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1 Experiment and Characterization

1.1 Experiment

The high-entropy oxide ceramic KMHO was synthesized via the solid-state sintering
method. The raw materials included K,CO3 (West Asia, 99%), MnO (Aladdin, 99%),
In,O3 (West Asia, 99.99%), Sc,0; (HWRK, 99.99%), Lu,0; (Macklin, 99.99%),
Yb,05 (Macklin, 99.99%), and MoO; (West Asia, 99.95%). All raw materials were
weighed according to their stoichiometric molar ratios and thoroughly mixed in an
agate mortar with an appropriate amount of anhydrous ethanol as a milling medium.
The mixture was ground for 2 hours to ensure homogeneous dispersion and fine particle
size. To mitigate the adverse effect of CO, release from K,CO; decomposition during
high-temperature sintering on the sample densification, the mixed powder was pre-
calcined in an alumina crucible at 600 °C for 6 hours in a muffle furnace. The pre-
calcined powder was then reground in an agate mortar with anhydrous ethanol for
another 2 hours. The resulting fine powder was uniaxially pressed into cylindrical
pellets (O8 x 5 mm) under a pressure of 2 MPa. Finally, the green compacts were
sintered at 750 °C for 10 hours in a muffle furnace, followed by furnace cooling to room

temperature, yielding the target high-entropy oxide ceramic samples.
1.2 Characterization

The phase purity of the sample was examined using high-resolution synchrotron X-ray
diffraction at the BLO2B2 beamline. A two-dimensional detector (XRD3025) was used
to collect powder diffraction data. Automated data collection was carried out with
temperature control using LabVIEWTM software along with high and low temperature
nitrogen gas flow systems. The set temperature range was from 300 to 1000 K, a
temperature rate of 30 K/min, and a thermal equilibration delay of 3 min. The
diffraction patterns were refined by the Rietveld method using the FullProf software to
obtain detailed information on the crystal structure, lattice parameters, and interatomic
distances. Raman spectra were collected on a Horiba Jobin Yvon LabRAM HR

spectrometer with a 532 nm excitation wavelength. The microstructure of the sample



was characterized using a scanning electron microscope (Zeiss/Auriga FIB) and a
transmission electron microscope (FEI Talos F200S), while the elemental composition
and spatial distribution were analyzed by energy-dispersive X-ray spectroscopy (EDS).
X-ray photoelectron spectroscopy (XPS) measurements were performed on an Escalab
250Xi spectrometer equipped with an Al Ko radiation source, and the binding energies
were calibrated against the C 1s peak at 284.8 eV. Thermal analyses, including
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), were
conducted on a TA449F3 system over a temperature range from room temperature to
900 K at a heating rate of 10 K/min. The ionic conductivity was measured using a
CHI650E electrochemical workstation. Additionally, the UV—Vis absorption spectrum

of the sample was recorded using a TU-1901 double-beam UV—Vis spectrophotometer.
1.3 Computational detail

First-principles calculations based on density-functional theory (DFT) are carried out
using the Vienna ab initio simulation package (VASP).! The exchange and correlation
effects were included within the Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation (GGA).? The interaction between the atomic core and valence electrons
is described using pseudopotentials based on the projector augmented plane wave

(PAW) method.?
1.4 The calculation of CTE

The coefficient of thermal expansion (CTE) is a key parameter characterizing the
thermal expansion behavior of materials. It reflects the relative change in the unit length
or unit volume of a material per 1 K temperature variation under constant pressure
conditions, which corresponds to the linear thermal expansion coefficient (¢;) and the
volumetric thermal expansion coefficient (ay), respectively. Their expressions are
defined as follows:
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where [y and ¥, denote the initial length and volume at 7y; / and V represent its length

and volume at T; and AT refers to the temperature variation.
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Fig. S1 Rietveld refinement pattern of KMHO at room temperature
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Figure S2. High-resolution XPS spectra of (a) Mn 2p, (b) In 3d, (¢) Sc 2p, (d) Lu 4d,
and Yb 4d in KMHO.
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Figure S3. Variable temperature XRD patterns of KMHO.
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Figure S4. TG and DSC curves of KMHO.
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Figure S5. Unpolarized Raman spectrum of KMHO at room temperature.
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Figure S6. Variable Raman spectroscopy of KMHO.
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Figure S7. (a) UV-visible absorption spectra of KMHO, (b) schematic diagram of band

gap calculated from UV-vis absorption spectroscopy.
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Figure S8. (a) Temperature dependence of the ionic conductivity for KMHO and
KMnInMo;0y,, (b) temperature dependence of the (M—0O)/(T—O) ratios for KMHO and

KMI’III’IM03O 12+



Table S1. The optimal Rietveld refined structure parameters of KMHO at 300 K.

Atom Occ X y z Bis, (A3)
K 1 0 0 0 4.00438(13)
Mn I 0 0 0.14323(7) 0.08098(8)
Sc 0.25 0 0 0.14323(7) 0.08098(8)
In 0.25 0 0 0.14323(7) 0.08098(8)
Lu 0.25 0 0 0.14323(7) 0.08098(8)
Yb 0.25 0 0 0.14323(7) 0.08098(8)
Mol 1 0.28491(19) 0 0.25000(0) 0.89834(9)
Mo2 I 0.28491(19) 0 0.25000(0) 0.89834(9)
Mo3 1 0.28491(19) 0 0.25000(0) 0.89834(9)
(0) 1 0.02508(19) 0.19307(13) 0.19196(18) 1.14800(11)
02 1 0.02508(19) 0.19307(13) 0.19196(18) 1.14800(11)
03 ! 0.02508(19)  0.19307(13)  0.19196(18) 1.14800(11)
04 1 0.02508(19)  0.19307(13)  0.19196(18) 1.14800(11)
05 I 0.02508(19)  0.19307(13)  0.19196(18) 1.14800(11)
06 1 0.02508(19) 0.19307(13) 0.19196(18) 1.14800(11)
07 1 0.18846(18)  0.16002(12)  0.09029(18) 1.60449(10)
08 1 0.18846(18) 0.16002(12) 0.09029(18) 1.60449(10)
09 ! 0.18846(18)  0.16002(12)  0.09029(18) 1.60449(10)
010 1 0.18846(18)  0.16002(12)  0.09029(18) 1.60449(10)
ol11 I 0.18846(18)  0.16002(12)  0.09029(18) 1.60449(10)
012 I 0.18846(18)  0.16002(12)  0.09029(18) 1.60449(10)

Table S2. Variation of unit cell parameters, unit cell volume, R,, and R, with
Temperature.

Temperature Lattice parameters
R, (%) R\, (%)

X a/b (A) cA) v (A

300 9.58909 24.78824 1973.488 8.37 12.6
350 9.58331 24.81729 1973.443 9.18 13.6
400 9.57708 24.84411 1973.414 8.40 12.5
450 9.5714 24.87278 1973.358 8.98 13.1
500 9.5656 2490331 1973.384 8.56 12.7
550 9.55999 24.93303 1973.424 8.81 13.1
600 9.55429 24.96426 1973.54 8.62 12.9
650 9.54841 24.99806 1973.781 9.42 14.0
700 9.54318 25.02848 1974.018 9.65 14.3
750 9.5381 25.0589 1974314 9.05 13.4

800 9.5333 25.08738 1974.569 10.50 15.9




Table S3. CTE and temperature range of some typical ZTE materials

Materials a, (10 K1) Temperature range (K) Ref.

LaFeyCug5Siy4 0.84 185-250 4
CrVMoO, -1.92 100-240 3
HifogsTag.15Fe2Co 01 2.40 85-245 6
Mn;Fe(2Cog,Nig2Mng,Cug,N 0.72 10-180 7
S-Cu,V,0, -2.70 153-323 8
Gdo25Dyo.75Co1 95F €007 0.48 10-275 J
K 5BigsTiO; 1.30 373-573 10
Cs7Ni[Fe(CN)glo.o:2.9H,0 -1.20 100-300 1
ReO; -1.90 2-220 12
CoHfF, 1.99 350-573 13
N(CHj3)4CuZn(CN)4 2.01 218-368 14
Sco.72sNbg 275Fe; 2.07 108-264 15
Ho,FesCr 1.29 13-330 16
Hfy ¢Tip4Fes s 1.59 100-450 17
TaPOs -1.70 473-873 18

KMHO 1.53 300-800 This work

Table S4. The ADP values of O1 and O7 at 300-800 K.

Atom 01-11 01-22 01-33 02-11 02-22 02-33
300 0.00488(14)  0.00522(13) 4.4E-4(1) 0.00401(13)  0.00388(13) _ 6.7E-4(1)
350 0.00543(15)  0.00502(14) 6.3E-4(1) 0.00467(13)  0.00439(13)  9.2E-4(2)
400 0.00540(15)  0.00500(15) 74E-4(2) 0.00498(14)  0.0045(14)  7.4E-4(2)
450 0.00664(16)  0.00603(16) 5.8E-4(2) 0.00775(18)  0.00568(16)  8.9E-4(2)
500 0.00852(17) 0.00594(16) 7.1E-4(2) 0.00805(16) 0.00558(16) 9.8E-4(2)
550 0.01025(19) 0.00585(17) 9.9E-4(2) 0.0081(17) 0.00699(17)  0.00104(2)
600 0.01144(19)  0.00622(17)  0.00109(2)  0.00844(17)  0.00804(18)  0.00100(1)
650 0.01304(22)  0.00748(19)  0.00106(2)  0.01113(19)  0.00907(19)  0.00114(2)
700 0.0135(22) 0.00897(20) 0.00109(2) 0.01182(20) 0.01094(21)  0.00126(2)
750 0.01383(23)  0.00955(21)  0.00113(2)  0.01401(21)  0.01289(22)  0.00164(3)
800 0.01582(30)  0.01027(26)  0.00136(3)  0.01708(30)  0.01634(31)  0.00184(3)




Table S6. The variation of Raman Shift with pressure.

Pressure (GPa) Raman Shift (cm™)

0 345.27662
0.25 345.19655
0.47 344.9409
0.71 344.75403
1.02 34430328
1.37 343.58024
1.65 342.1728
2.14 341.87765
2.70 340.69088
3.00 340.5041
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