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1. Materials and Methods

1.1. Synthesis of Schiff base

Typically, 4 mmol of furfural and 4 mmol of furfurylamine were added to 10 mL of anhydrous methanol in a 

reactor. Replacement of air in the reactor by N2 and then filling with 1 MPa N2, rapidly stirred at 90 °C for 6 h. 

After the reaction, the solution was purified via spin distillation to isolate the intermediate Schiff base, and its 

purity was analyzed by gas chromatography.

1.2. Synthesis of other catalysts

NHCS-700 catalyst. 0.1 g of PS nanospheres was dispersed in 50 mL of deionized water under 

ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at room temperature, 

followed by the slow addition of 0.1 g of C8H12ClNO2. After stirring for an additional 30 min, 0.30285 g 

of Tris and 62 μL of HCl were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred 

for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was 

obtained.

Ru@AC-700 catalyst. Adding 0.1 g of AC, 625 μL of Cl3H6ORu solution (10.859 mg mL-1), and 15 mL of 

deionized water to a round-bottom flask, the mixture was sonicated for 30 min and then stirred at 85 °C for 6 h. 

Subsequently, the samples were oven-dried at 60 °C overnight to obtain the catalyst precursor.

Ru@NC-700 catalyst. 0.1 g of C8H12ClNO2 and 625 μL of Cl3H6O2Ru solution (10.859 mg mL-1) was 

dispersed in 50 mL of deionized water, stirring for 30 minutes. Then, 0.30285 g of Tris and 62 μL of HCl 

were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h at room 

temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.

Ru@HCS-700 catalyst. Adding 0.1 g of PS nanospheres, 0.1 mL of ammonia solution, 15 mL of deionized 

water and 35 mL of ethanol to a round-bottom flask, stirring for 10 minutes. Then, 0.1 g resorcinol, 0.2 mL 

formaldehyde solution (AR, 37%-40%) and 625 μL of Cl3H6O2Ru solution (10.859 mg mL-1) were added 

sequentially. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after 

centrifugal washing, drying, and sintering, the catalyst was obtained. 

Pd@NHCS-700 and Pt@NHCS-700 catalysts. 0.1 g of PS nanospheres was dispersed in 50 mL of 

deionized water under ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at 
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room temperature, followed by the slow addition of 0.1 g of C8H12ClNO2 and different metal precursors that 

maintaining identical theoretical metal loadings. After stirring for an additional 30 min, 0.30285 g of Tris and 

62 μL of HCl were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h 

at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.
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2. Figures and Tables

Fig. S1. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-600 catalyst.

Fig. S2. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-800 catalyst.

Fig. S3. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-900 catalyst.
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Table S1. Fitting results of high-resolution N 1s spectra of various Ru@NHCS and NHCS-700 catalysts.

Ru-N pyridinic N

Catalyst
peak (eV)

relative

content (%)
peak (eV)

relative

content (%)

Ru@NHCS-600 399.44 12.5 398.04 33.6

Ru@NHCS-700 399.66 16.3 398.21 29.7

Ru@NHCS-800 399.58 14.6 398.06 19.5

Ru@NHCS-900 399.31 11.9 397.86 13.2

NHCS-700 - - 397.98 33.4

Table S2. Fitting results of high-resolution Ru 3p spectra of various Ru@NHCS catalysts.

Ru0

Catalyst
Peak (eV) Relative content (%)

Ru@NHCS-600 462.17 64.1

Ru@NHCS-700 461.73 69.4

Ru@NHCS-800 462.04 66.7

Ru@NHCS-900 462.30 57.8
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Table S3. Ru@NHCS-700 catalyzed the reductive amination of furfural and Schiff base under different reaction 

conditions.

Selectivity (%)
Entry

Substrate

(0.5 mmol)

NH3·H2O

(mL)

Atmosphere

(0.5 MPa)

Conversion

(%) FUA FDA FUI Other

1 Furfural 1.5 N2 86 - - 24 76 b

2 Furfural 0 H2 6 - - - 100 c

3 Schiff base 1.5 N2 0 - / - -

4 Schiff base 0 H2 41 - / - 100 d

a Reaction conditions: methanol (5 mL), NH3·H2O (25-28%), Ru@NHCS-700 catalyst (10 mg), 80 °C, 3 h. b 

hydrofuramide, c furfuryl alcohol, d secondary amine.

Table S4. Experimental data for calculating turnover frequency (TOF) and initial reaction rate (IRR) of various 

Ru@NHCS catalysts.

Catalyst
Time

(h)

Conversion

(%)

TOF

(h-1)

IRR

(mmol gRu
-1 h-1)

Ru@NHCS-600 1 24.4 164.6 1628.8

Ru@NHCS-700 0.33 24.5 378.6 3745.8

Ru@NHCS-800 1 28.0 215.6 2132.8

Ru@NHCS-900 1 19.7 133.8 1323.4

Reaction conditions: catalyst (10 mg), Schiff bases (0.25 mmol), ethanol (5 mL), NH3·H2O (1.5 mL, 25-28%), 

H2 (0.5 MPa), 80 °C.
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Table S5. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Entry Catalyst
Metal/Substrate

(mole ratio)

H2

(MPa)

Nitrogen 
source/Substrate

(mole ratio)

Tem.

(°C)

Time

(h)

Yield

(%)

Production rate

(molFUA molmetal
-

1 h-1)
Ref.

1 Ru@NHCS-700 1:903 0.5 NH3·H2O (42:1) 80 3 100 199 This 
work

2 Ru/SiO2 1:670 5.2 NH3·H2O (5:1) 130 4 90 151 1

3 Ru/MMT 1:84 1 NH3·H2O (107:1) 90 3 89 25 2

4 Ru/BN-e 1:11 1.5 NH3·H2O (28:1) 90 5 99 33 3

5 4Ru1Co/AC 1:39 2 NH3·H2O (51:1) 80 1 92 37 4

6 Ru/BNC 1:91 2 N2H4·H2O (4:1) 80 16 99 6 5

7 Ru-NPs 1:253 2 NH3 (16:1) 90 2 99 125 6

8 Ru1/NC 1:400 2 NH3 (0.5 MPa) 100 10 97 178 7

9 Ru/TiO2 1:167 1 NH3 (35:1) 80 1 83 153 8

10 Ru/Nb2O5 1:250 2 NH3 (0.1 MPa) 90 4 99 129 9

11 Ru/HZSM-5(46) 1:27 3 NH3 (21:1) 100 0.25 76 82 10

12 Ru/TiP-100 1:500 1.7 NH3 (0.3 MPa) 30 24 91 19 11

13 Ru/T-ZrO2 1:126 2 NH3 (44:1) 80 2.5 99 23 12

14 Ru/Ni1MgAlOx 1:600 2 NH3 (3:1) 90 5 91.3 192 13

15 Ru/α-Al2O3 1:35 2 NH3 (0.2 MPa) 70 24 73.5 3 14

16 Ru/SBA-15 1:253 4 NH3 (0.2 MPa) 90 2 99 126 15

17 Ru@NC-Al2O3 1:404 2 NH3 (42:1) 100 3 90 133 16

18 Ru/NCB-600 1:202 2 NH3 (35:1) 50 2 99 100 17

19 Ru/Nb2O5·H2O 1:253 4 NH3 (16:1) 70 4 89 56 18

20 Rh/TiO2 1:497 2 NH3·H2O (144:1) 100 2 93 196 19

21 Pd/MoO3-x 1:39 2 NH3 (37:1) 80 4 84 8 20

22 Pd NPs 1:2.7 0.1 NH3 (4:1) 30 3 97 2 21

23 Ni-Al2O3 1:12 2 NH3 (21:1) 100 2 92 9 22

24 Ni/SiO2-I-DP 1:19 4 NH3 (0.8 MPa) 90 1.5 95 12 23
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Continued Table S5. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Entry Catalyst
Metal/Substrate

(mole ratio)

H2

(MPa)

Nitrogen 

source/Substrate 

Tem.

(°C)

Time

(h)

Yield

(%)

Production rate

(molFUA molmetal
-

1 h-1)

Ref.

25 Raney Co 1:13 1 NH3 (0.1 MPa) 120 2 98 11 24

26 Co@CoOx 1.6:1 3 N2H4·H2O 60 4 96 3 25

Table S6. The H2 desorption characteristics of various Ru@NHCS catalysts.

Catalyst
Peak temperature

(°C)

Amount

(μmol g-1)

Ru@NHCS-600 336 54.2

Ru@NHCS-700 329 97.9

Ru@NHCS-800 366 70.0

Ru@NHCS-900 374 31.5

All data determined by H2-TPD.
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