peptide-Heme] = 3.7 μM; (B and B') 20 °C, [Peptide-Heme] = 3.6 μM; (C and C') 25 °C, [Peptide-Heme] = 3.6 μM; (D and D') 30 °C, [Peptide-Heme] = 3.6 μM; (E and E') 35 °C, [Peptide-Heme] = 3.5 μM.

Supplementary Information

Table S4 The binding constant (K_a) for complexation reaction.

Temperature	К а (µ	ıM⁻¹)
(°C)	Peptide-Heme-H ₂ O/G4	Peptide-Heme-NH ₃ /G4
15	1.76 ± 0.16	37.55 ± 4.86
20	2.20 ± 0.08	49.57 ± 6.79
25	2.50 ± 0.14	64.84 ± 5.32
30	3.15 ± 0.29	93.89 ± 6.44
35	4.04 ± 0.10	121.75 ± 3.00

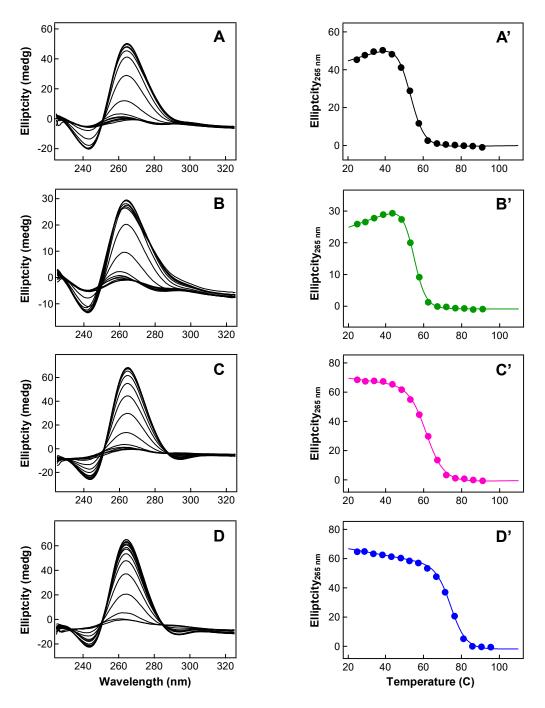
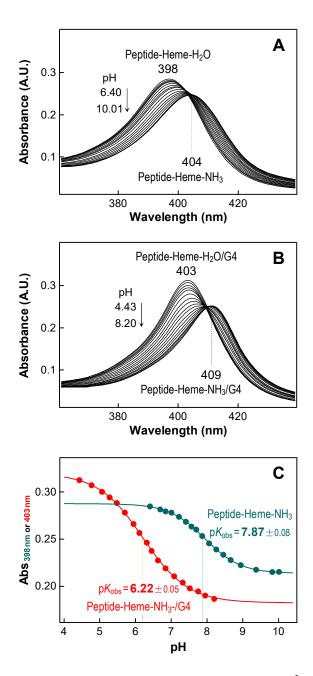



Figure S14 Temperature dependent CD spectra of $[d(TTAGGG)]_4$ (A), $[d(TTAGGG)]_4 + NH_4Cl$ (B), $[d(TTAGGG)]_4 + AcMP11 + H_2O$ (C), and $[d(TTAGGG)]_4 + AcMP11 + NH_4Cl$ (D) in 100 mM KCl and 50 mM TAPS buffer (pH 8.50 at 25 °C). CD melting curve of $[d(TTAGGG)]_4$ (A'), $[d(TTAGGG)]_4 + NH_4Cl$ (B'), $[d(TTAGGG)]_4 + AcMP11 + H_2O$ (C'), and $[d(TTAGGG)]_4 + AcMP11 + NH_4Cl$ (D').

Figure S15 (A) pH-dependent absorption spectra of oxidized Peptide-Heme(Fe³⁺)/G4 hybrid complex in 20 mM NH₄Cl, 300 mM KCl, 500 mM Tris-HCl buffer at 25 °C . (B) pH-dependent absorption spectra of oxidized Peptide-Heme(Fe³⁺) in 20 mM NH₄Cl, 300 mM KCl, 500 mM Tris-HCl buffer at 25 °C. (C) Plots of the 398 or 403 nm aborbance of the oxidized Peptide-Heme(Fe³⁺)/G4 (red) and Peptide-Heme(Fe³⁺) (black), respectively, against pH at 25 °C. For sample preparation of the Peptide-Heme(Fe³⁺)/G4 hybrid-complex, 400 μL of 6 μM Peptide-Heme(Fe³⁺) was mixed with 400 μL of 60 μM [d(TTAGGG)]₄.

Table S5 The p K_a values of NH₄⁺ in aqueous solution at 15–35 °C.^a

Temperature (°C)	15	20	25	30	35
рK	9.564	9.400	9.245	9.093	8.947

^a Data taken from Speight JG. *Lange's Handbook of Chemistry*. 17th ed. McGraw-Hill Education, 2017.