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Experimental Section

Material Characterization

Powder X-ray diffraction (XRD) patterns were collected using a diffractometer with
Cu Ko radiation (A = 1.5406 A) (Bruker D8 Advance). A JSM-7100F scanning
electron microscope (SEM) facilitated the electron microscopy analysis. Data were
acquired utilizing a JEM-2100F system for transmission electron microscopy (TEM)
and high-resolution transmission electron microscopy (HR-TEM). The high-angle
annular dark field scanning transmission electron microscopy (HAADF-STEM) was
executed on a transmission electron microscope equipped with spherical aberration
correction, specifically a JEOL ARM 200F. Spectral data from Raman were obtained
using a Renishaw (INVIA) system, where an Ar ion laser served as the source of
excitation light, adjusted to an excitation wavelength of 514.5 nm. An ESCALAB
250Xi spectrometer was utilized to conduct X-ray photoelectron spectroscopy (XPS)
with Al-Ka radiation (1486 eV). The Brunauer-Emmett-Teller (BET) method was
employed to assess specific surface areas via N, physisorption using a Micromeritics

ASAP 2020 device.



Fig. S1 SEM image of GC.

Fig. S2 TEM and HRTEM images of GC.
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Fig. S3 N, adsorption-desorption isotherms and pore-size distribution of GC, DGC
and N, F-DGC.
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Fig. S4 Raman spectra of GC, DGC and N, F-DGC.
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Fig. S5 TEM image and particle sizes analysis of PtCo/DGC.
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Fig. S6 TEM image and particle sizes analysis of PtCo/GC.
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Fig. S7 N, adsorption-desorption isotherms and pore-size distribution of PtCo/GC.
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Fig. S8 N, adsorption-desorption isotherms and pore-size distribution of PtCo/DGC.

2.5

2.0
1.5 1
1.0 1
0.5
0.04
—0.5 1
-1.04

Current Density/mA cm™

=154

-2.0

~— PtCo/N, F-DGC
— PtCo/DGC
PtCo/GC

— 20% Pt/C

0.0 0.2

0.4 06 08 1.0 1.2
Potential/V vs. RHE

100

80 1

=3
(=
I

ECSA/m* g,
-
(=]

20 4

PtCo/N, F-DGC
Bl PtCo/DGC

PtCo/GC

Pt/C

Fig. S9 Comparison of CV curves of PtCo/N, F-DGC, PtCo/DGC, PtCo/GC and

commercial Pt/C.
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Fig. S10 CV and LSV curves of PtCo/DGC before and after 30k cycles.
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Fig. S11 CV and LSV curves of PtCo/GC before and after 30k cycles.
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Fig. S12 CV and LSV curves of Pt/C before and after 30k cycles.
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Fig. S13 TEM image and particle sizes analysis of PtCo/N, F-DGC after 30k cycles.
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Fig. S14 TEM images and particle sizes analysis of PtCo/ DGC, PtCo/GC after 30k



cycles and TEM images of Pt/C before and after 30k cycles.

Fig. S15 Atomic-resolution HAADF-STEM image of PtCo/N, F-DGC after 30k

cycles.
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Fig. S16 High-resolution Pt 4f XPS spectra of PtCo/N, F-DGC before and after 30k
ADT cycles.
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Fig. S18 Optimized atomic structure models.
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Fig. S19 Differential charge density of PtCo/ GC.
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Fig. S20 Calculated free energy evolution along the four-electron associative ORR
pathway on the atomic models of PtCo/GC under electrode potentials of 0 V, 1.23 V,

and limiting potential.



Table S1. ICP-OES content of all pertinent elements in the corresponding samples.

Sample Pt (wt.%) Co (wt.%)
PtCo/GC 16.5 2.73
PtCo/DGC 16.4 2.76
PtCo/N, F-DGC 16.4 2.75

Table S2. Comparison of ORR activity and durability of the catalyst described in this

work with the representative Pt-based catalysts reported in the literature.

E1/2 (V) MA (A mgp¢ Loss of E1/2

. MA (A mgp") MA
catalyst initial D) (mV) after reference
after 30k cycles  retention
initial 30k cycles
PtCo/N, F-DGC 0934 1.02 2 0.88 86.3% this work
commercial 0.873 25 '
0.1 0.045 55% this work
Pt/C
Pt@MnSA-NC 0915 0.63 4 0.49 78% (1)
PtCo@NGNS ~ 0.95 1.29 20 1.05 81.4% 2)
FePt@PtBi  0.921 0.96 / 0.79 82.3% 3)
700-Pt1Col- / 10
0.53 0.41 76.6% (4)
IMC@Pt/C-2.5
Surf-IM-PtFe  0.956 3
0.49 0.43 87.8 (5)
NWs/C
PtCu,/C 0.945 1.06 27 0.42 40% (6)
PtCo/Co 0.883 19 0.36
0.57 62.7% (7)
@NHPCC (5k cycles)
0.923 14 0.55
Pt/Coga-N-C 0.72 75.8% (8)
(20k cycles)
O- 0.909 /
0.54 0.5 92.6% )

PtCo;@HNCS




Table S3. Comparison of catalytic performance of PtCo/N, F-DGC and previously

reported Pt-based catalysts in Hy/air fuel cells.

Anode/Cathode  Peak power
Voltage loss

loading density
catalyst @0.8A cm™?  reference
(mgp, cm?) (W cm?)
(mV)
PtCo/N, F-DGC 0.1/0.1 0.99 14 this work
Pt@MnSA-NC 0.1/0.1 0.86 10 (1)
i-CoPt@Pt/KB 0.1/0.1 1.27 29 (10)
CoZ-60Pt 0.1/0.2 0.923 / (11)
O-PtCo@GCoNC ~ 0.1/0.12 1.04 28 (12)
Gay1-PtCo 0.1/0.075 1.2 27 (13)
Pt,Fe,/Fe;-N-C 0.1/0.1 0.879 / (14)
L1,-N-PtCo- 0.96
0.05/0.1 22 (15)
H@Pt/C
0.04/0.06 0.92
PtCo@Gnp 18.8 (16)
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