Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Tm³⁺-Mediated Energy Bridge in Lead-Free Double Perovskites: Suppressing Multiphonon Relaxation for Multifunctional Photonic Applications

Jiaqi Zhao^a, Zheng Fu^a, Kejie Li^a, Mengmeng Dai^a, Zhiying Wang^{b, *}, Guiying Liang^c, Yanling Wei^{c, *}and Zuoling Fu^{a, *}

a Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China. E-mail : zlfu@jlu.edu.cn

^b Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun, 130022, China. E-mail: zhiyingw@cust.edu.cn

c School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China. E-mail: weiyanling@jlenu.edu.cn

To explicitly define the luminescence *LIR* models, we have completed the detailed descriptions of the transitions and equations below:

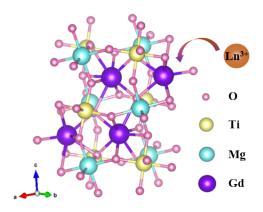
(i) LIR_1 : Defined as the intensity ratio of the emission from Er^{3+} : ${}^2H_{11}/{}_2 \rightarrow {}^4I_{15}/{}_2$ (530 nm) to Tm^{3+} : ${}^1G_4 \rightarrow {}^3H_6$ (475 nm), i.e.,

$$LIR_1 = \frac{I_{530 \ nm}}{I_{475 \ nm}}.$$
 This non-thermally coupled level (non-TCL) model follows the empirical fitting equation:
$$\binom{C_1}{}$$

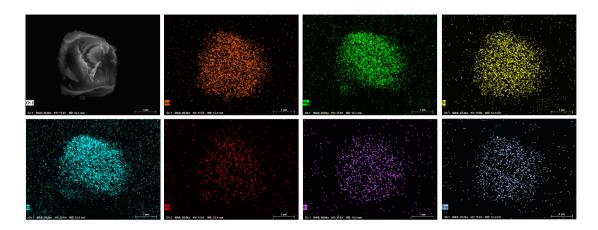
$$LIR_1 = A_1 + B_1 \cdot exp\left(\frac{C_1}{T}\right)$$

Where A_1 , B_1 and C_1 are represented as constants, respectively, and T is the absolute temperature (Figs. 11a and 12a).

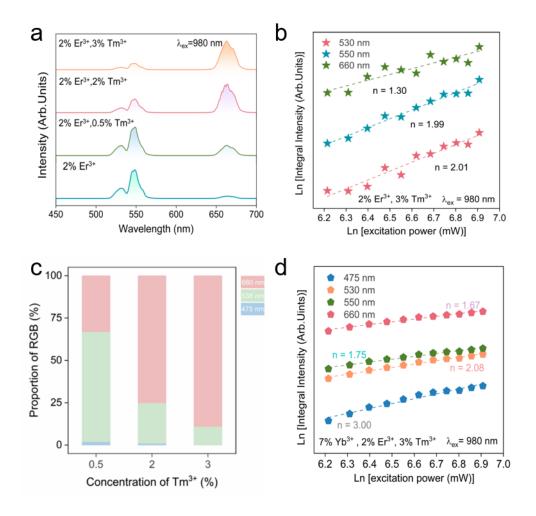
 $LIR_2 = \frac{{}^{1}530 \ nm}{I_{550 \ nm}}$ (ii) LIR_2 : Defined as the ratio of Er³+:²H₁₁/₂→⁴I₁₅/₂ (530 nm) to Er³+:⁴S₃/₂→⁴I₁₅/₂ (550 nm), i.e., $LIR_2 = \frac{{}^{1}530 \ nm}{I_{550 \ nm}}$. This thermally coupled level (TCL) model adheres to the Boltzmann distribution:

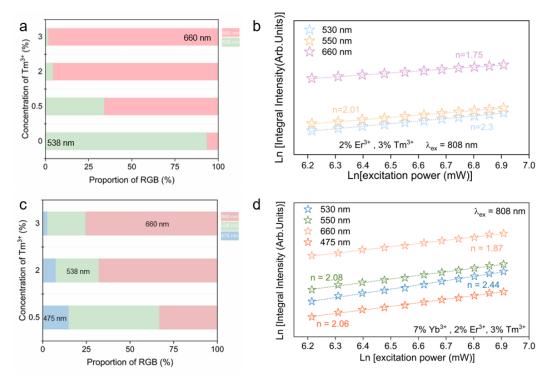

$$LIR_2 = A_2 \cdot exp \bigg(- \frac{\Delta E}{K_B T} \bigg)$$

Where $^{A}2$ is represented as a constant, $^{\Delta E}$ = 0.0984 eV (derived from the energy gap between $^{2}H_{11}/_{2}$ and $^{4}S_{3}/_{2}$), $^{K}{}_{B}$ is the Boltzmann constant, and the fitting yields R 2 > 0.99 (Figs. 11b and 12b).


(iii) LIR_3 : Defined as the ratio of Er^{3+} : ${}^2H_{11/2} \rightarrow {}^4I_{15/2}$ (530 nm) to Er^{3+} : ${}^4F_9/_2 \rightarrow {}^4I_{15/2}$ (660 nm), i.e., $LIR_3 = \frac{I_{530 \ nm}}{I_{660 \ nm}}$. The empirical equation is used in this mixed-mode model:

$$LIR_3 = A_3 + B_3 \cdot exp\left(\frac{C_3}{T}\right)$$


Where A_3 , B_3 and C_2 are represented as constants, respectively, with R² > 0.99 (Figs. 11c and 12c).


 $\textbf{Fig. S1} \ \text{Crystal structure of Ln$^{3+}$-doped GMTO double perovskite}.$

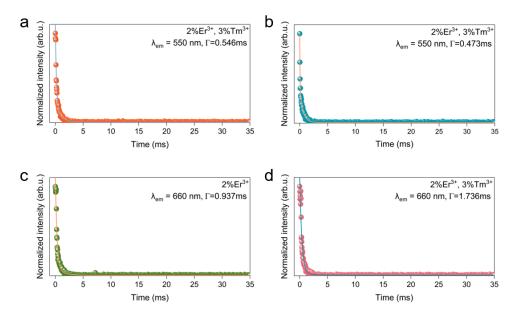

Fig. S2 FE-SEM image and elemental mapping images of the GMTO: 7% Yb³⁺, 2% Er³⁺, 3%Tm³⁺ sample.

Fig. S3 (a) UC emission spectra of GMTO: $2\% \text{ Er}^{3+}$, $x\text{Tm}^{3+}(x = 0-3\%)$ under 980 nm excitation. (b) Calculated power dependence of the UC luminescence and linear fittings about GMTO: $2\%\text{Er}^{3+}$, $3\%\text{Tm}^{3+}$. (c) Proportion of GMTO: Yb^{3+} , Er^{3+} , Tm^{3+} integral intensity with different concentrations of Tm^{3+} . (d) Calculated power dependence of the UC luminescence and linear fittings about GMTO: $7\%Yb^{3+}$, $2\%\text{Er}^{3+}$, $3\%\text{Tm}^{3+}$.

Fig.S4 (a) Proportion of GMTO: $2\%Er^{3+}$, Tm^{3+} integral intensity with different concentrations of Tm^{3+} . (b) Calculated power dependence of the UC luminescence and linear fittings of GMTO: $2\%Er^{3+}$, $3\%Tm^{3+}$. (c) Proportion of GMTO: $7Yb^{3+}$, $2\%Er^{3+}$, $yTm^{3+}(x = 0.5-3\%)$ integral intensity. (d) Calculated power dependence of the UC luminescence and linear fittings of GMTO: $7\%Yb^{3+}$, $2\%Er^{3+}$, $3\%Tm^{3+}$.

Fig.S5 (a and b) UC decay lifetimes of green emission at 550 nm of Er³⁺ in the GMTO: 2%Er³⁺ and GMTO: 2%Er³⁺, 3%Tm³⁺ under 808 nm excitation, respectively. (c and d) UC decay lifetimes of red emission at 660 nm of Er³⁺ in the GMTO: 2%Er³⁺ and GMTO: 2%Er³⁺, 3%Tm³⁺ under 808 nm excitation, respectively

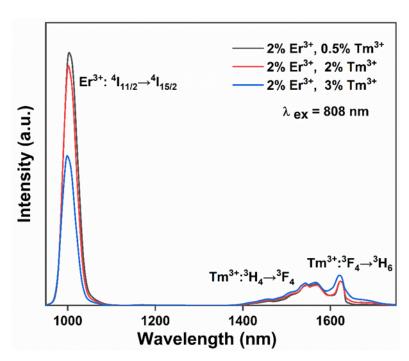
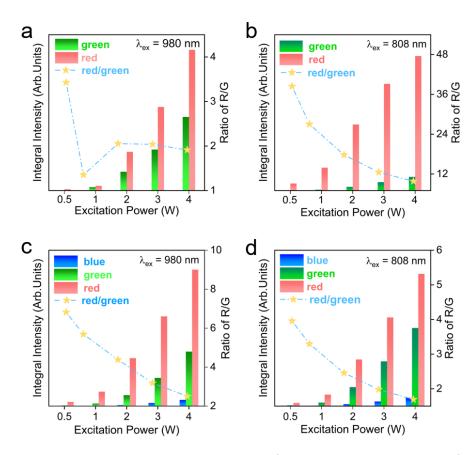
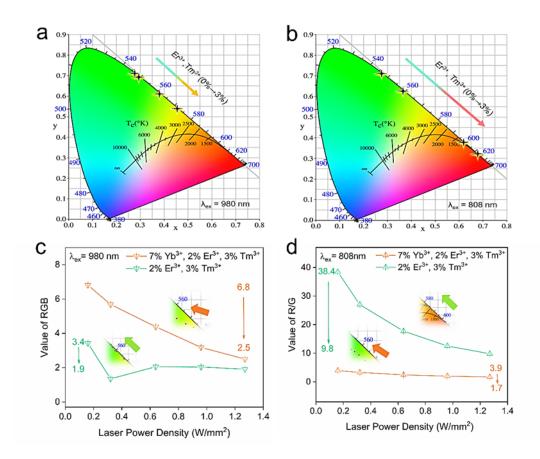




Fig. S6 NIR emission spectra of Er^{3+} , $xTm^{3+}(x = 0.3\%)$ co-doped system upon 808 nm excitation.

Fig. S7 UC emission integrated intensity and red-to-green ratio of the corresponding samples as a function of laser power.

Fig. S8 (a, b) CIE chromatic coordinates of the UC emission in the GMTO: $2\% \text{ Er}^{3+}$, $0.5\%\text{Tm}^{3+}$ phosphor by varying concentration of Tm^{3+} under 980/808 nm excitation. (c, d) R/G emission ratio of GMTO: Er^{3+} , $x\text{Tm}^{3+}$ (x = 0.3%) and GMTO: Yb^{3+} , Er^{3+} , $x\text{Tm}^{3+}$ (x = 0.5-3%) with the variation of laser power density.

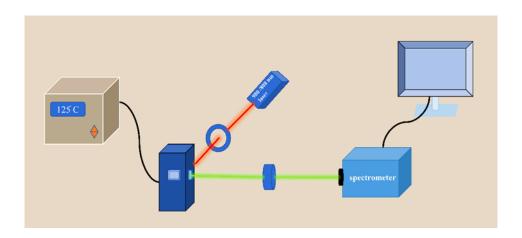


Fig. S9 Schematic diagram of the experimental equipment for temperature sensing measurements.

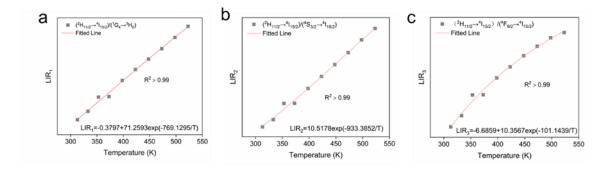


Fig. S10 (a-c) Temperature-dependent *LIR* values of GMTO:7%Yb³⁺, 2%Er³⁺, 0.5%Tm³⁺ upon 980 nm excitation.

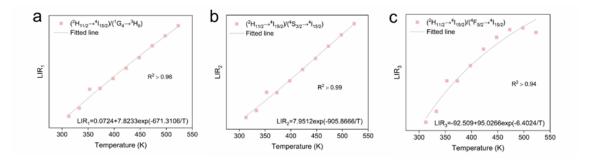
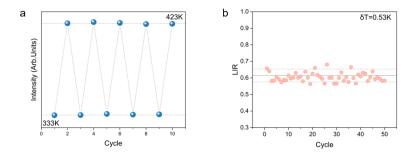
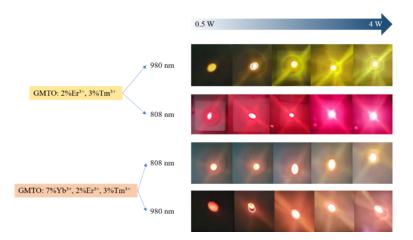




Fig. S11 (a-c) Temperature-dependent *LIR* values of GMTO:7%Yb³⁺, 2%Er³⁺, 0.5%Tm³⁺ upon 808 nm excitation.

Fig. S12 (a) Thermal cycling stability (10 cycles between 333 and 423 K) of the GMTO:7%Yb³⁺, 2%Er³⁺, 0.5%Tm³⁺ under 980 nm excitation. (a) Repeatability tests (25 cycles at 333 K) of the *LIR*₂ signals under 980 nm excitation.

Fig. S13 Images of GMTO: 2%Er³⁺, 3%Tm³⁺ and GMTO: 7%Yb³⁺, 2%Er³⁺, 3%Tm³⁺ under different excitation wavelengths and powers.

Table S1. Refinement Results of Gd_2MgTiO_6 : 7% Yb³⁺, 2% Er³⁺, 3% Tm³⁺.

Refinement Results of GMTO									
Space	Symmetry Monoclinic	a=5.36428 Å	V=231.043 Å ³	α=90	R _{wp} =2.44%				
Group		b=5.60566 Å		β=89.87543	$R_p = 1.95\%$				
P 21/n		c=7.68344 Å		γ=90	Chi ² =1.70%				

Table S2. Summary of the S_r value corresponding to the Ln^{3+} -doped *LIR* thermometers.

Phosphors	$\lambda_{\rm ex}({\rm nm})$	Transitions	Temperature(K)	$S_{\rm r}(\% { m K}^{-1})$	Refs
Na ₃ Gd(VO ₄) ₂ : Yb ³⁺ /Er ³⁺	980	${}^{2}H_{11/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	291-578	0.83	[32]
TeO ₂ -ZnO-BaO: Yb ³⁺ /Ho ³⁺	980	${}^{5}F_{5}/{}^{5}F_{4}, {}^{5}S_{2} \rightarrow {}^{5}I_{8}$	303-503	0.41	[42]
NaLuF ₄ : Ho ³⁺ /Yb ³⁺	980	${}^{5}F_{1}, {}^{5}G_{6}, {}^{5}F_{2,3}, {}^{3}K_{8} \rightarrow {}^{5}I_{8}$	390-780	0.83	[43]
YOF: Tm^{3+}/Yb^{3+}	980	$^{3}\text{H}_{4} \rightarrow ^{3}\text{H}_{6}$	190-300	0.12	[33]
Ca ₂ MgWO ₆ : Er ³⁺ /Yb ³⁺	980	$^{2}H_{11/2}/^{4}F_{9/2} \rightarrow ^{4}I_{15/2}$ $^{2}H_{11/2}/^{4}S_{3/2} \rightarrow ^{4}I_{15/2}$	303-573	0.47 0.92	[44]
$\frac{Ba_{5}Gd_{8}Zn_{4}O_{12}:}{Yb^{3+}/Tm^{3+}}$	980	${}^{1}G_{4(1,2)} \rightarrow {}^{3}H_{6}$	300-510	0.56	[34]
Gd₂MgTiO ₆ :	980	LIR ₁ LIR ₂ LIR ₃	313-523	0.84 0.95 0.95	This work
$Yb^{3+}/Er^{3+}/Tm^{3+}$	808	LIR ₁ LIR ₂ LIR ₃	313-523	0.64 0.92 1.03	This work