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Supplementary Information
1.1 Materials

Potassium hydroxide (KOH), Sodium sulfate (Na,SO,), Zinc sulfate heptahydrate
(ZnS0O4-7H,0), Hydrochloric acid (HCI), Polytetrafluoroethylene (PTFE) and ethanol were
analytical-grade and obtained from Sinopharm Chemical Reagent, Co., Ltd (Shanghai, China).
Zinc tablets (thickness 300 um) were purchased from Guangdong Candlelight New Energy
Technology Co., Ltd. and glass fiber diaphragm (GF/A) from Qingyuan Metal Materials Co.All
raw materials were used directly as purchased without further purification. The water used in
the experiments was freshly deionized.

1.2 Structural characterizations

The microstructures were measured by scanning/transmission electron microscope (SEM
JEOL JSM-7500F, TEM JEM-2800F). Powder X-ray diffractometer (XRD) was used to
characterize the crystal structures. X-ray photoelectron spectroscopy (XPS) measurement
(Thermo Scientific K-Alpha) was used to detect the surface chemical state of the obtained

samples. Nitrogen adsorption/desorption measurement was used to detect the specific surface



area by the multi-point Brunauer-Emmett-Teller (BET) way and the pore size distribution was

estimated by density functional theory (DFT).
1.3 Assembling symmetric supercapacitor

The electrochemical performance of the synthesized carbon materials was also evaluated
in symmetrical device using two-electrode system in 1 M Na,SO, solution. All measurements

were tested by electrochemical workstation (CHI 660E).
1.4 Assembling Zinc-ion hybrid supercapacitor

The mass ratio contains 80 wt% hierarchical porous carbon, 10 wt% conductive carbon
black and 5 wt% polytetrafluoroethylene (PTFE), and then mixed and ground with ethanol to
form a uniform slurry with no particles on the surface. After coating on the stainless steel mesh
with a coating thickness of approximately 150 um, the loaded activated carbon is about 3 mg
cm2. The electrode was vacuum dried overnight at 60 °C. To fabricate ZIHC, the prepared
carbon electrode was used as the cathode, the zinc tablet was used as the anode, and the
Wattman glass fiber was used as the separator. The aqueous 2 M ZnSO,4 was used as the

electrolyte.
1.5 Electrochemical measurement

Electrochemical performance were studied using cyclic voltammetry (CV), galvanostatic
charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) on a CHI660E
electrochemical workstation (Chenghua, Shanghai, China) at room temperature. The CV curves
of SCs was performed at scan rates of 2-100 mV s! in the voltage range between 0 and 1.6 V.
The CV curves of ZIHCs was performed at scan rates of 2-100 mV s! in the voltage range
between 0.2 and 1.8 V. GCD curves were tested at current densities ranging from 0.1 A g'! to
10 A g''. EIS measurement was measured with a frequency range of 10~ to 10° Hz.

The gravimetric specific capacitance (C) was computed by the formulas:
I X At

T mxAV (1
where / is the current density, At is discharge time, AV is the potential region.
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where / is the current density, V' is potential region, v is the scan rate, and m is the mass of
active materials.
The energy density and the power density of the devices are calculated according to equation (3)

and (4), respectively:
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Where E (Wh kg!) is the energy density, P (W kg!) is the power density, C (F g!) is the
specific capacitance of the SCs or ZIHCs, AV (V) is the operating voltage window of the SCs
or ZIHCs, and At (s) is the discharge time.

Fig. S1. High magnification TEM image of GPC-700.



~— CC-700
—— PC-700
—— GPC-700

Intensity (a.u.)

20 40 60 | 80
20 (degree)

Fig. S2. XRD patterns of CC-700, PC-700 and GPC-700.
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Fig. S3. (a) The percentage of each functional group in the high-resolution C 1s spectra. (b)

The percentage of each functional group in the high-resolution O 1s spectra.
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Fig. S4. (a) GCD curves of the GPC-600, GPC-700 and GPC-800 electrodes at 1 A g'!. (b)

Specific capacitance of the GPC-600, GPC-700 and GPC-800 electrodes at various current

densities. (¢) N, adsorption/desorption isotherms of GPC-600 and GPC-800. (d) Pore size

distribution curve
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Fig. SS. Capacitance and diffusion-controlled contribution of Zn//ZnSO,//GPC-700 ZIHC at

different scanning rates.

Fig. S6. First-principles calculations for Zn?" storage behavior: Zn?>" was absorbed in the (a) No



Defect; (b) Low Defect; (c) LD C=0; (d) LD C-OH; (e) LD C-O-C; (f) High Defect; (g) HD

C=0; (h) HD C-OH; (i) HD C-O-C.

Table S1 Performance comparison of GPC-700 with other porous carbons reported in

literatures.
Samples Electrolyte  Current  Specific Current  Specific Ref.
density  capacitance density capacitance
(Agh (Fgh (Agh (Fgh
GPC-700 6 MKOH 0.5 431.8 20 293.3 This work
ZGCA-700 6 MKOH 0.5 284.7 50 170.1 !
p-RGO 3MKOH 0.5 2154 15 162 2
N3OPC-3 6MKOH 0.5 463 10 335 3
NS-IPCN800 6 MKOH  0.05 302 40 231 4
GGI 6 MKOH 0.5 341 50 150 3

SNPCNS 6 MKOH 05 286 20 174.5 6




NOPC—KCa 6MKOH 0.5 295.5 20 248.1 7

OHPC-1 6 MKOH 05 283 20 151 8

HPC-3 6 MKOH 05 287 50 172.2 9

CHPC 6 MKOH 0.5 328 20 230 10
AC-20 6 MKOH 0.5 309 20 198 1
NP-HPC, 6 MKOH  0.05 309 50 211 12
WTCS 6 MKOH 0.1 339 20 258 13
NHPC-750-3 6MKOH 05 310.1 20 238.7 14
OTS350-PC 6 MKOH 05 298 20 238.4 15

Table S2 The electrochemical properties of Zn || 2 M ZnSOy || GPC-700 ZIHC compared with

the reported ZIHCs.
Current Specific Energy
Samples Electrolyte density capacity density Ref.
(Agh (mAhg’)  (Whkg")

GPC-700 2 M ZnSOy4 0.1 162.6 123.1 This work
HPCS-900 2 M ZnSO4 0.1 104.9 90.17 16
SA-3 2 M ZnSO,4 1 76.8 100 L
TPC-7 2 M ZnSO4 0.1 134.1 102 18
LHPC 1 M ZnSO, 0.1 128.5 63.5 e
SPCs-700 2 M ZnSO4 0.2 86.7 78.4 20
NPFCrq Zn(CF5505), 0.1 163.6 60.1 2

LDC 1 M ZnSO, 0.5 127.7 97.6 2
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