Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Gd/Tb/Eu alloyed double-perovskite lanthanide halide for color tunable photoluminescence and robust scintillation performance

Su Zhou * a, Linshuai Li a , Gaoqing Chen a , Jingtao Zhao a , Lei Lei a

a. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China,

^{*} E-mail: Corresponding Author: zhousu@cjlu.edu.cn.

EXPERIMENTAL SECTION

Chemicals and Materials: CsCl (99.99%), NaCl (99.99%), EuCl₃ (99.99%), GdCl₃ (99.99%), TbCl₃ (99.99%), (3-Aminopropyl) triethoxysilane (APTES) (> 95%), Ethyl acetate (AR, ≥99.5%) were purchased from Aladdin. Ethanol (≥99.7%) was purchased from Huzhou Shuanglin chemical Technology Co., Ltd. All the chemical reagents were used as received without further purification.

Synthesis of submicron $Cs_2NaLnCl_6$ (Ln=Gd, Tb, Eu): Take $Cs_2NaGdCl_6$ as a typical example. 0.2 mmol CsCl, 0.1 mmol NaCl, 0.1 mmol GdCl₃ were dissolved in 500 μ L Dl-water to obtain the salt solvent as precursor. The antisolvent was achieved by mixing 10 mL ethyl acetate and 10 mL absolute ethyl alcohol dissolving 100 μ L APTES. Then, the precursor was added into the anti-solvent drop by drop under vigorous tiring. Suddenly, the white powers were separated out from solvent and further be collected by centrifugation. Prepared were drying in oven at 60°C for three hours. For Tb³⁺ and Eu³⁺ ions incorporation, given stoichiometric ions are utilized to replace Gd³⁺ ions.

Characterizations: X-ray diffraction (XRD) analysis was carried out by a powder diffractometer (Bruker D8 Advance) with a Cu-K α (λ = 1.5405 Å) radiation. TESCAN VEGA3 S-4300 field-emission electron microscope was executed by a Scanning electron microscope (SEM), with electron energy of 30 keV. PL spectra were recorded on an Edinburgh Instruments (EI) FLS1000 spectrofluorometer equipped with a continuous (450 W) xenon lamp. PLQYs ere measured by the spectrofluorometer (FS1000) equipped with an integrating sphere. XEOL spectra were measured by a spectrometer (OmniFluo960) with an X-ray tube (target material: W, voltage 50 kV, tube current 200 μ A) and a photon counter (DCS210PC-9S). X-ray imaging was performed using a home-made setup comprising a miniature X-ray tube and camera (ORCA-Fusion BT, C15440-20UP).

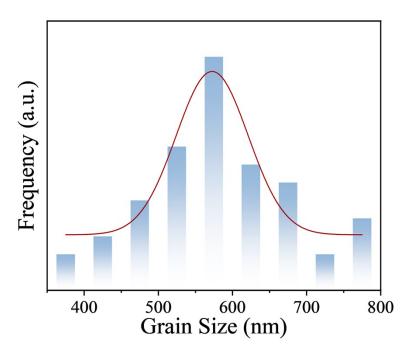


Fig. S1. Statistical histogram of grain size of Cs₂NaTbCl₆.

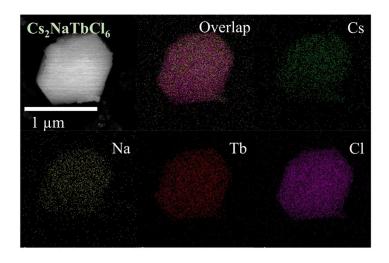


Fig. S2. EDS elemental mapping on Cs₂NaTbCl₆.

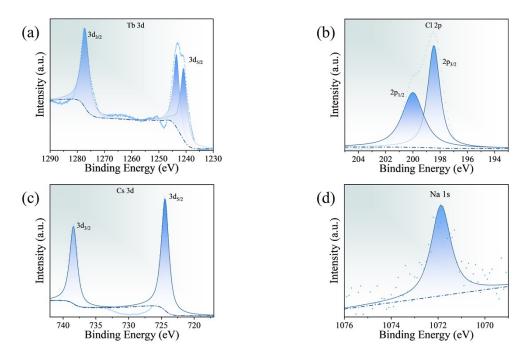


Fig. S3. High-resolution XPS spectra of Tb (a), Cl (b), Cs (c) and Na (d).

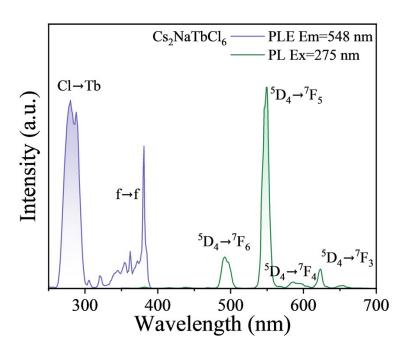


Fig. S4. PLE (Em=548 nm) and PL spectra (Ex=275 nm) of $Cs_2NaTbCl_6$.

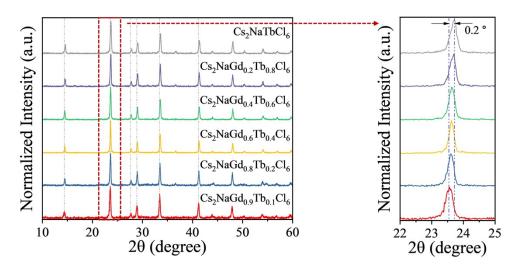


Fig. S5. XRD patterns of a series of Cs2NaGd1-xTbxCl6, and high-resolution spectra of (2 2 0).

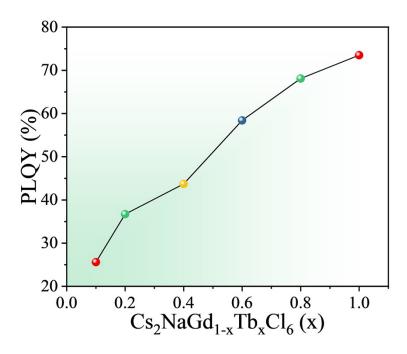


Fig. S6. PLQY of $Cs_2NaGd_{1-x}Tb_xCl_6$ with various Tb concentration (Ex=275 nm).

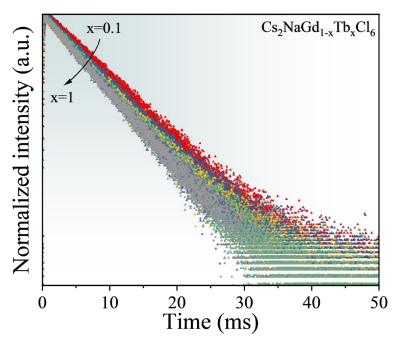


Fig. S7 Photoluminescence decay curves for the ⁵D₄ level (548 nm).

	Cs ₂ NaTb _{0.95} Eu _{0.05} Cl ₆	Cs₂NaEuCl ₆
315 nm		
365 nm		

 $Fig.~S8.~Lumine scence~images~of~Cs_2NaTb_{0.95}Eu_{0.05}Cl_6~and~Cs_2NaEuCl_6~under~315~nm~and~365~nm~excitation.\\$

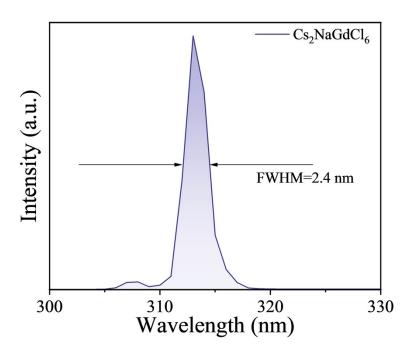


Fig. S9. XEOL spectrum of Cs₂NaGdCl₆ showing narrow band emission peak.

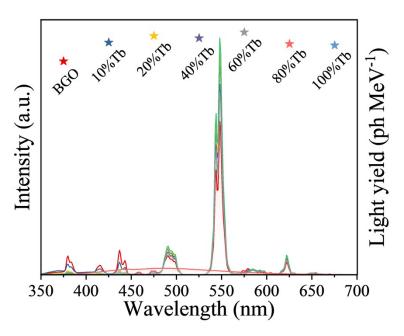


Fig. S10. Quantitative XEOL spectra and corresponding LY with BGO as reference.

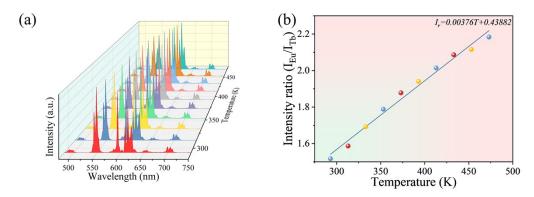
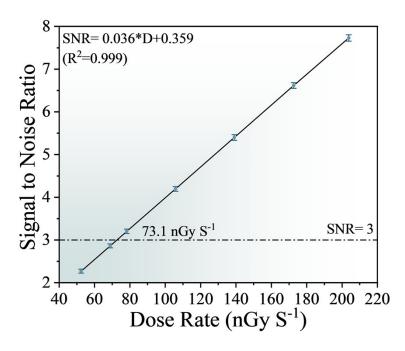



Fig. S11. (a) Temperature dependent XEOL spectra of $Cs_2NaGd_{0.35}Tb_{0.6}Eu_{0.0}SCl_6$. (b) intensity ratio between the Eu and Tb under various temperature.

 $Fig.~12.~SNR~values~of~Cs_2NaGd_{0.35}Tb_{0.6}Eu_{0.05}Cl_6@PMMA~films~as~a~function~of~dose~ratio.\\$

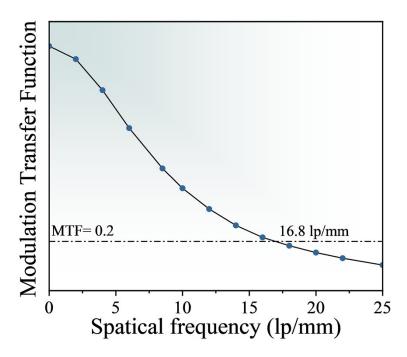


Fig. 13. The MTF plot of $Cs_2NaGd_{0.35}Tb_{0.6}Eu_{0.05}Cl_6@PMMA$ film.

Table S1: The lifetime of 437 nm and 548 nm of $Cs_2NaGd_{1-x}Tb_xCl_6$.

Ex=275 nm	Em=437 nm (⁵ D ₃ → ⁷ F ₄)	Em=548 nm (⁵ D ₄ → ⁷ F ₅)
$CsNaGd_{0.9}Tb_{0.1}Cl_{6}$	2.52 ms	7.16 ms
$\mathrm{CsNaGd}_{0.8}\mathrm{Tb}_{0.2}\mathrm{Cl}_{6}$	1.42 ms	6.63 ms
$\mathrm{CsNaGd}_{0.6}\mathrm{Tb}_{0.4}\mathrm{Cl}_{6}$	106.6 μs	6.29 ms
$\mathrm{CsNaGd}_{0.4}\mathrm{Tb}_{0.6}\mathrm{Cl}_{6}$	40.3 μs	6.02 ms
$CsNaGd_{0.2}Tb_{0.8}Cl_{6}$	27.0 μs	5.98 ms
$\mathrm{CsNaTbCl}_{6}$	19.6 μs	5.92 ms