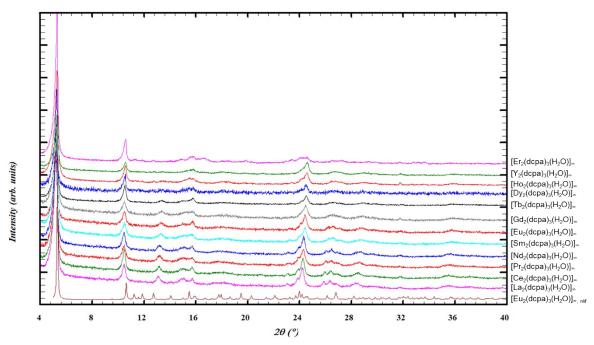
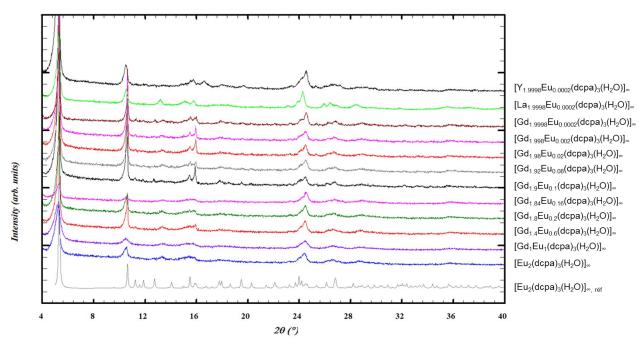
## SUPPORTING INFORMATION

Highly optically diluted lanthanide coordination polymers with unexpected strong luminescence.

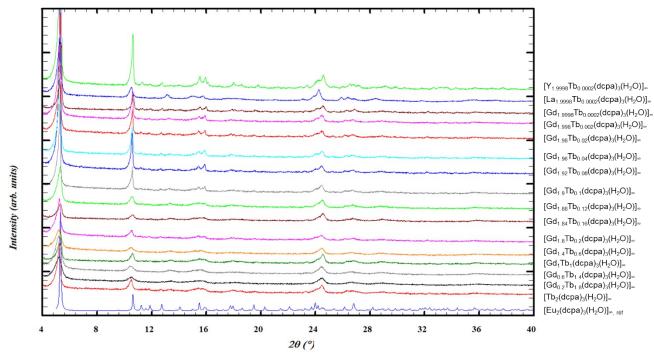
Chloé Blais,<sup>a</sup> Aurélien Chang,<sup>a</sup> Christine Hénaff,<sup>a</sup> Carole Daiguebonne,<sup>a</sup> \* Aimin Yao,<sup>a</sup> Régis Gautier,<sup>a</sup> Guillaume Calvez,<sup>a</sup> Yan Suffren,<sup>a</sup> Kevin Bernot,<sup>a</sup> and Olivier Guillou<sup>a,b</sup> \*.


<sup>a</sup> Univ Rennes, INSA Rennes, ENSCR, CNRS UMR 6226 "Institut des Sciences Chimiques de Rennes", 35708 Rennes, France.

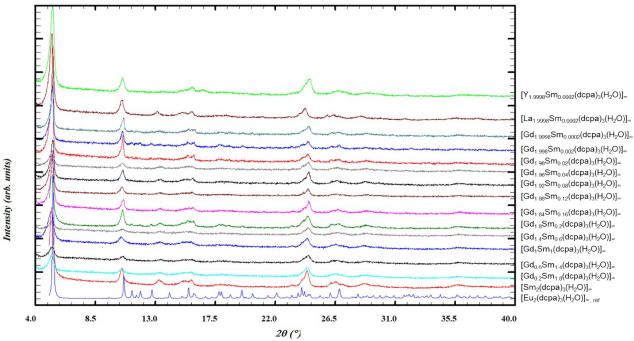
<sup>b</sup> Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France


\* To whom correspondence should be addressed.

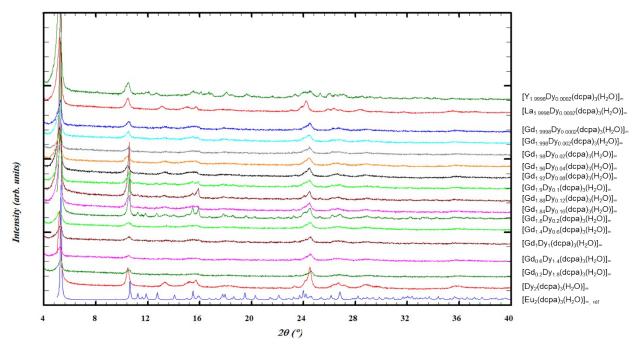
Olivier.guillou@insa-rennes.fr


Carole.Daiguebonne@insa-rennes.fr

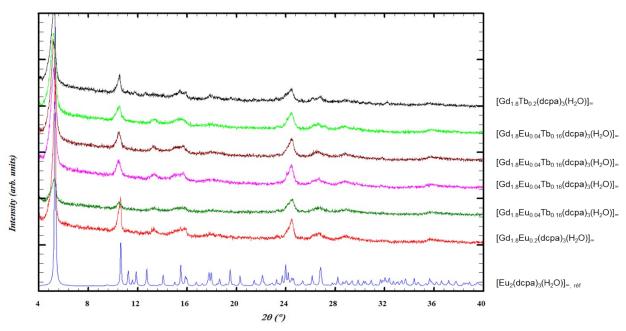



**Figure S1.** Experimental X-ray powder diffraction diagrams of  $[Ln_2(dcpa)_3(H_2O)]_{\infty}$  with Ln = La-Er except Pm plus Y and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).

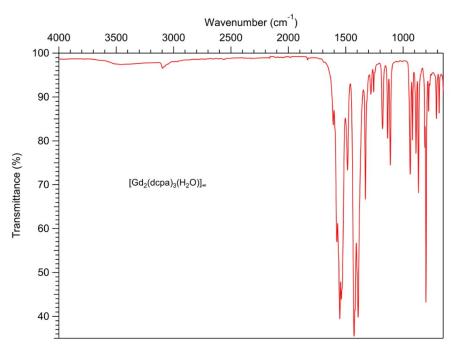



**Figure S2.** Experimental X-ray powder diffraction diagrams of  $[Gd_{2-2x}Eu_{2x}(dcpa)_3(H_2O)]_{\infty}$  with  $0.0001 \le x \le 1$ ,  $[La_{2-2x}Eu_{2x}(dcpa)_3(H_2O)]_{\infty}$  and  $[Y_{2-2x}Eu_{2x}(dcpa)_3(H_2O)]_{\infty}$  with x = 0.0001 and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).

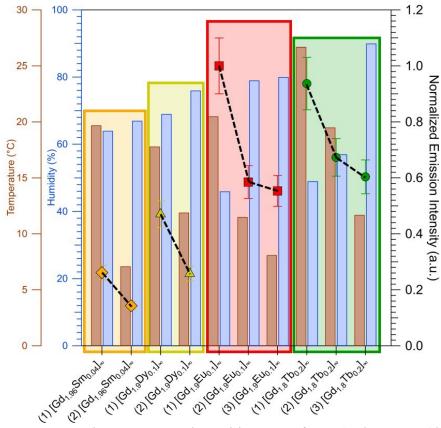



**Figure S3.** Experimental X-ray powder diffraction diagrams of  $[Gd_{2-2x}Tb_{2x}(dcpa)_3(H_2O)]_{\infty}$  with  $0.0001 \le x \le 1$ ,  $[La_{2-2x}Tb_{2x}(dcpa)_3(H_2O)]_{\infty}$  and  $[Y_{2-2x}Tb_{2x}(dcpa)_3(H_2O)]_{\infty}$  with x = 0.0001 and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).




**Figure S4.** Experimental X-ray powder diffraction diagrams of  $[Gd_{2-2x}Sm_{2x}(dcpa)_3(H_2O)]_{\infty}$  with  $0.0001 \le x \le 1$ ,  $[La_{2-2x}Sm_{2x}(dcpa)_3(H_2O)]_{\infty}$  and  $[Y_{2-2x}Sm_{2x}(dcpa)_3(H_2O)]_{\infty}$  with x = 0.0001 and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).




**Figure S5.** Experimental X-ray powder diffraction diagrams of  $[Gd_{2-2x}Dy_{2x}(dcpa)_3(H_2O)]_{\infty}$  with  $0.0001 \le x \le 1$ ,  $[La_{2-2x}Dy_{2x}(dcpa)_3(H_2O)]_{\infty}$  and  $[Y_{2-2x}Dy_{2x}(dcpa)_3(H_2O)]_{\infty}$  with x = 0.0001 and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).



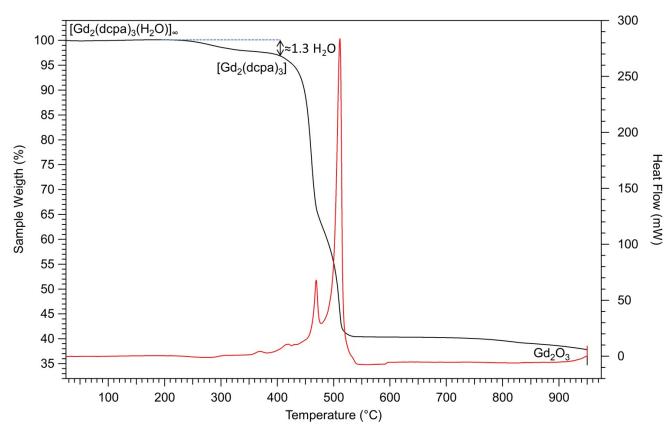
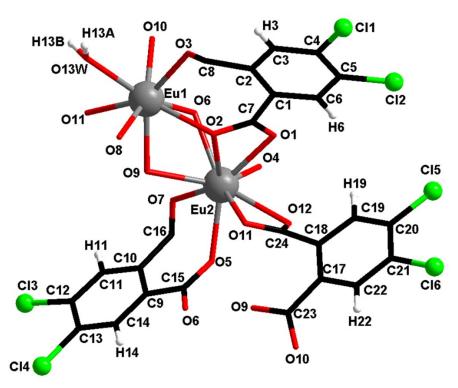
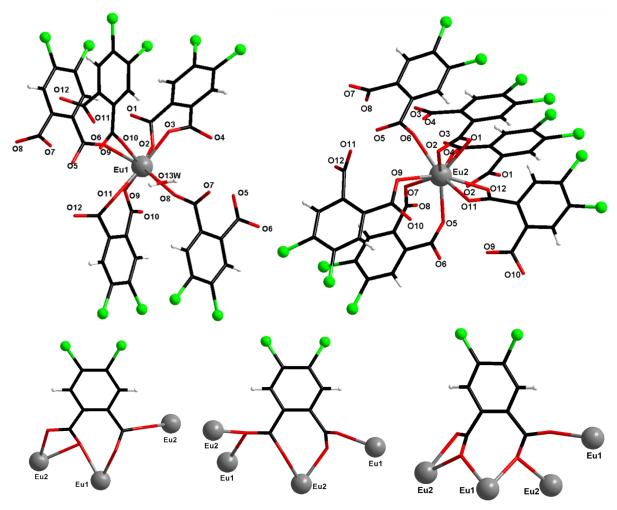
**Figure S6.** Experimental X-ray powder diffraction diagrams of  $[Gd_{1.8}Eu_{0.2-0.2x}Tb_{0.2x}(dcpa)_3(H_2O)]_{\infty}$  with  $0 \le x \le 1$  and simulated powder diffraction pattern of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  from its crystal structure (CCDC-1551529).

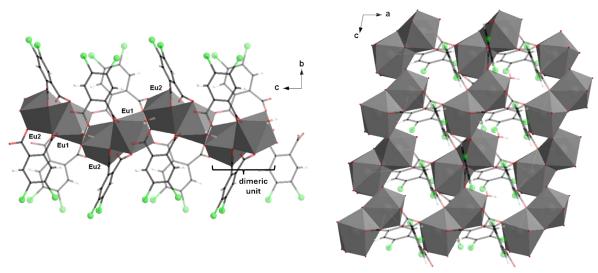


**Figure S7.** Solid state IR spectrum of [Gd<sub>2</sub>(dcpa)<sub>3</sub>(H<sub>2</sub>O)]<sub>∞</sub>.

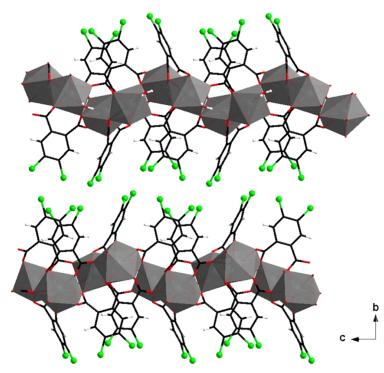


**Figure S8.** Luminescence intensities of  $[Gd_{1.96}Sm_{0.04}(dcpa)_3(H_2O)]_{\infty}$ ,  $[Gd_{1.9}Dy_{0.1}(dcpa)_3(H_2O)]_{\infty}$ ,  $[Gd_{1.80}Eu_{0.2}(dcpa)_3(H_2O)]_{\infty}$  and  $[Gd_{1.8}Tb_{0.2}(dcpa)_3(H_2O)]_{\infty}$ , *versus* climatic conditions during the preparation of the microcrystalline powders. The numbers (1), (2) and (3) refer to different samples.



Figure S9. Thermal analysis of  $[Gd_2(dcpa)_3(H_2O)]_{\infty}$  under air flux in a platinum crucible.




**Figure S10.** Projection view of an extended asymmetric unit of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$  with the numbering scheme.



**Figure S11.** Lanthanide ions environments (top) and coordination modes of the dcpa<sup>2-</sup> ligands (bottom) in  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$ .




**Figure S12.** Projection views along the *a*- and *b*-axis of a chain-like molecular motif (left) and of a bidimensional molecular motif (right) of  $[Eu_2(dcpa)_3(H_2O)]_{\infty}$ .



**Figure S13.** Projection view along the *a*-axis of two adjacent molecular planes of  $[Eu_2(depa)_3(H_2O)]_{\infty}$ .

**Table S1.** Mean distance between emissive lanthanide ions *versus* the doping rate in molecular alloys of general chemical formula  $[Ln_{2x}Ln'_{2-2x}(dcpa)_3(H_2O)]_{\infty}$ .

| Doping rate of emissive ions (%)  | Mean distance between emissive lanthanide |  |
|-----------------------------------|-------------------------------------------|--|
| Doping rate of emissive ions (70) |                                           |  |
|                                   | ions (Å)                                  |  |
| 0.01                              | 95.2                                      |  |
| 0.1                               | 44.2                                      |  |
| 0.5                               | 25.5                                      |  |
| 1                                 | 20.5                                      |  |
| 2                                 | 17.3                                      |  |
| 4                                 | 13.6                                      |  |
| 5                                 | 11.4                                      |  |
| 6                                 | 10.5                                      |  |
| 8                                 | 9.5                                       |  |
| 10                                | 8.9                                       |  |
| 20                                | 6.0                                       |  |
| 30                                | 5.5                                       |  |
| 40                                | 4.8                                       |  |
| 50                                | 4.2                                       |  |
| 60                                | 4.1                                       |  |
| 70                                | 4.0                                       |  |
| 80                                | 3.9                                       |  |
| 90                                | 3.9                                       |  |
| 100                               | 3.8                                       |  |



**Figure S14.** Room temperature solid-state excitation and emission spectra of  $[Ln_2(dcpa)_3(H_2O)]_{\infty}$  with Ln = Dy (left) and Sm (right). Stars indicate emission peaks due to the excitation lamp.

| <b>Table S2.</b> O-O distances in $[Eu_2(dcpa)_3(H_2O)]_{\infty}$ . |       |                        |              |  |
|---------------------------------------------------------------------|-------|------------------------|--------------|--|
| Atom1                                                               | Atom2 | Symmetry               | Distance (Å) |  |
| O13W                                                                | O11   | x, y, z                | 2.8396(34)   |  |
|                                                                     | O8    | 1+x, $1/2-y$ , $1/2+z$ | 2.8759(33)   |  |
|                                                                     | O7    | 1+x, $1/2-y$ , $1/2+z$ | 2.9153(29)   |  |
|                                                                     | O5    | 1+x, y, z              | 2.9767(35)   |  |
|                                                                     | O2    | x, 1/2-y, -1/2+z       | 2.9904(30)   |  |
|                                                                     | O10   | x, 1/2-y, -1/2+z       | 3.0104(33)   |  |
|                                                                     | O8    | 1+x, y, z              | 3.0885(33)   |  |
|                                                                     | O3    | x, y, z                | 3.2396(35)   |  |

| Table S3. Cl-Cl distan | ces in [Eu <sub>2</sub> (dcpa) <sub>3</sub> (H | $[2O]_{\infty}$ .       |              |
|------------------------|------------------------------------------------|-------------------------|--------------|
| Atom1                  | Atom2                                          | Symmetry                | Distance (Å) |
| C11                    | Cl2                                            | x, y, z                 | 3.1765(15)   |
| C12                    | Cl1                                            | x, y, z                 | 3.1765(15)   |
|                        | Cl6                                            | 2-x, $-1/2+y$ , $3/2-z$ | 3.3464(14)   |
|                        | Cl4                                            | 1-x, -y, 1-z            | 3.4222(15)   |
| C13                    | Cl4                                            | x, y, z                 | 3.1867(13)   |
| C14                    | C13                                            | x, y, z                 | 3.1866(13)   |
|                        | C15                                            | 1-x, $-1/2+y$ , $1/2-z$ | 3.3280(14)   |
|                        | C12                                            | 1-x, -y, 1-z            | 3.4218(15)   |
| C15                    | Cl6                                            | x, y, z                 | 3.1644(12)   |
|                        | Cl4                                            | 1-x, $1/2+y$ , $1/2-z$  | 3.3294(14)   |
| C16                    | C15                                            | x, y, z                 | 3.1651(12)   |
|                        | C12                                            | 2-x, $1/2+y$ , $3/2-z$  | 3.3461(14)   |