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Figure S1. Crystal morphology: Needle-rod-like macroscopic morphology of Eu-NC under optical 
microscope. 
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Figure S2. The X-ray photoelectron spectroscopy of Eu-NC. The binding energy peaks at 1130-
1170 eV corresponding to Eu3+ (a) and 529-535 eV corresponding to O2- (b) respectively.
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Figure S3. Powder X-ray diffraction pattern (PXRD) for Eu-NC. The PXRD of the crystal is well 
indexed to the standard card of Eu-NC, indicating the formation of high-purity solid without any 
impurity phases. 
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Figure S4. Scanning Electron Microscope Testing: (a) SEM image of the as-prepared Eu-NC. (b) 
EDX mapping of Eu-NC.
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Figure S5. The TGA curves of Eu-NC under nitrogen-containing conditions.
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Figure S6. Variable-excitation emission spectrum. (a) Normalized emission spectra of Eu-NC 
upon ligand-directed excitation (319 nm) and Eu3+ intrinsic excitation (394 nm) under ambient 
conditions. (b) Emission spectra of Eu-NC under different intrinsic excitations.
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Figure S7. Solid-state UV-VIS spectra of Eu-NC (red line) and MOBA (blue line) at room 
temperature; emission spectra of MOBA (black line) at room temperature. The absorption peak of 
Eu-NC completely overlaps with that of MOBA and exhibits the characteristic absorption peak of 
Eu³⁺; the emission peak of MOBA is around 412 nm.
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Figure S8. The process of intramolecular energy transfer from the ligands to Eu3+ centers. 1. 
represents the process of ultraviolet light excitation of ligands, the electron transitions from the 
ground state S₀ of the ligand to the first excited singlet state S₁, 2. indicates the transfer of electrons 
to the triplet state via intersystem crossing (ISC), 3. represents the transfer of energy to rare-earth 
ions via non-radiative energy transfer (ET), placing them in an excited state, 4. indicates that rare-
earth ions emit light through radiative transitions.
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Figure S9. Variable-temperature spectroscopy testing from 20K to 300K. (a) Excitation spectrum of 
Eu-NC under emission at 616 nm. (b) Emission spectrum of Eu-NC under excitation at 319 nm.
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Figure S10. Infrared Spectra of Eu-NC among 500-4000 cm-1. The strong absorption bands from 
1750 cm-1 and 1620 cm-1 were caused by the C=O, C=C vibration of MOBA. The absorption band 
at 2900 cm-1 is caused by C-H vibrations. 
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Figure S11. Judd-Ofelt intensity parameters Ω2 of Eu-NC and the second-order crystal field 
parameter analysis for Eu-NC.
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Figure S12. Polarized PL spectrum of Eu-NC microrod at variable angles (0~360°). 
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Table S1. Crystallographic data for compounds Eu-NC.

Compound Eu-NC

Formula C24H21EuO9

FW 605.37

T/K 100

Cry. system monoclinic

Space group P21/c

a /Å 13.40601(4)

b /Å 22.2215(4)

c /Å 7.6893(5)

α /o 90(2)

β /o 104.4150(2)

γ /o 90(3)

V/Å3 2218.54(17)

Z 4

Dc/g cm–3 1.812

μ/ mm–1 2.881

Data/parameters 5085/310

2θ/o 5.77-55.02

F(000) 1200.0

GOF 1.127

R1[I> 2σ(I)]a 0.0159

wR2(All data)b 0.0373


