

Supporting Information

Synergistic electronic modulation and Cl⁻ shielding of Fe sites for robust seawater electrolysis

Hao Wang^{a+}, Pengwu Jiang^{b+}, Nannan Jiang^a, Weili Zhang^b, Bing Huang^{*b}, Xuwei Liu^a, Huihui Jin^a, and Lunhui Guan^{*a}

^a State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

^b Division of Biobased Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, P.R. China.

⁺ These authors contributed equally: Hao Wang, Pengwu Jiang

* Corresponding authors at: State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

E-mail address: huangbing@zju-qz.edu.cn (B. Huang), guanlh@fjirsm.ac.cn (L. Guan)

Keywords: electrochemical catalysis, oxygen evolution reaction, seawater electrolysis, membrane electrode assembly, anion exchange membrane electrolyzer

Supporting note 1:

AEMWE measurement

The Ce-NiFeOOH/PO₄³⁻ catalyst was sprayed over Ni fibers and carbon paper, forming electrodes (2 cm²) that were integrated into an anion exchange membrane (AEM) water electrolysis cell. The anode and cathode were separated using an anion exchange membrane (Sustainion® X37-50-grade T, America). The catalytic AEM cell's performance was evaluated with a power supply (Interface 5000E, Gamry) and 1.0 M KOH + seawater fed in at a flow rate of 60 mL min⁻¹. Voltage and current measurements provided information on the cell's operational efficiency.

Electrolyzer efficiency

H₂ production rate @ 0.5 A cm⁻²

$$= (j \text{ A cm}^{-2})(1 \text{ e}^-/1.602 \times 10^{-19} \text{ C})(1 \text{ H}_2/2 \text{ e}^-)$$

$$= 0.5 \text{ A cm}^{-2} / (1.602 \times 10^{-19} \text{ C} \times 2)$$

$$= 2.59 \times 10^{-6} \text{ mol H}_2 \text{ cm}^{-2} \text{ s}^{-1}$$

LHV of H₂

$$= 120 \text{ kJ g}^{-1} \text{ H}_2 = 2.42 \times 10^5 \text{ J mol}^{-1} \text{ H}_2$$

H₂ power out

$$= (2.59 \times 10^{-6} \text{ mol cm}^{-2} \text{ s}^{-1}) \times (2.42 \times 10^5 \text{ J mol}^{-1})$$

$$= 0.627 \text{ W cm}^{-2}$$

Electrolyzer Power of Ce-NiFeP||Pt/C

Electrolyzer Power (Ce-NiFeP) @ 0.5 A cm⁻²

$$= (0.5 \text{ A cm}^{-2}) (1.68 \text{ V})$$

$$= 0.84 \text{ W cm}^{-2}$$

Efficiency of Ce-NiFeP||Pt/C

= (H₂ Power Out) / (Electrolyzer Power)

$$= 0.627 \text{ W cm}^{-2} / 0.84 \text{ W cm}^{-2}$$

$$= 74.6\%$$

Price per gasoline-gallon equivalent (GGE) H₂ @ 0.5 A cm⁻²

= 1GGE H₂ / H₂ production rate × Electrolyzer power × Electricity bill

$$= 0.997 \text{ kg} / (2.59 \times 10^{-6} \text{ mol H}_2 \cdot \text{cm}^{-2} \text{ s}^{-1} \times 2 \text{ kg/mol}) \times 0.84 \text{ W cm}^{-2} \times \$ 0.02/\text{kWh}$$

$$= \$ 0.90/\text{GGE H}_2$$

Calculation of basic electricity expense for H₂ production ¹

The total electricity consumption for H₂ production was calculated according to the following

equation:

$$W = I \times \int U dt \quad (1)$$

Where the W is the total electricity consumption, I is the electrolyzer current, U is the electrolyzer voltage, and t is the reaction time.

The amount of H₂ generation was calculated based on the following equation:

$$V = 22.4 \times I \times t / (Z \times F) \quad (2)$$

Where V is the volume of produced H_2 , Z is the electron transfer number (the value of 2 for HER), and F is the Faraday constant (96485 Cmol^{-1}).

According to the above results, the basic electricity expense for H_2 production was calculated as:

$$Q = W / V \text{ (kWh m}^{-3} \text{ H}_2\text{)} \quad (3)$$

For an ideal catalyst, assuming that it has no performance decay during the stability test of water splitting, the calculation of basic electricity expense for H_2 production can be simplified to the formula $[Q = 2.39 \times U \text{ (kWh m}^{-3} \text{ H}_2\text{)}]$ according to the Eqs. (1-3).

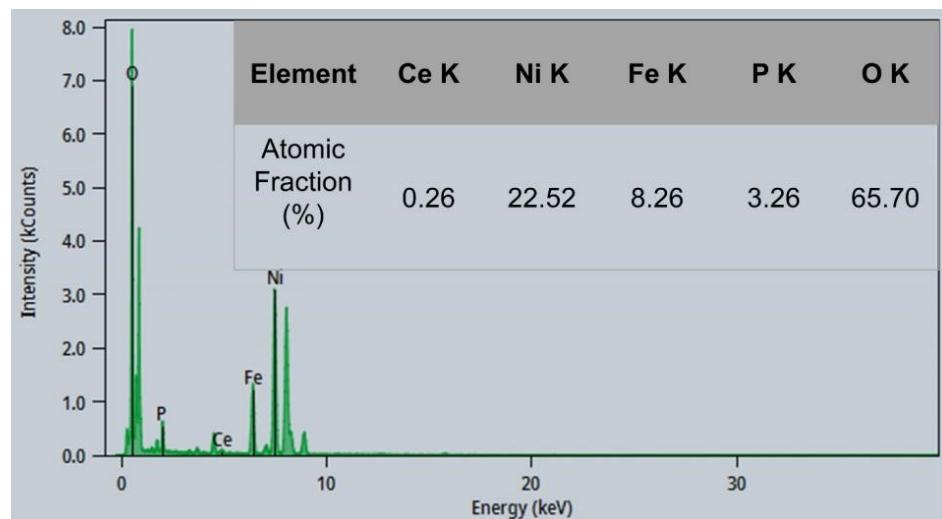


Figure S1. Detailed parameters for TEM EDS of Ce-Ni(Fe)OOH/PO₄³⁻.

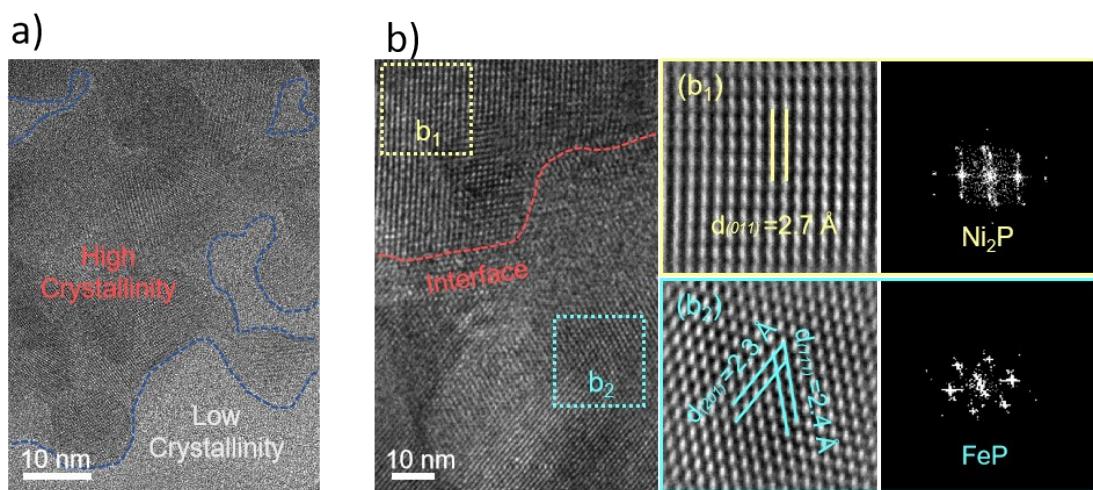


Figure S2. (a) The HR-TEM images of Ce-NiFeP. (b) The enlarged HRTEM image and corresponding Fourier transform pattern.

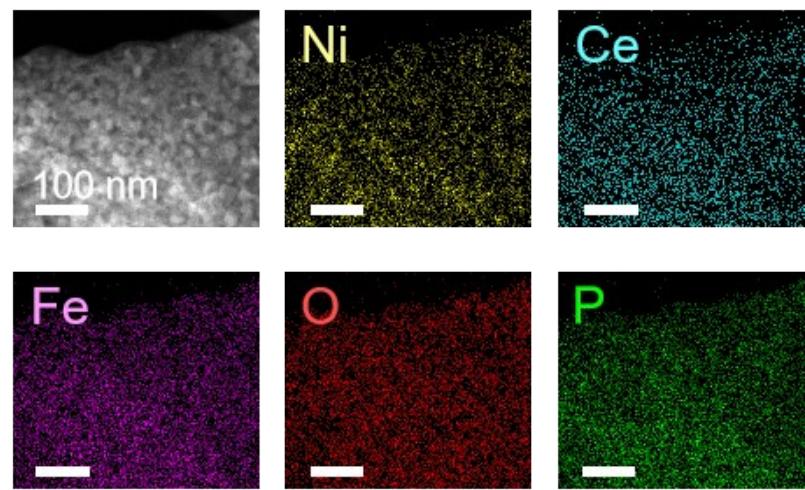


Figure S3. HAADF-STEM with EDS elemental mapping of Ce-NiFeP.

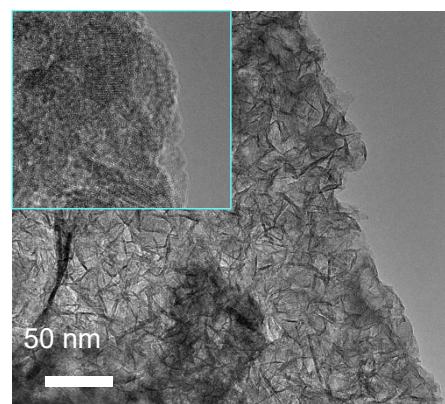


Figure S4. The TEM image of Ce-NiFeOOH/PO₄³⁻.

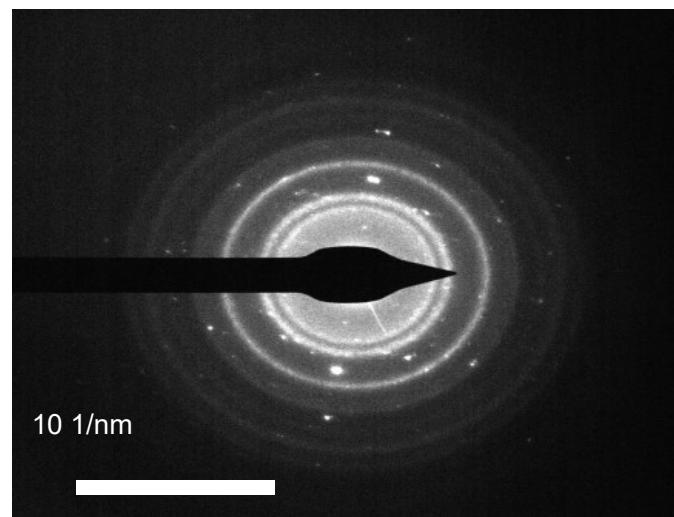


Figure S5. The SAED image of Ce-NiFeOOH/PO₄³⁻.

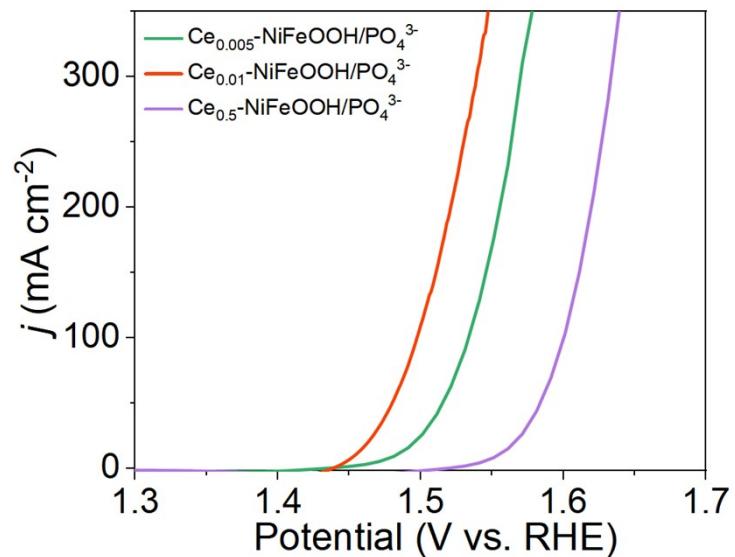


Figure S6. The LSV curves of Ce-NiFeOOH/PO₄³⁻ with different Ce contents.

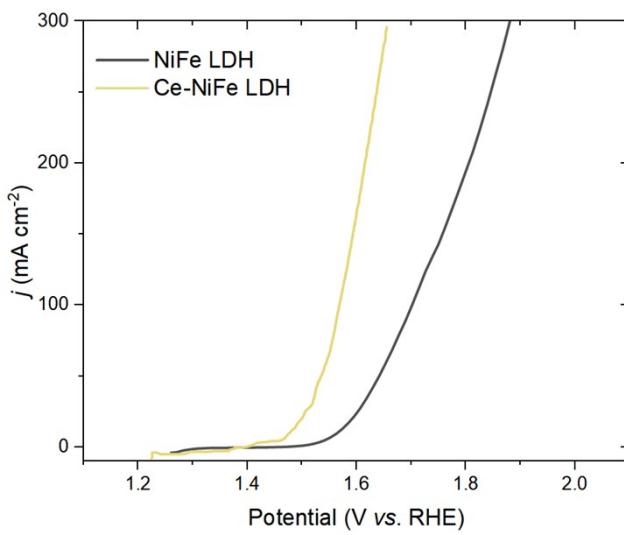


Figure S7. The LSV curves of Ce-NiFe LDH and NiFe LDH.

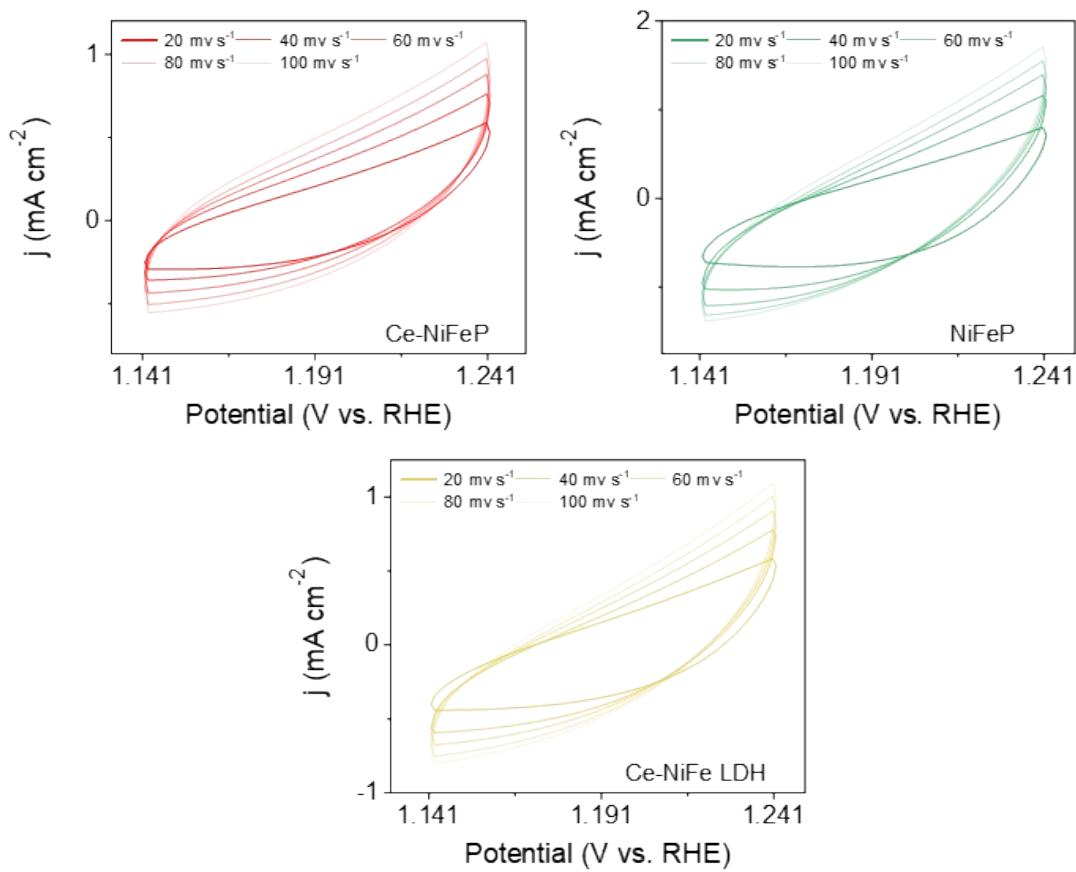


Figure S8. (a-c) CV curves of Ce-NiFeOOH/PO₄³⁻, NiFeOOH and Ce-NiFe LDH electrodes.

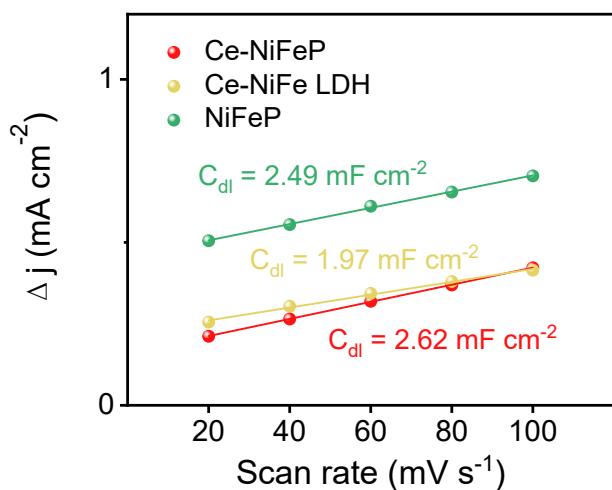


Figure S9. C_{dl} plots of Ce-NiFeOOH/PO₄³⁻, NiFeOOH and Ce-NiFe LDH.

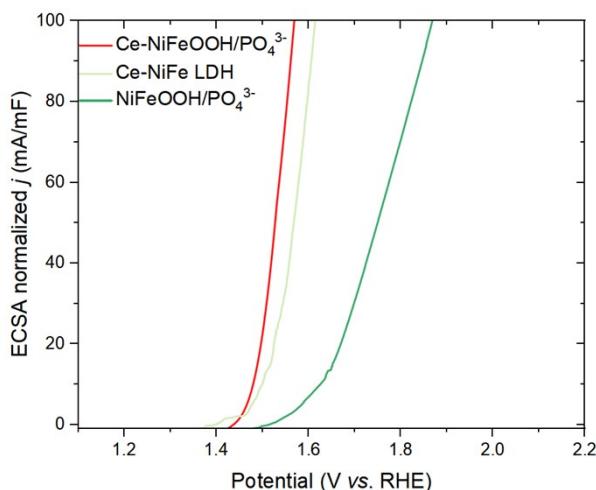


Figure S10. The ECSA normalized LSV curves of Ce-NiFeOOH/PO₄³⁻, Ce-NiFe LDH, and NiFeOOH/PO₄³⁻.

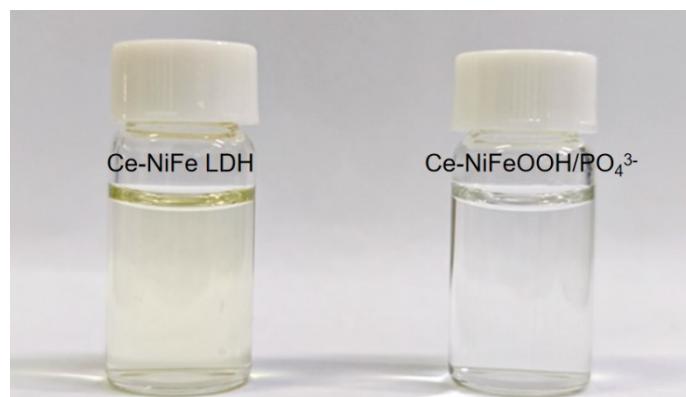


Figure S11. Optical image of ClO⁻ in the electrolyte after long-term stability testing of Ce-NiFe LDH and Ce-NiFeP in 1 M KOH + seawater, respectively.

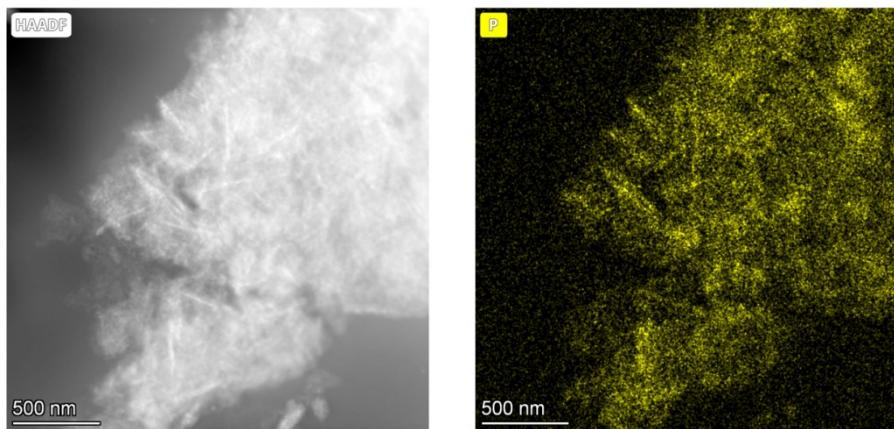


Figure S12. The HADDF-STEM and corresponding EDS mapping image of Ce-NiFeOOH/PO₄³⁻ after a 48-hour stability.

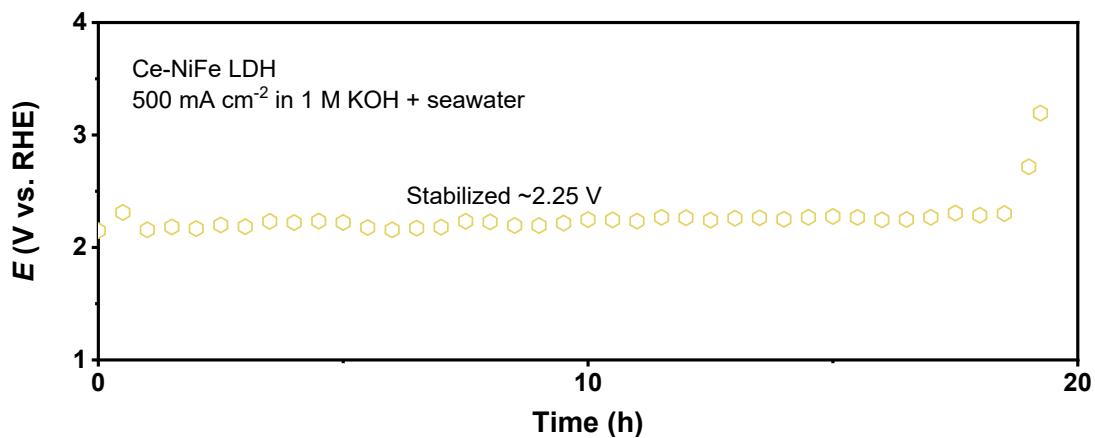


Figure S13. E-T curve of Ce-NiFe LDH in 1 M KOH + seawater electrolyte at 500 mA cm⁻².

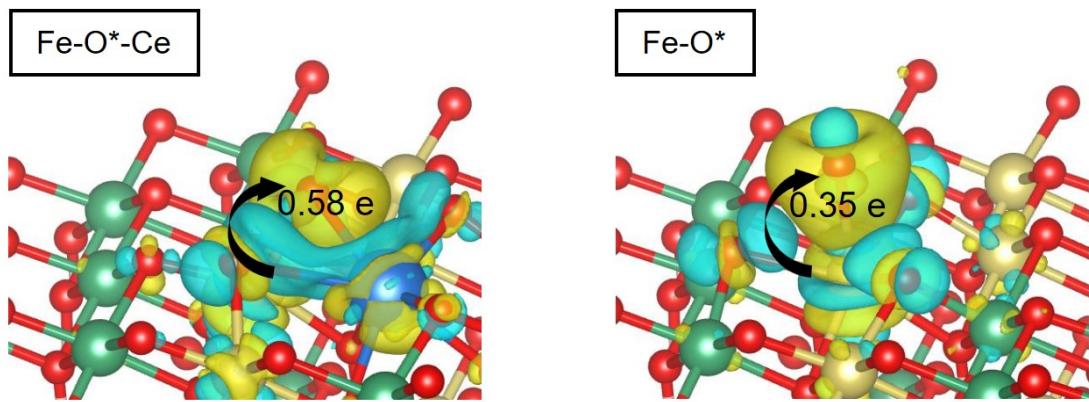


Figure S14. Charge density difference analysis.

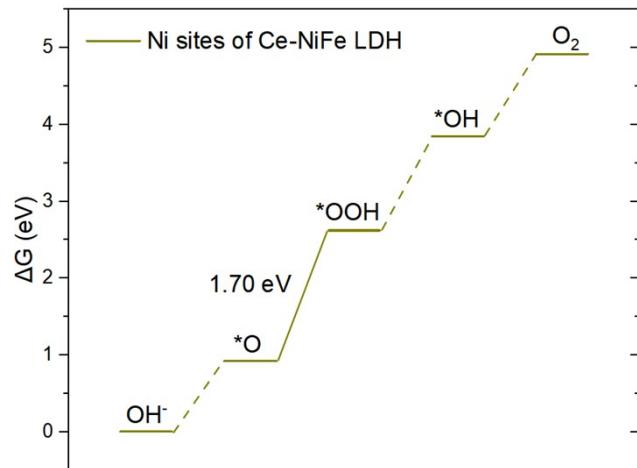


Figure S15. Free energy diagrams for OER on the Ni sites of Ce-Ni(Fe)OOH.

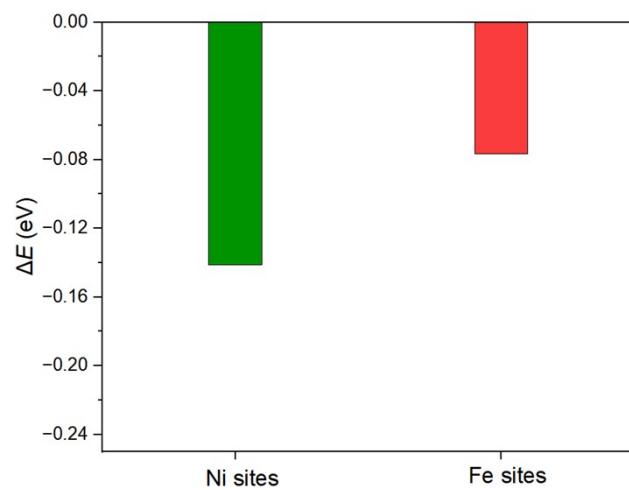


Figure S16. The adsorption energy of PO_4^{3-} on the Fe or Ni sites of Ce-Ni(Fe)OOH.

Table S1. Element analysis of Ce-NiFeP and NiFeP by ICP-OES.

Element	Ce-NiFeP			NiFeP	
	Ni	Fe	Ce	Ni	Fe
Element concentration (mg/L)	162.06	56.22	0.62	139.04	48.35
wt (%)	31.7	11.0	0.12	27.6	9.59

Table S2. Comparison of overpotentials of Ce-NiFeOOH/PO₄³⁻ at different current density in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH + seawater, respectively.

Electrolyte	10 (mA cm ⁻²)	100 (mA cm ⁻²)	300 (mA cm ⁻²)
1 M KOH	223	267	309
1 M KOH + 0.5 M NaCl	227	273	318
1 M KOH + seawater	230	286	348

Table S3. Comparison of $\eta_{@10 \text{ mA cm}^{-2}}$ in the reported literature for Ce-NiFeOOH/PO₄³⁻ in 1 M KOH.

Catalyst	$\eta_{@10 \text{ mA cm}^{-2}}$ (mV)	Ref.
Ce-NiFeOOH/PO ₄ ³⁻	223	This work
MIL-88A/Ni(OH)(2)	250	2
Co ₄ N@CeO ₂	263	3

CoSe ₂ /MoSe ₂	320	4
R-CoSeO ₄	265	5
3%IrO _x /NCNT	241	6
H-LSCF	240	7
Ni ₃ Fe-BDC	265	8
Fe ₃ O ₄	270	9

Table S4. The calculated results for the free energy diagrams.

Free energies	Ce-Ni(Fe)OOH	Ni(Fe)OOH
M*+2H ₂ O	0	0
M*OH+H ₂ O+H ⁺	0.74	0.91
M*O+H ₂ O+2H ⁺	2.48	2.34
M*OOH+3H ⁺	3.57	3.96
M*+O ₂ +4H ⁺	4.92	4.92

Table S5. Performance comparison of Ce-NiFeOOH/PO₄³⁻ with three other reported electrocatalysts in AEM seawater electrolyzers.

Catalyst	Co/P-Fe ₃ O ₄	NFCP	NiCoP _v	Ce-NiFeOOH/PO ₄ ³⁻
Electrolyzer efficiency at 500 mA cm ⁻² (%)	68.5	59.9	51.6	74.6
Price per GGE H ₂ at 500 mA cm ⁻² (\$)	0.980	1.119	1.150	0.897
E at 500 mA cm ⁻² (V)	1.84	2.095	2.43	1.68
j _{max} (mA cm ⁻²)	1000	500	900	1500
Electricity expense (kWh)	4.38	5.01	5.81	4.02

Ref.	<i>Appl. Catal.</i> <i>B: Environ.</i> 2024 , 357, 124269.	<i>ACS Catal.</i> 2024 , 14, 18322.	<i>Adv. Energy</i> <i>Mater.</i> 2024 , 14, 2400975	This work
------	--	---	--	-----------

References

- 1 D. Kong, C. Meng, Y. Wang, X. Chen, J. Zhang, L. Zhao, J. Ji, L. Zhang, Y. Zhou, High-density accessible Ru-O-Co moieties with accelerated formation of activated oxygen species for freshwater and seawater electrolysis, *Appl. Catal. B: Environ.*, 2024, **343**, 123578.
- 2 Z. Qian, K. Wang, K. Shi, Z. Fu, Z. Mai, X. Wang, Z. Tang, Y. Tian, Interfacial electron transfer of heterostructured MIL-88A/Ni (OH)₂ enhances the oxygen evolution reaction in alkaline solutions, *J. Mater. Chem. A*, 2020, **8**, 3311-3321.
- 3 P. Zhou, G. Hai, G. Zhao, R. Li, X. Huang, Y. Lu, G. Wang, CeO₂ as an “electron pump” to boost the performance of Co₄N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization, *Appl. Catal. B: Environ.*, 2023, **325**, 122364.
- 4 Y. Yang, Y. Xiong, J. Yang, D. Qian, Y. Chen, Y. He, Z. Hu, Three-Dimensional Heterostructured CoSe₂/MoSe₂@CC as Trifunctional Electrocatalysts for Energy-Efficient Hydrogen Production, *Energ. Fuels*, 2024, **38**, 2260-2272.
- 5 J. Yu, W. Yu, Y. Wang, X. Li, R. Liu, X. Zhang, H. Liu, W. Zhou, Capture and recycling of toxic selenite anions by cobalt-based metal-organic-frameworks for electrocatalytic overall water splitting, *Chem. Eng. J.*, 2022, **433**, 134553.
- 6 N. Liu, Y. Wang, Q. Zhang, J. Guan, Trifunctional iridium-based electrocatalysts for overall water splitting and Zn-air batteries, *Electrochim. Acta*, 2021, **380**, 138215.
- 7 H. Zhang, D. Guan, Z. Hu, Y. C. Huang, X. Wu, J. Dai, C. L. Dong, X. Xu, H. J. Lin, C. T. Chen, W. Zhou, Z. Shao, Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance, *Appl. Catal. B: Environ.*, 2021, **297**, 120484.
- 8 L. Xiao, J. Han, Z. Wang, J. Guan, Nanorod-like NiFe metal-organic frameworks for oxygen evolution in alkaline seawater media, *Int. J. Hydrogen Energy*, 2023, **48**, 23776-23784.
- 9 N. Akbari, S. Nandy, K.H. Chae, M.M. Najafpour, Dynamic Changes of an Anodized FeNi Alloy during the Oxygen Evolution Reaction under Alkaline Conditions, *Langmuir*, 2023, **39**, 11807.