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1. Materials and Methods

1.1. Synthesis of Schiff base

Typically, 4 mmol of furfural and 4 mmol of furfurylamine were added to 10 mL of anhydrous methanol in a
reactor. Replacement of air in the reactor by N, and then filling with 1 MPa N,, rapidly stirred at 90 °C for 6 h.
After the reaction, the solution was purified via spin distillation to isolate the intermediate Schiff base, and its
purity was analyzed by gas chromatography.

1.2. Synthesis of other catalysts

NHCS-700 catalyst. 0.1 g of PS nanospheres was dispersed in 50 mL of deionized water under
ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at room temperature,
followed by the slow addition of 0.1 g of CgH;,CINO,. After stirring for an additional 30 min, 0.30285 g
of Tris and 62 pL of HCI were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred
for 22 h at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was
obtained.

Ru@AC-700 catalyst. Adding 0.1 g of AC, 625 pL of Cl;HsORu solution (10.859 mg mL-!), and 15 mL of
deionized water to a round-bottom flask, the mixture was sonicated for 30 min and then stirred at 85 °C for 6 h.
Subsequently, the samples were oven-dried at 60 °C overnight to obtain the catalyst precursor.

Ru@NC-700 catalyst. 0.1 g of CgH;,CINO, and 625 pL of Cl3HsO,Ru solution (10.859 mg mL-!) was
dispersed in 50 mL of deionized water, stirring for 30 minutes. Then, 0.30285 g of Tris and 62 uL of HCI
were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h at room
temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.

Ru@HCS-700 catalyst. Adding 0.1 g of PS nanospheres, 0.1 mL of ammonia solution, 15 mL of deionized
water and 35 mL of ethanol to a round-bottom flask, stirring for 10 minutes. Then, 0.1 g resorcinol, 0.2 mL
formaldehyde solution (AR, 37%-40%) and 625 pL of Cl3HsO,Ru solution (10.859 mg mL!) were added
sequentially. The resulting mixture was subsequently stirred for 22 h at room temperature. Finally, after
centrifugal washing, drying, and sintering, the catalyst was obtained.

Pd@NHCS-700 and Pt@NHCS-700 catalysts. 0.1 g of PS nanospheres was dispersed in 50 mL of

deionized water under ultrasonication for 30 min. The mixture was then stirred in an oil bath for 5 min at



room temperature, followed by the slow addition of 0.1 g of CgH;,CINO, and different metal precursors that
maintaining identical theoretical metal loadings. After stirring for an additional 30 min, 0.30285 g of Tris and
62 pL of HCI were added to adjust the pH to 8.5. The resulting mixture was subsequently stirred for 22 h

at room temperature. Finally, after centrifugal washing, drying, and sintering, the catalyst was obtained.



2. Figures and Tables
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Fig. S3. TEM images and the corresponding particle size distribution histogram of Ru@NHCS-900 catalyst.



Table S1. Fitting results of high-resolution N 1s spectra of various Ru@NHCS and NHCS-700 catalysts.

Ru-N pyridinic N
Catalyst relative relative
peak (eV) peak (eV)
content (%) content (%)
Ru@NHCS-600 399.44 12.5 398.04 33.6
Ru@NHCS-700 399.66 16.3 398.21 29.7
Ru@NHCS-800 399.58 14.6 398.06 19.5
Ru@NHCS-900 399.31 11.9 397.86 13.2
NHCS-700 - - 397.98 334

Table S2. Fitting results of high-resolution Ru 3p spectra of various Ru@NHCS catalysts.

Ru®
Catalyst
Peak (eV) Relative content (%)
Ru@NHCS-600 462.17 64.1
Ru@NHCS-700 461.73 69.4
Ru@NHCS-800 462.04 66.7

Ru@NHCS-900 462.30 57.8




Table S3. Ru@NHCS-700 catalyzed the reductive amination of furfural and Schiff base under different reaction

conditions.
Substrate NH;-H,O  Atmosphere  Conversion Selectivity (%)
Entry

(0.5 mmol) (mL) (05 MPa) (%) FUA FDA FUI Other
1 Furfural 1.5 N, 86 - - 24 760
2 Furfural 0 H, 6 - - - 100°¢
3 Schiff base 1.5 N, 0 - / - -
4 Schiff base 0 H, 41 - / - 1004

a Reaction conditions: methanol (5 mL), NH;-H,O (25-28%), Ru@NHCS-700 catalyst (10 mg), 80 °C, 3 h. ®

hydrofuramide, © furfuryl alcohol, ¢ secondary amine.

Table S4. Experimental data for calculating turnover frequency (TOF) and initial reaction rate (IRR) of various

Ru@NHCS catalysts.
Time Conversion TOF IRR
Catalyst
(h) (%) (hh) (mmol gg," h)
Ru@NHCS-600 1 24.4 164.6 1628.8
Ru@NHCS-700 0.33 24.5 378.6 3745.8
Ru@NHCS-800 1 28.0 215.6 2132.8
Ru@NHCS-900 1 19.7 133.8 1323.4

Reaction conditions: catalyst (10 mg), Schiff bases (0.25 mmol), ethanol (5 mL), NH;-H,O (1.5 mL, 25-28%),

H, (0.5 MPa), 80 °C.



Table S5. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Nitrogen

Production rate

Metal/Substrate  H, Tem. Time Yield
Entry Catalyst . source/Substrate (mOleya MOl Ref.
(mole ratio)  (MPa) (mole ratio) (°C) (h) (%) Uhel)

1 Ru@NHCS-700 1:903 0.5 NH;-H,O (42:1) 80 3 100 199 VTVEE
2 Ru/SiO, 1:670 52  NH;3-HO (5:1) 130 4 90 151 1
3 Ru/MMT 1:84 1 NH;5-H,O (107:1) 90 3 89 25 2
4 Ru/BN-e 1:11 1.5 NH;-H,O (28:1) 90 5 99 33 3
5 4RulCo/AC 1:39 2 NH;-H,O (51:1) 80 1 92 37 4
6 Ruw/BNC 1:91 2 N,H4-H,0 (4:1) 80 16 99 6 5
7 Ru-NPs 1:253 2 NH; (16:1) 90 2 99 125 6
8 Rul/NC 1:400 2 NH; (0.5 MPa) 100 10 97 178 7
9 Ru/TiO, 1:167 1 NH; (35:1) 80 1 83 153 8
10 Ru/Nb,Os 1:250 2 NH; (0.1 MPa) 90 4 99 129 9
11 Ru/HZSM-5(46) 1:27 3 NH; (21:1) 100 0.25 76 82 10
12 Ru/TiP-100 1:500 1.7  NH; (0.3 MPa) 30 24 91 19 11
13 Ru/T-ZrO, 1:126 2 NH; (44:1) 80 2.5 99 23 12
14 Ru/Ni;MgAlO, 1:600 2 NH; (3:1) 90 5 91.3 192 13
15 Ru/a-ALO4 1:35 2 NH; (0.2 MPa) 70 24 73.5 3 14
16 Ru/SBA-15 1:253 4 NH; (0.2 MPa) 90 2 99 126 15
17 Ru@NC-AlLLO; 1:404 2 NH; (42:1) 100 3 90 133 16
18 Ru/NCB-600 1:202 2 NH; (35:1) 50 2 99 100 17
19 Ru/Nb,Os-H,O 1:253 4 NH; (16:1) 70 4 89 56 18
20 RW/TiO, 1:497 2 NH;H,O (144:1) 100 2 93 196 19
21 Pd/MoO;. 1:39 2 NH; (37:1) 80 4 84 8 20
22 Pd NPs 1:2.7 0.1 NH; (4:1) 30 3 97 2 21
23 Ni-Al,O; 1:12 2 NH; (21:1) 100 2 92 9 22
24 Ni/SiO,-I-DP 1:19 4 NH; (0.8 MPa) 90 1.5 95 12 23




Continued Table S5. The superior performance of Ru@NHCS-700 compared to the reported catalysts.

Production rate

Metal/Substrate ~ H, Nitrogen Tem. Time  Yield
Entry Catalyst (molgys molpem  Ref.
(mole ratio)  (MPa) source/Substrate  (°C) (h) (%) ey
25 Raney Co 1:13 1 NH; (0.1 MPa) 120 2 98 11 24
26 Co@CoOy 1.6:1 3 N,H4-H,O 60 4 96 3 25

Table S6. The H, desorption characteristics of various Ru@NHCS catalysts.

Peak temperature Amount
Catalyst
°O (umol g
Ru@NHCS-600 336 54.2
Ru@NHCS-700 329 97.9
Ru@NHCS-800 366 70.0
Ru@NHCS-900 374 31.5

All data determined by H,-TPD.
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