Supplementary Information

Hierarchical assembly of SnS micro flowers and Ni_3S_2 nanofibers in situ grown on nickel foam for highly efficient capture of iodine vapor

Chang Miao,^{†a} Wu Li,^{†a} Xuyang Min,^{a,1} Guangu Hu,^{a,2} Chaonan Wang,^a Bo Qiao,^a

Senkai Han,^a Shulan Ma,^{*a} and Huiqin Yao^{*b}

^aCollege of Chemistry, Beijing Normal University, Beijing 100875, China. E-mail: mashulan@bnu.edu.cn

^bSchool of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004,

China. E-mail: <u>huiqin_yao@163.com</u>

¹Present address: Beijing 21st century school, Beijing 100142, China.

²Present address: Shanghai Pinghe School, Shanghai 200120, China.

[†]These authors contributed equally.

1. Materials

Nickel foam (NF, Shenzhen Tianchenghe Technology Co., Ltd., thickness is 1.6 mm, density is 0.45 g·cm⁻³), tin (IV) chloride pentahydrate (SnCl₄·5H₂O, Shanghai Macklin Biochemical Co., Ltd., 99.0%), thioacetamide (CH₃CSNH₂, Shanghai Macklin Biochemical Co., Ltd., 99.0%), iodine (I₂, Shanghai Macklin Biochemical Co., Ltd., 99.99%), acetone (CH₃COCH₃, Beijing Tongguang Fine Chemicals Company, AR), muriatic acid (HCl, Beijing Tongguang Fine Chemicals Company, GR), ethanol (C₂H₅OH, Tianjin Dingshengxin Chemical Reagent Co., Ltd., AR).

All of the reagents and materials were purchased commercially and used without any further purification.

2. Treatment of nickel foam (NF)

First, a large piece of NF (size: 50×6 cm²) was cut into many small pieces with the size of 1×2 cm². These NF pieces were put into 1 M HCl (about 200 mL) with ultrasonic treatment for 30 min to remove the surface oxide layer and acid-soluble impurities. At this point, the solution turned slightly green (with Ni²⁺ being partially released into the acidic solution), and then NF pieces were repeatedly washed with deionized water until pH = 7. It was then ultrasonically cleaned 30 min in acetone and ethanol in sequence, and vacuum-dried for later use.

3. Characterization techniques

X-ray diffraction (XRD) was used to characterize the crystal structures of the asprepared products and I-loaded samples (X'pert pro MPD diffractometer, Cu K α radiation, $\lambda = 0.15406$ nm, operation at 40 kV and 40 mA). Field emission scanning electron microscope (FESEM) was used to observe morphologies and microstructures of samples (SU-8010, Hitachi, 10 kV). High-resolution transmission electron microscope (HRTEM) was used to observe the microstructures (JEM-2010, JEOL and FEI Technai G2 F20, 200 kV). X-ray photoelectron spectroscopy (XPS) was used to investigate the elemental valence and chemical environment of the products (ESCALAB 250Xi spectrometer, Thermo Fisher, Al K α radiation). Microscopic confocal Raman spectrometer (Raman) was used to analyze chemical bonds of the samples (LabRAM Aramis, Horiba Jobin Yvon, He-Ne laser, $\lambda = 633$ nm). Inductively

coupled plasma-atomic emission spectrometry (ICP-AES) was used to quantitatively analyze the chemical compositions of products (Jarrel-ASH, ICAP-9000). Thermogravimetric (TG) analysis was performed to study the thermal stability of samples (HITACHI STA200, N₂ atmosphere, 10 °C/min).

4. Calculations of chemical composition of 0.6-SnS/Ni₃S₂/NF

We used an indirect calculation method to determine the specific chemical composition of the 0.6-SnS/Ni₃S₂/NF sample. Initially, the mass of bare NF was measured to be 72.3 mg (0.0723 g). After the solvothermal reaction, the mass of the sample increased to 77.3 mg (0.0773 g), indicating a mass increase of 5 mg (= 77.3-72.3), which is attributed to the introduction of Sn (of SnS) and S (of SnS and Ni₃S₂). In order to quantify the components in the sample, 2.7 mg (0.0027g) of the 0.6-SnS/Ni₃S₂/NF sample was dissolved completely in aqua regia and diluted to 50 mL, and 5 mL solution was taken for ICP tests. Based on the measured mass concentrations of Sn (0.63 mg/L) and Ni (40.1 mg/L), the mass percentages of Sn and Ni are determined to 1.17% (=0.63×0.05/2.7×100%) and 74.26% (= 40.1×0.05/2.7×100%).

For the 0.6-SnS/Ni₃S₂/NF sample with a mass of 77.3 mg, the contents of Sn and Ni would be 0.90 mg (= $77.3 \times 1.17\%$) and 57.4 mg (= $77.3 \times 74.26\%$), respectively. Combined with the total mass increase of 50 mg of Sn+S, the S content would be 5-0.90 = 4.1 mg.

If the chemical formula of 0.6-SnS/Ni₃S₂/NF is written as $(SnS)_x(Ni_3S_2)_y(Ni)_z$, then there will be the following equations:

S:
$$(x + 2y) \times 32 = 4.1$$

Sn:
$$x \times 118.71 = 0.90$$

Ni:
$$(3y+z) \times 58.69 = 57.4$$

Thus:

$$x = 0.0076$$
, $y = 0.0600$, $z = 0.7980$

If fix the molar number of Ni to 1, the molar numbers of SnS and Ni₃S₂ would be 0.0095 and 0.075, thus, the chemical composition of 0.6-SnS/Ni₃S₂/NF could be quantitatively expressed as $(SnS)_{0.0095}(Ni_3S_2)_{0.075}(NF)$ with a molecular weight of 78.1.

Table S1 Parameters for DFT calculations.						
Functional	k-point sampling	Cutoff energy	whether vdW corrections were used			
Perdew-Burke-	2×2×1 for structural optimization					
Ernzerh of (PBE)	$3\times3\times3$ for density of state	450 eV	No			
functional	2×2×1 for charge density difference					

$\textbf{Table S2} \ \ \text{Binding energies of Ni}_{3}S_{2}/NF, \ 0.6-SnS/Ni_{3}S_{2}/NF \ \ \text{and} \ \ 0.6-SnS/Ni_{3}S_{2}/NF-I.$					
Samples	Binding energies (eV)	Corresponding ions and orbitals			
	873.5/855.6	2p of Ni ²⁺			
Ni ₃ S ₂ /NF	870.4/853.0	$2p ext{ of } ext{Ni}^0$			
	163.7/162.7	2p of S ² -			
	873.8/855.9	2p of Ni ²⁺			
0.6 -SnS/Ni $_3$ S $_2$ /NF	870.4/853.0	2p of Ni ⁰			
	163.0/162.0	2p of S ²⁻			
	168.2	$2p \text{ of } S^{6+} (SO_4^{2-})$			
	494.8/486.4	$3d$ of Sn^{2+}			
	874.0/856.0	2p of Ni ²⁺			
$0.6\text{-SnS/Ni}_3S_2\text{/NF-I}$	164.7/162.5	$2p ext{ of } S^0$			
	169.5	$2p \text{ of } S^{6+} (SO_4^{2-})$			
	495.6/487.2	$3d$ of Sn^{4+}			
	630.5/619.0	3d of I			
	632.0/620.7	$3d ext{ of } I^0 (I_2)$			

Table S3 The adsorption energy E_{ad} (eV), adsorption bond length (B, Å) and the I-I bond length (L, Å) of I_2 adsorbed on the composites.

	SnS	Ni_3S_2	SnS/Ni ₃ S ₂	Ni ₃ S ₂ /SnS
$E_{\rm ad}$ (Metal site)	-2.94	-4.67	-2.83	-3.23
$B_{M ext{-}I}$	2.955	2.532, 2.539,	2.996	2.540, 2.743,
		2.630		2.769
L	2.858	3.057	2.832	2.962
$E_{\rm ad}$ (S site)	-2.86	-4.26	-2.78	-2.65
$B_{S ext{-}I}$	2.875	2.959	2.932	2.841
L	2.795	2.760	2.783	2.780

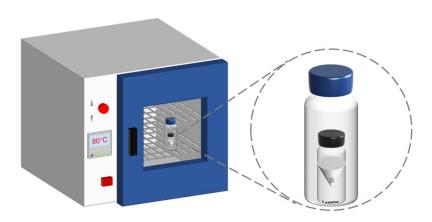


Fig. S1 Schematic diagram of iodine adsorption experiment.

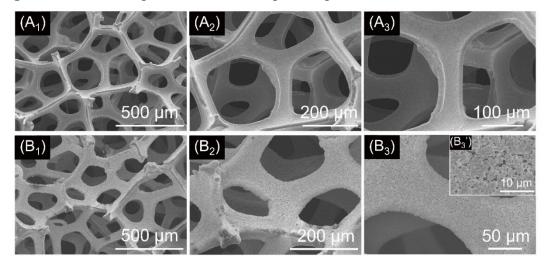


Fig. S2 SEM images of $(A_1\text{-}A_3)$ NF and $(B_1\text{-}B_3)$ NF-I.

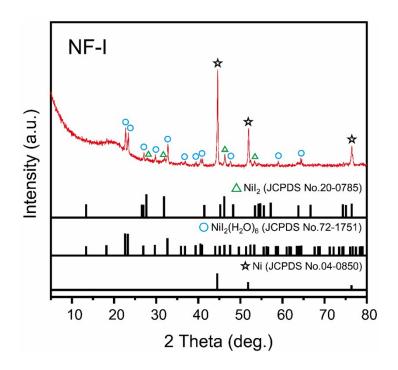


Fig. S3 XRD pattern of the sample of NF-I.

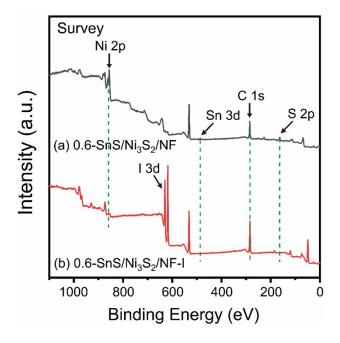
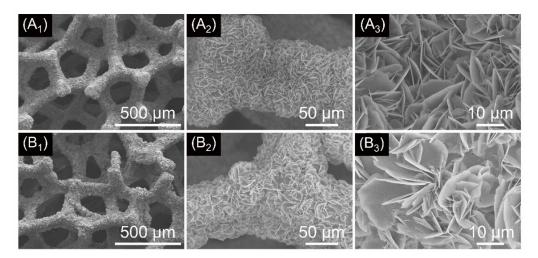
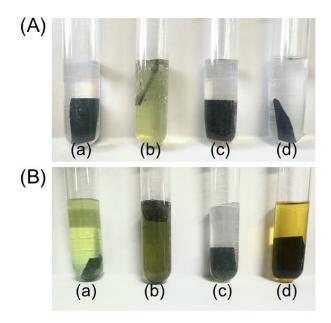




Fig. S4 XPS survey spectra of (a) 0.6-SnS/Ni₃S₂/NF and (b) 0.6-SnS/Ni₃S₂/NF-I.

Fig. S5 SEM images of I-loaded samples after (A_1-A_3) desorption (first-cycle) and (B_1-B_3) resorption (that is, second-cycle adsorption).

Fig. S6 (A) Photographs of 0.6-SnS/Ni₃S₂/NF in (a) deionized water, (b) 12 M HCl, (c) saturated NaOH solution and (d) ethyl acetate; (B) Photographs of 0.6-SnS/Ni₃S₂/NF-I in (a) deionized water, (b) 12 M HCl, (c) saturated NaOH solution and (d) ethyl acetate.

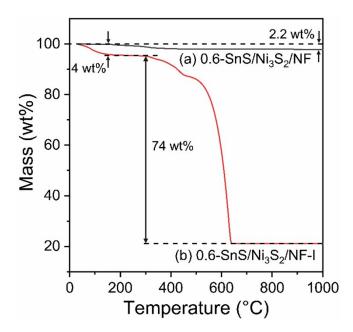
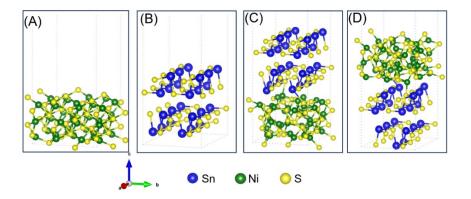



Fig. S7 Thermogravimetric (TG) curves of (a) 0.6-SnS/Ni $_3$ S $_2$ /NF and (b) 0.6-SnS/Ni $_3$ S $_2$ /NF-I.

Fig. S8 The optimized structural models of (A) Ni_3S_2 , (B) SnS, (C) SnS/Ni_3S_2 heterojunction (with SnS as sorption surface) and (D) Ni_3S_2/SnS heterojunction (with Ni_3S_2 as sorption surface).

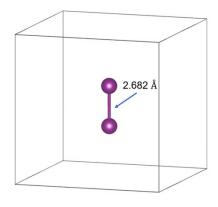


Fig. S9 The optimized structural model of I_2 molecule.