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Supporting note 1:

AEMWE measurement

The Ce-NiFeOOH/PO,* catalyst was sprayed over Ni fibers and carbon paper, forming

electrodes (2 cm?) that were integrated into an anion exchange membrane (AEM) water electrolysis

cell. The anode and cathode were separated using an anion exchange membrane (Sustainion® X37-

50-grade T, America). The catalytic AEM cell's performance was evaluated with a power supply

(Interface 5000E, Gamry) and 1.0 M KOH + seawater fed in at a flow rate of 60 mL min-'. Voltage

and current measurements provided information on the cell's operational efficiency.

Electrolyzer efficiency

H, production rate @ 0.5 A cm?

= (i A cm?)(1 e71.602 x 109 C)(1 Hy/2 &)

=0.5 A cm?/(1.602 x 109 C x 2)

=2.59 x 10 mol H, cm™2 57!

LHV of H,

=120kJ g' Hy =2.42 x 10° J mol'! H,

H, power out
=(2.59 x 10 mol cm? s7") x (2.42 x 10° J mol ')

=0.627 W cm?



Electrolyzer Power of Ce-NiFeP||Pt/C
Electrolyzer Power (Ce-NiFeP) @ 0.5 A cm™
= (0.5 A cm?) (1.68 V)

=0.84 W cm™

Efficiency of Ce-NiFeP||Pt/C
= (H, Power Out) / (Electrolyzer Power)
=0.627 W cm2/0.84 W cm?

=74.6%

Price per gasoline-gallon equivalent (GGE)H, @0.5A cm™
= 1GGE H, / H, production rate x Electrolyzer power x Electricity bill
=0.997 kg/(2.59 x 10°°mol Hy.cm2 s7! x 2 kg/mol) x 0.84 W cm? x $ 0.02/kWh
=$ 0.90/GGE H,
Calculation of basic electricity expense for H, production !

The total electricity consumption for H, production was calculated according to the following
equation:

W=Ix[Udt (1)

Where the W is the total electricity consumption, I is the electrolyzer current, U is the
electrolyzer voltage, and t is the reaction time.

The amount of H, generation was calculated based on the following equation:

V=224x1xt/(ZxF) ©)


mailto:H2@0.5a

Where V is the volume of produced H,, Z is the electron transfer number (the value of 2 for

HER), and F is the Faraday constant (96485 Cmol').

According to the above results, the basic electricity expense for H, production was calculated

as:

Q=W /V (kWh m> H,) 3)

For an ideal catalyst, assuming that it has no performance decay during the stability test of water

splitting, the calculation of basic electricity expense for H, production can be simplified to the

formula [Q = 2.39 x U (kWh m™ H,)] according to the Egs. (1-3).
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Figure S1. Detailed parameters for TEM EDS of Ce-Ni(Fe)OOH/PO,*.

Figure S2. (a) The HR-TEM images of Ce-NiFeP. (b) The enlarged HRTEM image

and corresponding Fourier transform pattern.



Figure S3. HAADF-STEM with EDS elemental mapping of Ce-NiFeP.

Figure S4. The TEM image of Ce-NiFeOOH/POg*-.
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Figure S6. The LSV curves of of Ce-NiFeOOH/PO,*- with different Ce contents.
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Figure S7. The LSV curves of Ce-NiFe LDH and NiFe LDH.
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Figure S8. (a-c) CV curves of Ce-NiFeOOH/PO,*-, NiFeOOH and Ce-NiFe LDH
electrodes.
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Figure S9. Cy plots of Ce-NiFeOOH/PO,*, NiFeOOH and Ce-NiFe LDH.
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Figure S10. The ECSA normalized LSV curves of Ce-NiFeOOH/PO,*-, Ce-NiFe
LDH, and NiFeOOH/PO,*".
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Figure S11. Optical image of ClO- in the electrolyte after long-term stability testing of
Ce-NiFe LDH and Ce-NiFeP in 1 M KOH + seawater, respectively.



Figure S12. The HADDF-STEM and corresponding EDS mapping image of Ce-
NiFeOOH/PO,* after a 48-hour stability.

4
Ce-NiFe LDH
—_ 500 mA cm?in 1 M KOH + seawater
L
T 3
[
gi Stabilized ~2.25 V
S 2.
w
1 .
0 10 20

Time (h)

Figure S13. E-T curve of Ce-NiFe LDH in 1 M KOH + seawater electrolyte at 500 mA
cm2,
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Figure S14. Charge density difference analysis.
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Figure S15. Free energy diagrams for OER on the Ni sites of Ce-Ni(Fe)OOH.
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Figure S16. The adsorption energy of PO4*- on the Fe or Ni sites of Ce-Ni(Fe)OOH.



Table S1. Element analysis of Ce-NiFeP and NiFeP by ICP-OES.
Ce-NiFeP NiFeP

Element Ni Fe Ce Ni Fe

Element concentration
162.06 56.22 0.62 139.04 48.35
(mg/L)

wt (%) 31.7 11.0 012 | 276 959

Table S2. Comparison of overpotentials of Ce-NiFeOOH/POg4’- at different current
density in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH + seawater,

respectively.
10 100 300
Electrolyte
(mA cm?) (mA cm?) (mA cm?)
1 M KOH 223 267 309
1 M KOH + 0.5 M Na(Cl 227 273 318
1 M KOH + seawater 230 286 348

Table S3. Comparison of @10 ma em™ in the reported literature for Ce-NiFeOOH/PO4*-

in 1 M KOH.
N@10 mA cm-2
Catalyst Ref.
(mV)
Ce-NiFeOOH/PO,* 223 This work
MIL-88A/Ni(OH)(2) 250 2

CosN@CeO, 263 3



CoSe,/MoSe, 320 4

R-CoSeO4 265 5
3%IrO/NCNT 241 6
H-LSCF 240 7
NizFe-BDC 265 8
Fe;04 270 9

Table S4. The calculated results for the free energy diagrams.

Free energies Ce-Ni(Fe)OOH Ni(Fe)OOH
M*+2H,0 0 0
M*OH+H,O0+H* 0.74 0.91
M*O+H,O0+2H" 2.48 2.34
M*OOH+3H* 3.57 3.96
M*+0O,+4H* 4.92 4.92

Table S5. Performance comparison of Ce-NiFeOOH/PO,* with three other reported
electrocatalysts in AEM seawater electrolyzers.

Catalyst Co/P-Fe;0,4 NFCP NiCoP, Ce-NiFeOOH/PO,*

Electrolyzer efficiency

68.5 59.9 51.6 74.6
at 500 mA cm? (%)
Price per GGE H, at 500
0.980 1.119 1.150 0.897
mA cm? ($)
E at 500 mA cm?
1.84 2.095 243 1.68
V)
jmax
1000 500 900 1500
(mA cm?)
Electricity expense
4.38 5.01 5.81 4.02

(kWh)
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