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Experimental

Materials and reagents: CuSO4-5H>0 and oxalic acid were purchased from Sinopharm
Chemical Reagent Co., Ltd., Potassium hexacyanocobaltate (K3[Co(CN)s]) were purchased

from Aladdin. China. All chemicals were used directly without further purification.

Synthesis of Cu/Co-PBAs: Bimetallic Cu/Co-PBAs were synthesized using a co-
precipitation method at room temperature. Solution A was prepared by dissolving copper(II)
sulfate (3 mmol) and oxalic acid (1.8 g) in deionized water (50 mL). Potassium

hexacyanocobaltate (K3[Co(CN)s], 2 mmol) and oxalic acid (1.8 g) were dissolved in
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deionized water (50 mL) to form solution B. Solutions A and B were separately stirred for
1 h before mixing. Then, solution A was quickly added to solution B, and the mixed solution
was vigorously stirred for 6 h. A blue precipitate (Cu/Co-PBA) was obtained, which was
centrifuged and washed with deionized water and ethanol several times, followed by drying

overnight in an oven at 60 °C.

Synthesis of Cu7S4/C09Ss/C: The as-obtained Cu/Co PBAs and sulfur powders were mixed
and put in an alumina boat separately at a weight ratio of 1:6. The boat was placed in a tube
furnace for sulfurization and carbonization, which were performed at 500 °C for 2 h under

Ar/Hz (95%/5%) gas atmosphere. After natural cooling, the products were collected.

Characterization: The phase of the sample was determined by using an X-ray
diffractometer (XRD, SMART APEX II Brook, copper target). The morphology was
observed by field emission scanning electron microscope (SEM, Hitachi S-8100), and
transmission electron microscope (TEM, HT-7700, TecnaiG220S-Twin). A high-resolution
TEM (HRTEM) was used to observe the lattice fringes. Energy dispersive X-ray
spectroscopy (EDS) was employed for elemental mapping and studying the elemental
distribution. X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha),
thermogravimetric analysis (TGA, Rigaku TG/DTA 8122) and Raman spectroscopy
(Renishaw in Via) were used for characterization. Prior to the BET test, the sample was
degassed at 120 °C for 3 h in vacuum to remove water adsorbed on the surface, and then
physical adsorption isotherms (adsorption-desorption branch) were recorded using a
specific surface area tester (ASAP Micromeritics Tristar 2460). X-ray absorption fine
structure (XAFS) spectroscopy was performed using a Rapid XAFS HE (Anhui Absorption
Spectroscopy Analysis Instrument Co., Ltd.) with a transmission mode under 20 kV and 20
mA. In-situ XRD was conducted using a Rigaku Smart Lab SE XRD system coupled with

a battery testing system.

Electrochemical measurements: The 70 wt% active materials (Cu7S4/Co9Sg/C), 20 wt%
acetylene black and 10 wt% polyvinylidene fluoride (PVDF) were mixed in a ratio of 7:2:1.
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The nmethylpyrrolidone (NMP) was used as diluent to disperse the mixture. Evenly-mixed
slurry was coated on a Cu foil with a thickness of 9 um, dried in a vacuum oven at 80 °C
for 24 h, and cut into 1.2 mm discs. The mass loading of the active material on each electrode
was about 1.2 mg cm™. The counter electrode was sodium, while the diaphragm was
fiberglass. The coin cells were assembled in an Ar-filled glovebox. Electrolyte contained 1
M NaPFs dissolved in diethylene glycol dimethyl ether. The galvanostatical charge
discharge was tested on a Neware Battery system. Cyclic voltammetry (CV, 0.1 mV s™! of
sweep rate over the range of 0.1-3.0 V) and electrochemical impedance spectroscopy (EIS)
measurements were performed on an electrochemical workstation (CHI 660E). For the
assembly of full cells, the Na3V2(PO4); (NVP) cathode was prepared by mixing home NVP,
acetylene black and PVDF with a weight ratio of 8:1:1 in NMP to form a slurry, which was
cast onto aluminum foil. The electrode was cut into a size of 2.83 cm?, and the typical
loading of NVP in the cathode was about 1.3 mg cm™. In the full cell, the fiberglass was
also used as diaphragm. The preparation processes were similar to the half cells shown
above. The electrolyte was 1 M sodium hexafluorophosphate (NaPFs) in diethylene glycol

dimethyl ether.

Computational methods: Density functional theory calculations were carried out to
investigate the properties of Cu7S4/Co9Sg heterostructures using the Vienna ab initio
Simulation Package (VASP) with the projector augmented wave (PAW) method. The
exchange and correlation functionals were treated by using the Generalized Gradient
Approximation (GGA) in the scheme of Perdew-Burke-Ernzerhof (PBE). The cutoff energy
was set at 520 eV for the plane-wave extension of the wave function. The convergence
criteria of geometric optimization were set to 10~ eV in energy and 0.02 eV A™! in force.
The 2 x 1 x 1 Monkhorst-Pack k-point meshes were used for geometric optimization. To
properly evaluate the weak interaction at the interface, the DFT-D3 method with Becke-
Jonson damping was chosen to deal with the van der Waals (vdW) correction. A vacuum
layer of at least 20 A was used to avoid the interactions between the periodic images in the

Z-axis direction.
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Fig. S1 XRD pattern of the Cu/Co-PBA precursor.
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Fig. S2 (a) SEM image and (b) XRD pattern of Cu7S4/C. (¢) SEM image and (d) XRD

pattern of CooSs/C.
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Fig. S3 The sample synthesized by Cu** and Co*" in molar ratios of (a) 1:2 and (b) 1:3.
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Fig. S4 (a) SEM image, (b) line-scanning curves, and (¢) EDS spectrum of
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Fig. S5 TGA curve of Cu7S4/Co9Ss/C.
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Fig. S6 (a) Survey spectrum, (b) Cu 2p, (c) Co 2p, (d) S 2p, and (e) C 1s XPS spectra of

Cu7S4/Co9Ss/C.
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Fig. S7 Wavelet-transform-EXAFS (WT-EXAFS) of Cu7S4/Co9Ss/C at the (a) Cu and (b)

Co Ls-edges.
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Fig. S8 Raman spectrum of Cu7S4/CooSs/C.
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Fig. S9 (a) N2 adsorption-desorption isotherms and (b) pore-size distribution of
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Fig. S10 CV curves during the initial three cycles at 0.1 mV s™!: (a) CusS4/C and (b)
Co9Ss/C.
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Fig. S11 (a) SEM image, (b-e) the corresponding elemental mappings and (f) EDS
spectrum of Cu7S4/CoeSs/C after cycling 100 times at 3.0 A g

Intensity (a.u.)

20 30 40 50 60 70
20 (degree)

Fig. S12 XRD pattern of Cu7S4/CoeSs/C after cycling 100 cycles at 3.0 A g™!
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Fig. S13 (a) CV curves of CusS4/C anode at scanning rates from 0.1 to 0.5 mV s\, (b, c)
The log(i) vs. log(v) of oxidization and reduction peaks. (d) Contribution ratio of

capacitive and diffusion-control processes.
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Fig. S14 (a) CV curves of CooSs/C anode at scanning rates from 0.1 to 0.5 mV s'. (b) The
log(i) vs. log(v) of oxidization and reduction peaks. (c) Contribution ratio of capacitive

and diffusion-control processes.
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Fig. S15 GITT time-potential distributions of (a) Cu7S4/Co9Ss/C, (b) Cu7S4/C and (c)
CooSs/C.
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Fig. S17 Reaction resistance of Cu7S4/Co9Ss/C, CusS4/C and Co9Ss/C during (a)

discharging and (b) charging.
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Table S1. Bond distances and coordination numbers for Cu7S4/Co9Ss/C. Information

obtained from EXAFS K and R space transformations with fitting. The low R factors

confirm the quality of the fitting.

samples path [ CN.E/N | R (A)P o? (x 1073 Al | R—factor!
Cu-S 2.17 2.12 0.020
Cu7S4/Co9Ss/C
Co-S 249 2.82 0.021

[a] Coordination number.

[b] Bond distance.

[c] Debye—Waller factor.

[d] Sum of squares measure of the fractional misfit.

The accuracies of the above parameters were estimated as CN, £20%; R, £1%; 6%, £20%.

Table S2. Comparison on electrochemical performance of some Na-ion battery anodes.

Mass Current Capacit Cycle
Anode materials loading Electrolyte density (mAph _}1]) nuaner Ref.
(mg em?) (Ag) ¢
+ 0.5 556 300 i
Cu7S4/CosSs/C 0.9-1.0 DI\]?C};;;/IE Thli
3.0 508 1300 VT
. NaCF3;SOs+
U-CusSs@graphite 0.6-1.0 TEGDME 0.5 409 2000 [1]
NaCF3;SOs+
Cu7S4/CNF 1.3 DEGDME 1.0 553 300 [2]
NaClO4+
Co9Ss/CoS@NC 2.0-2.5 EC/DEC (1:1) + 1.0 272 300 [3]
FEC(5%wt)
Co9Ss@C-MoS2 0.8-1.2 NaPFs + DME 0.2 550 100 [4]
NaPF¢+
Co09Ss/SnS@MCNFs 1.0-2.0 DIGLYME 2.0 225 400 [5]
Co9Ss@C/CNTs 0.8-1.0 NaPFs+DME 0.5 500 100 [6]
Co9Sg nanoparticles NaClO4+
encapsulated N,S- 1.2-1.5 EC/DEC (1:1) + 1.0 205 400 [7]
codoped CNTs FEC(5%wt)
NaClO4+
ZnS-Sb@C@rGO 0.9-1.2 EC+FEC(5%) 2 316 1000 [8]
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