

Supporting Information

Highly dispersed Ru clusters embedded nitrogen-doped hollow carbon spheres with tunable electronic property for catalytic reductive amination of biomass-derived furfural

Jun Wu,* Gang Pan, Ming Jin, Jiahao Bai, Tailong Shi and Yong Li*

School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China

*** Corresponding authors.**

E-mail address: wjhg168@163.com (J. Wu); yongli@sust.edu.cn (Y. Li).

Table of Contents

1. Materials and Methods	3
1.1. Synthesis of Schiff base	3
1.2. Synthesis of other catalysts.	3
2. Figures and Tables	5
Fig. S1. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-600 catalyst.	
.....	5
Fig. S2. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-800 catalyst.	
.....	5
Fig. S3. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-900 catalyst.	
.....	5
Table S1. Fitting results of high-resolution N 1s spectra of various Ru@NHCS and NHCS-700 catalysts.	6
Table S2. Fitting results of high-resolution Ru 3p spectra of various Ru@NHCS catalysts.....	6
Table S3. Ru@NHCS-700 catalyzed the reductive amination of furfural and Schiff base under different reaction conditions.....	7
Table S4. Experimental data for calculating turnover frequency (TOF) and initial reaction rate (IRR) of various Ru@NHCS catalysts.....	7
Table S5. The superior reductive amination performance of Ru@NHCS-700 compared to the reported catalysts.....	8
Table S6. The H ₂ desorption characteristics of various Ru@NHCS catalysts.	9
REFERENCES	10

1. Materials and Methods

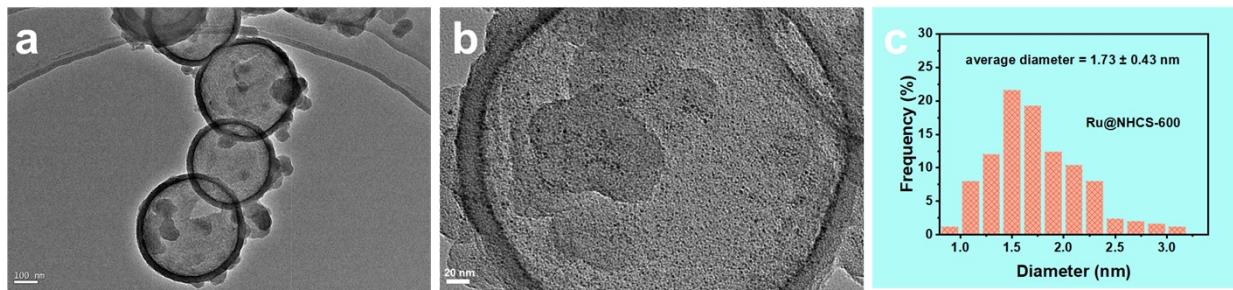
1.1. Synthesis of Schiff base

Typically, 4 mmol of furfural and 4 mmol of furfurylamine were added to 10 mL of anhydrous methanol in a reactor. Replacement of air in the reactor by N₂ and then filling with 1 MPa N₂, rapidly stirred at 90 °C for 6 h. After the reaction, the solution was purified via spin distillation to isolate the intermediate Schiff base, and its purity was analyzed by gas chromatography.

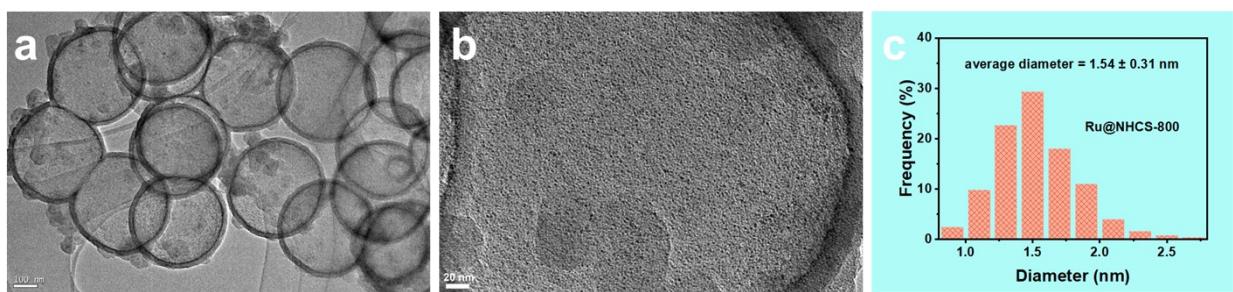
1.2. Synthesis of other catalysts

NHCS-700 catalyst. 0.1 g of PS nanospheres was dispersed in 50 mL of deionized water under ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at room temperature, followed by the slow addition of 0.1 g of C₈H₁₂ClNO₂. After stirring for an additional 30 min, 0.30285 g of Tris and 62 μL of HCl were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.

Ru@AC-700 catalyst. Adding 0.1 g of AC, 625 μL of Cl₃H₆ORu solution (10.859 mg mL⁻¹), and 15 mL of deionized water to a round-bottom flask, the mixture was sonicated for 30 min and then stirred at 85 °C for 6 h. Subsequently, the samples were oven-dried at 60 °C overnight to obtain the catalyst precursor.


Ru@NC-700 catalyst. 0.1 g of C₈H₁₂ClNO₂ and 625 μL of Cl₃H₆O₂Ru solution (10.859 mg mL⁻¹) was dispersed in 50 mL of deionized water, stirring for 30 minutes. Then, 0.30285 g of Tris and 62 μL of HCl were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.

Ru@HCS-700 catalyst. Adding 0.1 g of PS nanospheres, 0.1 mL of ammonia solution, 15 mL of deionized water and 35 mL of ethanol to a round-bottom flask, stirring for 10 minutes. Then, 0.1 g resorcinol, 0.2 mL formaldehyde solution (AR, 37%-40%) and 625 μL of Cl₃H₆O₂Ru solution (10.859 mg mL⁻¹) were added sequentially. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.


Pd@NHCS-700 and Pt@NHCS-700 catalysts. 0.1 g of PS nanospheres was dispersed in 50 mL of deionized water under ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at

room temperature, followed by the slow addition of 0.1 g of C₈H₁₂ClNO₂ and different metal precursors that maintaining identical theoretical metal loadings. After stirring for an additional 30 min, 0.30285 g of Tris and 62 μ L of HCl were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.

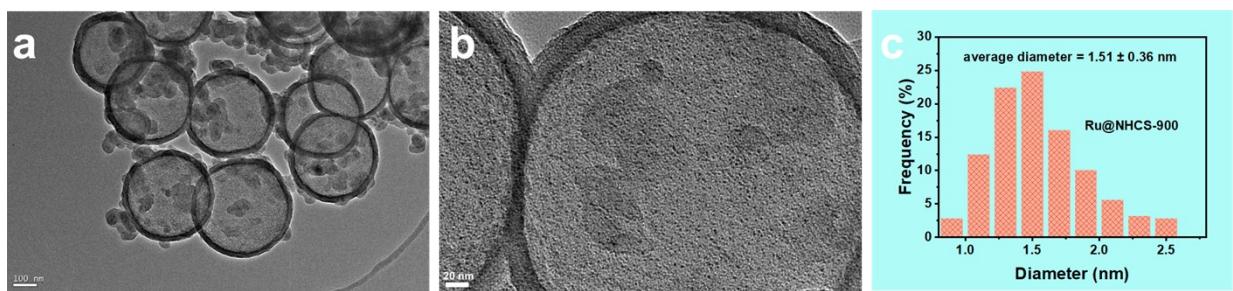

2. Figures and Tables

Fig. S1. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-600 catalyst.

Fig. S2. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-800 catalyst.

Fig. S3. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-900 catalyst.

Table S1. Fitting results of high-resolution N 1s spectra of various Ru@NHCS and NHCS-700 catalysts.

Catalyst	Ru-N		pyridinic N	
	peak (eV)	relative content (%)	peak (eV)	relative content (%)
Ru@NHCS-600	399.44	12.5	398.04	33.6
Ru@NHCS-700	399.66	16.3	398.21	29.7
Ru@NHCS-800	399.58	14.6	398.06	19.5
Ru@NHCS-900	399.31	11.9	397.86	13.2
NHCS-700	-	-	397.98	33.4

Table S2. Fitting results of high-resolution Ru 3p spectra of various Ru@NHCS catalysts.

Catalyst	Ru ⁰	
	Peak (eV)	Relative content (%)
Ru@NHCS-600	462.17	64.1
Ru@NHCS-700	461.73	69.4
Ru@NHCS-800	462.04	66.7
Ru@NHCS-900	462.30	57.8

Table S3. Ru@NHCS-700 catalyzed the reductive amination of furfural and Schiff base under different reaction conditions.

Entry	Substrate (0.5 mmol)	NH ₃ ·H ₂ O (mL)	Atmosphere (0.5 MPa)	Conversion (%)	Selectivity (%)			
					FUA	FDA	FUI	Other
1	Furfural	1.5	N ₂	86	-	-	24	76 ^b
2	Furfural	0	H ₂	6	-	-	-	100 ^c
3	Schiff base	1.5	N ₂	0	-	/	-	-
4	Schiff base	0	H ₂	41	-	/	-	100 ^d

^a Reaction conditions: methanol (5 mL), NH₃·H₂O (25-28%), Ru@NHCS-700 catalyst (10 mg), 80 °C, 3 h. ^b hydrofuranamide, ^c furfuryl alcohol, ^d secondary amine.

Table S4. Experimental data for calculating turnover frequency (TOF) and initial reaction rate (IRR) of various Ru@NHCS catalysts.

Catalyst	Time (h)	Conversion (%)	TOF (h ⁻¹)	IRR (mmol g _{Ru} ⁻¹ h ⁻¹)
Ru@NHCS-600	1	24.4	164.6	1628.8
Ru@NHCS-700	0.33	24.5	378.6	3745.8
Ru@NHCS-800	1	28.0	215.6	2132.8
Ru@NHCS-900	1	19.7	133.8	1323.4

Reaction conditions: catalyst (10 mg), Schiff bases (0.25 mmol), ethanol (5 mL), NH₃·H₂O (1.5 mL, 25-28%), H₂ (0.5 MPa), 80 °C.

Table S5. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Entry	Catalyst	Metal/Substrate (mole ratio)	H ₂ (MPa)	Nitrogen source/Substrate (mole ratio)	Tem. (°C)	Time (h)	Yield (%)	Production rate (mol _{FUA} mol _{metal} ⁻¹ h ⁻¹)	Ref.
1	Ru@NHCS-700	1:903	0.5	NH ₃ ·H ₂ O (42:1)	80	3	100	199	This work
2	Ru/SiO ₂	1:670	5.2	NH ₃ ·H ₂ O (5:1)	130	4	90	151	1
3	Ru/MMT	1:84	1	NH ₃ ·H ₂ O (107:1)	90	3	89	25	2
4	Ru/BN-e	1:11	1.5	NH ₃ ·H ₂ O (28:1)	90	5	99	33	3
5	4Ru1Co/AC	1:39	2	NH ₃ ·H ₂ O (51:1)	80	1	92	37	4
6	Ru/BNC	1:91	2	N ₂ H ₄ ·H ₂ O (4:1)	80	16	99	6	5
7	Ru-NPs	1:253	2	NH ₃ (16:1)	90	2	99	125	6
8	Ru1/NC	1:400	2	NH ₃ (0.5 MPa)	100	10	97	178	7
9	Ru/TiO ₂	1:167	1	NH ₃ (35:1)	80	1	83	153	8
10	Ru/Nb ₂ O ₅	1:250	2	NH ₃ (0.1 MPa)	90	4	99	129	9
11	Ru/HZSM-5(46)	1:27	3	NH ₃ (21:1)	100	0.25	76	82	10
12	Ru/TiP-100	1:500	1.7	NH ₃ (0.3 MPa)	30	24	91	19	11
13	Ru/T-ZrO ₂	1:126	2	NH ₃ (44:1)	80	2.5	99	23	12
14	Ru/Ni ₁ MgAlO _x	1:600	2	NH ₃ (3:1)	90	5	91.3	192	13
15	Ru/α-Al ₂ O ₃	1:35	2	NH ₃ (0.2 MPa)	70	24	73.5	3	14
16	Ru/SBA-15	1:253	4	NH ₃ (0.2 MPa)	90	2	99	126	15
17	Ru@NC-Al ₂ O ₃	1:404	2	NH ₃ (42:1)	100	3	90	133	16
18	Ru/NCB-600	1:202	2	NH ₃ (35:1)	50	2	99	100	17
19	Ru/Nb ₂ O ₅ ·H ₂ O	1:253	4	NH ₃ (16:1)	70	4	89	56	18
20	Rh/TiO ₂	1:497	2	NH ₃ ·H ₂ O (144:1)	100	2	93	196	19
21	Pd/MoO _{3-x}	1:39	2	NH ₃ (37:1)	80	4	84	8	20
22	Pd NPs	1:2.7	0.1	NH ₃ (4:1)	30	3	97	2	21
23	Ni-Al ₂ O ₃	1:12	2	NH ₃ (21:1)	100	2	92	9	22
24	Ni/SiO ₂ -I-DP	1:19	4	NH ₃ (0.8 MPa)	90	1.5	95	12	23

Continued **Table S5**. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Entry	Catalyst	Metal/Substrate (mole ratio)	H ₂ (MPa)	Nitrogen source/Substrate	Tem. (°C)	Time (h)	Yield (%)	Production rate (mol _{FUA} mol _{metal} ⁻¹ h ⁻¹)	Ref.
25	Raney Co	1:13	1	NH ₃ (0.1 MPa)	120	2	98	11	24
26	Co@CoO _x	1.6:1	3	N ₂ H ₄ ·H ₂ O	60	4	96	3	25

Table S6. The H₂ desorption characteristics of various Ru@NHCS catalysts.

Catalyst	Peak temperature (°C)	Amount (μmol g ⁻¹)
Ru@NHCS-600	336	54.2
Ru@NHCS-700	329	97.9
Ru@NHCS-800	366	70.0
Ru@NHCS-900	374	31.5

All data determined by H₂-TPD.

REFERENCES

1. N. S. Gould, H. Landfield, B. Dinkelacker, C. Brady, X. Yang and B. Xu, Selectivity control in catalytic reductive amination of furfural to furfurylamine on supported catalysts, *ChemCatChem*, 2020, **12**, 2106-2115.
2. T. A. Gokhale, A. B. Raut and B. M. Bhanage, Comparative account of catalytic activity of Ru- and Ni-based nanocomposites towards reductive amination of biomass derived molecules, *Mol. Catal.*, 2021, **510**.
3. M. Gao, X. Jia, J. Ma, X. Fan, J. Gao and J. Xu, Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds, *Green Chem.*, 2021, **23**, 7115-7121.
4. G. Le, L. Xie, Y. Wang and L. Dai, Efficient conversion of furfural to furfuralamine over 4Ru1Co/AC catalyst, *Appl. Catal. A Gen.*, 2022, **647**.
5. H. Zou and J. Chen, Efficient and selective approach to biomass-based amine by reductive amination of furfural using Ru catalyst, *Appl. Catal. B Environ. Energy*, 2022, **309**, 121262-121276.
6. D. Chandra, Y. Inoue, M. Sasase, M. Kitano, A. Bhaumik, K. Kamata, H. Hosono and M. Hara, A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds, *Chem. Sci.*, 2018, **9**, 5949-5956.
7. H. Qi, J. Yang, F. Liu, L. Zhang, J. Yang, X. Liu, L. Li, Y. Su, Y. Liu, R. Hao, A. Wang and T. Zhang, Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones, *Nat. Commun.*, 2021, **12**, 3295-3312.
8. K. Han, S. Song, Y. You, X. Fu and X. Li, Synergistic effect of electron-deficient Ru⁰ and lewis acid sites on Ru/TiO₂ for efficient reductive amination of furfural via promoting Schiff base ammonolysis, *ACS Catal.*, 2025, **15**, 14575-14587.
9. T. Komanoya, T. Kinemura, Y. Kita, K. Kamata and M. Hara, Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds, *J. Am. Chem. Soc.*, 2017, **139**, 11493-11499.
10. C. Dong, H. Wang, H. Du, J. Peng, Y. Cai, S. Guo, J. Zhang, C. Samart and M. Ding, Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine, *Mol. Catal.*, 2020, **482**, 110755.

11. C. Xie, J. Song, M. Hua, Y. Hu, X. Huang, H. Wu, G. Yang and B. Han, Ambient-temperature synthesis of primary amines via reductive amination of carbonyl compounds, *ACS Catal.*, 2020, **10**, 7763-7772.
12. K. Saini, S. Arulananda Babu and S. Saravanamurugan, Surface acidic species-driven reductive amination of furfural with Ru/T-ZrO₂, *ChemSusChem*, 2024, **18**, e202401277.
13. Z. Gao, X. Zhao, X. Li, H. Wu, M. Gao, Q. Wang, D. Li and J. J. C. E. S. Feng, Rational regulation of spatially adjacent Al4c and Al6c sites assisted Ru catalysts for low-NH₃ furfural tandem reductive amination, *Chem. Eng. Sci.*, 2022, **258**, 117777.
14. H. Wang, Y. Zhang, D. Luo, H. Wang, Y. He, F. Wang and X. Wen, Active metal dependent side reactions for the reductive amination of furfural, *Mol. Catal.*, 2023, **536**, 112914
15. G. Xu, Z. Tu, X. Hu, X. Zhang and Y. Wu, Supported Ruthenium catalysts with electronic effect and acidity-basicity for efficient reductive amination of biomass-based carbonyl compounds, *Chem. Eng. J.*, 2024, **481**, 10.
16. Y. Wu, D. Xu, Y. Xu, X. Tian and M. Ding, Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination, *Appl. Catal. B Environ. Energy*, 2024, **343**, 123462-123471.
17. H. Gong, L. Wei, Q. Li, J. Zhang, F. Wang, J. Ren and X.-L. Shi, Electron-rich Ru supported on N-doped coffee biochar for selective reductive amination of furfural to furfurylamine, *Langmuir*, 2024, **40**, 8950-8960.
18. D. Deng, Y. Kita, K. Kamata and M. Hara, Low-Temperature Reductive amination of carbonyl compounds over Ru deposited on Nb₂O₅·nH₂O, *ACS Sustainable Chem. Eng.*, 2018, **7**, 4692-4698.
19. M. Ronda-Leal, C. Espro, N. Lazaro, M. Selva, A. Perosa, S. M. Osman, A. Pineda, R. Luque and D. Rodríguez-Padrón, Efficient and stable titania-based nanocatalytic materials for the reductive amination of furfural, *Mater. Today Chem.*, 2022, **24**, 100873.
20. Z. Wang, Y. Zheng, J. Feng, W. Zhang and Q. Gao, Promoting amination of furfural to furfurylamine by metal-support interactions on Pd/MoO_{3-x} catalysts, *Chem.-Eur. J.*, 2023, **29**, e202300947.

21. X. Jv, S. Sun, Q. Zhang, M. Du, L. Wang and B. Wang, Efficient and mild reductive amination of carbonyl compounds catalyzed by dual-function palladium nanoparticles, *ACS Sustain. Chem. Eng.*, 2019, **8**, 1618-1626.
22. C. Dong, Y. Wu, H. Wang, J. Peng, Y. Li, C. Samart and M. Ding, Facile and Efficient Synthesis of Primary Amines via Reductive Amination over a Ni/Al₂O₃ Catalyst, *ACS Sustain. Chem. Eng.*, 2021, **9**, 7318-7327.
23. Y. Yang, L. Zhou, X. Wang, L. Zhang, H. Cheng and F. Zhao, Catalytic reductive amination of furfural to furfurylamine on robust ultra-small Ni nanoparticles, *Nano Res.*, 2022, **16**, 3719-3729.
24. K. Zhou, B. Chen, X. Zhou, S. Kang, Y. Xu and J. Wei, Selective Synthesis of Furfurylamine by Reductive Amination of Furfural over Raney Cobalt, *ChemCatChem*, 2019, **11**, 5562-5569.
25. Y. Wei, Z. Sun, Q. Li, D. Wu, J. Wang, Y. Zhang, C. C. Xu and R. Nie, Efficient reductive amination of furfural to furfurylamine promoted synergistically by surface Co⁰ and oxygen-vacant CoO_x, *Fuel*, 2024, **369**, 131703.