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S1. Materials

Trimesoyl chloride (TMC, >98.0%), anhydrous ferric chloride (FeCl;) and 1,3-
phenylenediamine (MPD, >98.0%) were supplied by TCI Chemicals. Hydrochloric
acid (HCI, 36.0%), bovine serum albumin (BSA, >98%), sodium chloride (NaCl,
99.5%) were provided by Sinopharm Chemical Reagent Co., Ltd. The polysulfone
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Figure S1. Schematic diagram of cross-flow system test equipment.
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Figure S2. XRD spectra of FeOOH nanorods. The diffraction peaks observed at 12°,

26.9°,34.1°,35.3°, 39.4°, 46.6°, and 56.2° correspond to the (110), (310), (400), (211),

(301), (411), and (521) crystal planes of f-FeOOH.

Figure S3. The SEM image of the PSF substrate
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Figure S4. The interfacial tension of three oil-water interface systems.
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Figure S5 The Cl1s, N1s and Ols peak of (a) TFC, (b) TFN-O, and (c) TFN-A membranes

determined by XPS.



It is well known that the loading of inorganic nanoporous materials has a crucial
impact on the performance of nanocomposite membranes. In this study, the effect of
different FeEOOH nanorod loadings in the aqueous and organic phases on the separation
performance was investigated. As shown in Figure S6, FeOOH nanorods at various
concentrations were uniformly dispersed in the MPD aqueous solution using ultrasonic
dispersion. With increasing FEOOH nanorod content, the permeance of the TFN-A
membranes increased. When the FeOOH concentration was increased from 0 wt% to
0.015 wt%, the NaCl rejection remained largely unchanged. However, at concentrations
exceeding 0.015 wt%, a decline in rejection was observed, with TFN-A membranes
containing 0.02 wt% FeOOH nanorods exhibiting a NaCl rejection of 96%. This
reduction in rejection is likely due to the aggregation of FeOOH nanorods at higher
concentrations, which disrupts the formation of a dense polyamide selective layer
during interfacial polymerization. This trade-off between increased flux and decreased
rejection has been similarly reported in other studies. Based on these results, the optimal

FeOOH nanorod loading in the aqueous phase was determined to be 0.015 wt%.
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Figure S6 Effect of different concentrations of FEOOH in aqueous phase (a) and
organic phase (b) on desalination performance of TFN membranes
FeOOH nanorods at various concentrations were also uniformly dispersed in the
TMC organic phase via ultrasonic treatment. The influence of different FeOOH
nanorod concentrations in the organic phase on desalination performance is illustrated
in Figure 3b. As shown, the permeance of the TFN-O membranes increased gradually
with increasing FeOOH content. However, when the FeEOOH concentration reached
0.02 wt%, further increases in flux became negligible. In contrast to the TFN-A
membranes where FeOOH nanorods were incorporated into the aqueous phase, the

NaCl rejection of the TFN-O membranes slightly improved as the FeOOH



concentration in the organic phase increased to 0.015 wt%. At a FeOOH concentration
of 0.02 wt%, a slight decrease in salt rejection was observed, though the NaCl rejection
remained above 98%. To enable a systematic comparison between the two types of
TFN membranes, those prepared with the FEOOH loading of 0.015 wt% in the organic
phase were selected for further experimental studies.
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Figure S7 Reversible and irreversible fouling ratios of different reverse osmosis

membranes.
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Figure S8 XPS spectra of the TFC, TFN-A, and TFN-O membranes after the chlorination test.

Table S1 Elemental compositions and the O/N ratio of the TFC, TFN-A and TFN-O

membranes after the chlorination test

Membrane C (%) O (%) N (%) Fe (%) Cl(%) O/N

TFC 66.21 15.81 10.77 0 7.22 1.46
TFN-A 68.74 12.48 11.19 0.6 6.98 1.12
TFN-O 68.03 12.08 11.74 2.63 5.52 1.03

Table S2 Comparison of permeance and rejection of the state-of-the-art TFN
7



membranes.

NaCl/ppm Water Permeabili
7 Water
& perme ty b R%
: permeance .
Nanomaterials pressure/barr  A/O  ance (Lm2h - A/B erease R% increase
! LMH bar-! rate/%
rate/%
bar! mx10-)
2000/15.5 355.74 + 98.13
FeOOH A 2.78 10.44 3.80 6.67 102 -0.12
2000/15.5 263.93 £ 99.38
FeOOH 0] 2.22 7.27 11.61 5 56 042 1.13
TFC 20007155 - 0.61 1.13 4.06 - 98.23 -
+0.92
pU-66[1] 2000/15.5 0] 4.30 10.32 4.7 72 98.5 1
ZIF-L[2] 2000/15.5 i 5.3 0.61 1.61 53.6 96.3 -1.95
TpPa,CNJ[3] 1000/6 A 1.9 247 8.16 139.5 97.68 1.4
ZIF-8[4] 2000/15.5 i 3.64 4.37 5.10 267.7 98.6 -0.1
ZIF-8[5] 2000/15.5 A 4.0 10.0 8.98 43.1 99.2 0.3
ZIF-8[6] 2000/15.5 0] 3.4 3.4 4.75 161.7 98.5 0.4
TiO,[7] 2000/7.6 A 3.4 1.19 30.6 49.3 99.45 2.1
Si0,[8] 11000/44 A 1.1 1.10 0.25 55.6 90 -1.1
Si0,[9] 2000/20.7 0] 2.3 11.5 2.05 64.6 97.5 -1.0
Si0,[10] 2000/16 0] 3.3 9.9 1.67 178.6 96 0.0
SiOy[11] 2000/5 i 9.7 1.94 8.33 102.1 96.5 -1.5
CNTs-M/MOJ12] 2000/10 i 1.2 4.08 1.22 114.8 91 1.2
CNTs[13] 2000/15.5 A 3.0 6.0 0.83 34.8 92 1.1
MWCNTs[14] 2000/16 A 1.8 2.7 0.62 88.2 90 -6.3
CNTa/GO[14] 2000/15.5 A 2.9 5.8 2.19 19.3 96.8 -0.4
GO[14] 2000/15.5 A 2.5 2.2 7.17 5.8 97 -0.5
GO[15] 2000/15.5 A 1.1 5.0 2.34 81.5 99 -0.1
GO[16] 1000/15 coat 2.7 2.73 1.34 -11.1 95 -1.6
GOQD[17] 2000/16 A 2.3 4.6 5.75 52.5 98.8 0.3
N-GOQD[18] 2000 /15 A 1.8 4.5 0.88 150.0 92.1 -1.1
g-C3N4[19] 2000/15.5 A 3.0 9.0 24.06 22.4 99.7 1.7
HNTs[20] 2000/15 0] 2.4 4.8 1.63 90.5 95.6 -1.6
NH,-TNTs[21] 2000/15 0] 3.9 7.8 0.10 92.1 58 2.6
NaX-Zeolite[22] 2000/12 0] 1.2 1.92 1.84 79.0 95 2.1
NaA-Zeolite[23] 2000/12 A 2.2 3.3 0.62 71.1 86.5 -5.4



Ag[24] 2000/20.68  coat 3.4 6.8 0.77 39.8 93.6 -2.4

ZnO[25] 1753/15.5 O 2.1 6.3 1.74 22.6 96 -2.0
MoS,[26] 2000 /15.5 O 6.2 11.1 4.75 20.2 98.5 0.5
CNCs[27] 3000/20 O 3.2 8.64 2.55 110.0 97.8 0.7

Ui0-66[28] 2000/15.5 O 3.7 8.62 11.07 50.4 99.35 0.3
Ti;C, Tx-TA[29] 2000/20 A 24 8.81 1.30 41.2 96.0 -2.5
T1;C,Tx[30] 2000/16 A 2.53 9.48 4.59 41.2 98.5 0.25

CNF[31] 2000/15 A 2.98 8.94 1.9 49.7 96.2 -2.05
Ce0,[32] 2000/16 A 2.75 7.15 3.42 50.27 98 -0.7
Al,05[33] 2000/10 O 6.75 16.2 59 138 98 -0.25

4LG Nano H,0[5] 2000/15.5 O 3.0 9.0 28.89 391.80 99.75 0.015
¢Dow-SW30HR[5] 2000/15.5 1.1 1.10 11.99 83.02 99.4 0.012
¢ BW30[5] 2000/15.5 2.1 2.10 5.10 244.26 98.6 0.0035
¢Sepro-RO4(5] 2000/15.5 1.0 1.00 5.96 63.93 98.8 0.0055

@ Water permeance increase rate (%) = (Pw(TFN)-Pw(TFC))/Pw(TFC) x 100%.
b NaCl rejection increase rate (%) = R(TFN)-R(TFC).

¢ TFC and TFN RO membranes in this work.

4The commercial TFN RO membrane.

¢ The commercial TFC RO membranes.
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