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S1. Materials

Trimesoyl chloride (TMC, >98.0%), anhydrous ferric chloride (FeCl3) and 1,3-

phenylenediamine (MPD, >98.0%) were supplied by TCI Chemicals. Hydrochloric 

acid (HCl, 36.0%), bovine serum albumin (BSA, >98%), sodium chloride (NaCl, 

99.5%) were provided by Sinopharm Chemical Reagent Co., Ltd. The polysulfone 

membrane was commercial products.

Figure S1. Schematic diagram of cross-flow system test equipment.
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Figure S2. XRD spectra of FeOOH nanorods. The diffraction peaks observed at 12°, 

26.9°, 34.1°, 35.3°, 39.4°, 46.6°, and 56.2° correspond to the (110), (310), (400), (211), 

(301), (411), and (521) crystal planes of β-FeOOH.

Figure S3. The SEM image of the PSF substrate
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Figure S4. The interfacial tension of three oil-water interface systems.

Figure S5 The C1s, N1s and O1s peak of (a) TFC, (b) TFN-O, and (c) TFN-A membranes 

determined by XPS.
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It is well known that the loading of inorganic nanoporous materials has a crucial 

impact on the performance of nanocomposite membranes. In this study, the effect of 

different FeOOH nanorod loadings in the aqueous and organic phases on the separation 

performance was investigated. As shown in Figure S6, FeOOH nanorods at various 

concentrations were uniformly dispersed in the MPD aqueous solution using ultrasonic 

dispersion. With increasing FeOOH nanorod content, the permeance of the TFN-A 

membranes increased. When the FeOOH concentration was increased from 0 wt% to 

0.015 wt%, the NaCl rejection remained largely unchanged. However, at concentrations 

exceeding 0.015 wt%, a decline in rejection was observed, with TFN-A membranes 

containing 0.02 wt% FeOOH nanorods exhibiting a NaCl rejection of 96%. This 

reduction in rejection is likely due to the aggregation of FeOOH nanorods at higher 

concentrations, which disrupts the formation of a dense polyamide selective layer 

during interfacial polymerization. This trade-off between increased flux and decreased 

rejection has been similarly reported in other studies. Based on these results, the optimal 

FeOOH nanorod loading in the aqueous phase was determined to be 0.015 wt%.

Figure S6 Effect of different concentrations of FeOOH in aqueous phase (a) and 

organic phase (b) on desalination performance of TFN membranes

FeOOH nanorods at various concentrations were also uniformly dispersed in the 

TMC organic phase via ultrasonic treatment. The influence of different FeOOH 

nanorod concentrations in the organic phase on desalination performance is illustrated 

in Figure 3b. As shown, the permeance of the TFN-O membranes increased gradually 

with increasing FeOOH content. However, when the FeOOH concentration reached 

0.02 wt%, further increases in flux became negligible. In contrast to the TFN-A 

membranes where FeOOH nanorods were incorporated into the aqueous phase, the 

NaCl rejection of the TFN-O membranes slightly improved as the FeOOH 
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concentration in the organic phase increased to 0.015 wt%. At a FeOOH concentration 

of 0.02 wt%, a slight decrease in salt rejection was observed, though the NaCl rejection 

remained above 98%. To enable a systematic comparison between the two types of 

TFN membranes, those prepared with the FeOOH loading of 0.015 wt% in the organic 

phase were selected for further experimental studies.

Figure S7 Reversible and irreversible fouling ratios of different reverse osmosis 

membranes.
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Figure S8 XPS spectra of the TFC, TFN-A, and TFN-O membranes after the chlorination test.

Table S1  Elemental compositions and the O/N ratio of the TFC, TFN-A and TFN-O 
membranes after the chlorination test

Membrane C (%) O (%) N (%) Fe (%) Cl (%) O/N

TFC 66.21 15.81 10.77 0 7.22 1.46

TFN-A 68.74 12.48 11.19 0.6 6.98 1.12

TFN-O 68.03 12.08 11.74 2.63 5.52 1.03

Table S2 Comparison of permeance and rejection of the state-of-the-art TFN 
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membranes.
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a Water 
permeance

increase
rate/%

R%
b R% 

increase
rate/%

c FeOOH 2000/15.5 A 2.78 10.44 3.80 355.74 ± 
6.67

98.13 
±1.02 -0.12

c FeOOH 2000/15.5 O 2.22 7.27 11.61 263.93 ± 
2.56

99.38 
±0.42 1.13

TFC 2000/15.5 - 0.61 1.13 4.06 - 98.25 
±0.92 -

pU-66[1] 2000/15.5 O 4.30 10.32 4.7 72 98.5 1
ZIF-L[2] 2000/15.5 i 5.3 0.61 1.61 53.6 96.3 -1.95

TpPa2CN[3] 1000/6 A 1.9 2.47 8.16 139.5 97.68 1.4
ZIF-8[4] 2000/15.5 i 3.64 4.37 5.10 267.7 98.6 -0.1
ZIF-8[5] 2000/15.5 A 4.0 10.0 8.98 43.1 99.2 0.3
ZIF-8[6] 2000/15.5 O 3.4 3.4 4.75 161.7 98.5 0.4
TiO2[7] 2000/7.6 A 3.4 1.19 30.6 49.3 99.45 2.1
SiO2[8] 11000/44 A 1.1 1.10 0.25 55.6 90 -1.1
SiO2[9] 2000/20.7 O 2.3 11.5 2.05 64.6 97.5 -1.0
SiO2[10] 2000/16 O 3.3 9.9 1.67 178.6 96 0.0
SiO2[11] 2000/5 i 9.7 1.94 8.33 102.1 96.5 -1.5

CNTs-M/MO[12] 2000/10 i 1.2 4.08 1.22 114.8 91 1.2
CNTs[13] 2000/15.5 A 3.0 6.0 0.83 34.8 92 1.1

MWCNTs[14] 2000/16 A 1.8 2.7 0.62 88.2 90 -6.3
CNTa/GO[14] 2000/15.5 A 2.9 5.8 2.19 19.3 96.8 -0.4

GO[14] 2000/15.5 A 2.5 2.2 7.17 5.8 97 -0.5
GO[15] 2000/15.5 A 1.1 5.0 2.34 81.5 99 -0.1
GO[16] 1000/15 coat 2.7 2.73 1.34 -11.1 95 -1.6

GOQD[17] 2000/16 A 2.3 4.6 5.75 52.5 98.8 0.3
N-GOQD[18] 2000 /15 A 1.8 4.5 0.88 150.0 92.1 -1.1

g-C3N4[19] 2000/15.5 A 3.0 9.0 24.06 22.4 99.7 1.7
HNTs[20] 2000/15 O 2.4 4.8 1.63 90.5 95.6 -1.6

NH2-TNTs[21] 2000/15 O 3.9 7.8 0.10 92.1 58 2.6
NaX-Zeolite[22] 2000/12 O 1.2 1.92 1.84 79.0 95 -2.1

NaA-Zeolite[23] 2000/12 A 2.2 3.3 0.62 71.1 86.5 -5.4
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Ag[24] 2000/20.68 coat 3.4 6.8 0.77 39.8 93.6 -2.4
ZnO[25] 1753/15.5 O 2.1 6.3 1.74 22.6 96 -2.0
MoS2[26] 2000 /15.5 O 6.2 11.1 4.75 20.2 98.5 0.5
CNCs[27] 3000/20 O 3.2 8.64 2.55 110.0 97.8 0.7

UiO-66[28] 2000/15.5 O 3.7 8.62 11.07 50.4 99.35 0.3
Ti3C2Tx–TA[29] 2000/20 A 2.4 8.81 1.30 41.2 96.0 -2.5

Ti3C2Tx[30] 2000/16 A 2.53 9.48 4.59 41.2 98.5 0.25
CNF[31] 2000/15 A 2.98 8.94 1.9 49.7 96.2 -2.05
CeO2[32] 2000/16 A 2.75 7.15 3.42 50.27 98 -0.7
Al2O3[33] 2000/10 O 6.75 16.2 5.9 138 98 -0.25

d LG Nano H2O[5] 2000/15.5 O 3.0 9.0 28.89 391.80 99.75 0.015
e Dow-SW30HR[5] 2000/15.5 1.1 1.10 11.99 83.02 99.4 0.012

e BW30[5] 2000/15.5 2.1 2.10 5.10 244.26 98.6 0.0035
e Sepro-RO4[5] 2000/15.5 1.0 1.00 5.96 63.93 98.8 0.0055

a Water permeance increase rate (%) = (Pw(TFN)-Pw(TFC))/Pw(TFC) x 100%.
b NaCl rejection increase rate (%) = R(TFN)-R(TFC).
c TFC and TFN RO membranes in this work.
d The commercial TFN RO membrane.
e The commercial TFC RO membranes.
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