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1. Experimental section

1.1 Materials and Reagents

Analytically pure Cd(NO3)2·4H2O, anthracene-9-carboxylic acid (9-HAC), imidazole (IM) and other 

reagents used as purchased without further purification.

1.2 Characterization

Single-crystal X-ray diffraction data were collected on a Bruker SMART APEX II diffractometer with 

graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 296 K. CrysAlisPro1 was used for data 

collection, data reduction and empirical absorption correction. The crystal structure was solved by 

direct methods, using OLEX2 program and least-squares refined with SHELXL-20152 using 

anisotropic thermal displacement parameters for all non-hydrogen atoms. The crystallographic 

data for Cd2(9-AC)4(IM)2 is listed in Table S1. Selected bond lengths and angles are listed in Table 

S2. Crystallographic data for the complex structure in this work has also been deposited with the 

Cambridge Crystallographic Data Centre (CCDC) as deposition nos. CCDC 2204005 (available free 

of charge, on application to the CCDC, 12 Union Rd., Cambridge CB2 1EZ, U.K.; e-mail 

deposit@ccdc.cam.ac.uk). Powder X-ray diffraction analyses (PXRD) patterns were collected on a 

Rigaku Ultima-IV automated diffraction system with Cu Kα radiation (λ = 1.5406 Å). Measurements 

were made in a 2θ range of 5−50° at room temperature with a step of 0.02° (2θ) and a counting 

time of 0.2 s/step. The operating power was 40 kV and 50 mA. Simulated curves of PXRD were 

exported by the single-crystal data and diffraction-crystal module of the Mercury (Hg) program 

available free of charge via the Internet at http://www.iucr.org. The fluorescence spectra and 

time-resolved emission decay curves were measured on a Hitachi F-7100 fluorescence 

spectrophotometer at room temperature, and the temperature-dependent measurements were 

conducted using the same spectrometer equipped with an Orient KOJI TAP-02 high-temperature 

fluorescence analyzer (300 °C). The photoluminescent lifetimes (τ) of all samples were calculated 

by fitting the decay curve with a two-exponential decay function of I(t)=A1exp(−t/τ1)+ A2exp(−t/τ2), 

where A1, A2 and τ1, τ2 represent the amplitudes and lifetimes of the individual components for 

two-exponential decay profiles, respectively. The absolute emission quantum yield (QY) values 

were measured at room temperature using an Edinburgh quantum yield measurement system 

equipped with a 150-W xenon lamp coupled to a monochromator for wavelength discrimination, 

an integrating sphere as the sample chamber, and a multichannel analyzer for signal detection. 

http://www.iucr.org/


Ultraviolet-visible (UV-vis) absorption spectra were recorded by using a Hitachi UH4150 

spectrometer with BaSO4 as a reflectance scaffold. The Fourier transform infrared (FT-IR) spectra 

for samples were obtained utilizing the Nicolet 380 spectrophotometer in the range of 400-4000 

cm-1 to investigate the functional groups. The thermogravimetry analysis (TGA) experiments were 

performed on a VersaTherm TGA instrument from room temperature to 600 °C under flowing N2 

with a heating rate of 10 °C/min. Sample preparations for the TGA were carried out under air. The 

morphologies and particle sizes were obtained by scanning electron microscopy (SEM) images on 

Hitachi S-4800. Electron paramagnetic resonance (EPR) spectroscopy was measured on a Bruker-

300 EPR spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were performed 

on a PerkinElmer PHI-1600 ESCA spectrometer using a Mg Kα (hv = 1253.6 eV) X-ray source. The 

binding energies were calibrated using the C 1s peak of contaminant carbon (BE = 284.0 eV) as an 

internal standard. For the light irradiation experiments, A Xe lamp (150 W) was equipped to 

prepare the samples for luminescence performance measurement, a UV lamp (365 nm, 24 W) for 

IR, PXRD, UV-vis, luminous photos and a UV lamp (365 nm, 100 W) for EPR. 

1.3 Theoretical Calculations

The Hirshfeld surfaces and 2D fingerprint plots were calculated by using Crystal Explorer 17.5.3 The 

molecular structures were optimized and characterized as energy minima by the Becke three-

parameter exchange functional with the Lee–Yang–Parr correction functional (B3LYP4-5) in the 

Gauss 16 package.6 The density functional theory (DFT) was performed to optimize the geometries 

of the ground state with the 6-31G(d) basis set for C, H, O and N atoms, and LANL2DZ basis set for 

the Cd atom. The calculation of the infrared absorption frequencies was carried out at the same 

level. 

1.4 Preparation of samples

1.4.1 Preparation of metal-organic complex 1: 

A mixture of 0.2 mmol 9-HAC (0.044 g), 0.2 mmol IM (0.014 g) and 6 mL CH3CN solvent were added 

to the beaker to prepare “A” solution, which was stirred at a suitable speed for 4 hours on a 

magnetic stirrer. The 0.5 mmol Cd(NO3)2·4H2O (0.154 g) was dissolved in 8 mL deionized water to 

form “B” solution. After the “A” solution was stirred for 3 hours, the “B” solution was added and 

stirred for another 3 hours to finally obtain a light-yellow clarified solution. The solution after the 

reaction was filtered into a Schering bottle and sealed with a sealing film. A number of small holes 



were punched on the sealing film to control the evaporation rate of the solvent. After a week, 

yellow block crystals were precipitated at the bottom of the Schering bottle. After filtration, 

washing and drying, the sample was finally obtained. Yield: 75% (based on 9-HAC). IR spectrum of 

Cd2(9-AC)4(IM)2 (KBr pellets, cm-1): 3129(w), 3053(w), 2954(w), 2865(w), 2107(w), 1595(vs), 

1540(w), 1502(w), 1489(w), 1441(m), 1418(m), 1391(s), 1318(s), 1277(w), 1258(w), 1227(w), 

1183(w), 1160(w), 1140(w), 1104(w), 1073(s), 1014(w), 981(w), 961(w), 947(w), 886(m), 866(m), 

839(w), 819(w), 794(m), 762(m), 732(vs), 650(s), 619(m), 595(m), 560(m), 520(m), 462(m), 425(vs).

1.4.2 Preparation of 1-G:

Cd2(9-AC)4(IM)2 was ground in a mortar to obtain a light-yellow powder sample. IR spectrum of 

Cd2(9-AC)4(IM)2-G (KBr pellets, cm-1): 3129(w), 3051(w), 2106(w), 1598(s), 1540(m), 1502(w), 

1485(w), 1442(m), 1421(w), 1388(s), 1321(s), 1278(w), 1260(w), 1225(w), 1181(w), 1158(w), 

1141(w), 1104(w), 1076(m), 1013(w), 981(w), 961(w), 949(w), 886(m), 866(m), 840(w), 821(w), 

794(w), 782(w), 762(m), 730(vs), 647(s), 619(m), 597(m), 560(m), 520(m), 463(w), 425(s).

1.4.3 Preparation of 1-F:

Cd2(9-AC)4(IM)2-G was fumigated with CH3CN solvent to obtain a light-yellow powder sample. IR 

spectrum of Cd2(9-AC)4(IM)2-F (KBr pellets, cm-1): 3131(w), 3055(w), 2954(w), 2865(w), 1598(vs), 

1540(w), 1502(w), 1485(w), 1439(m), 1422(m), 1392(s), 1320(s), 1277(w), 1258(w), 1227(w), 

1183(w), 1160(w), 1140(w), 1104(w), 1076(s), 1016(w), 981(w), 963(w), 951(w), 886(m), 866(m), 

841(w), 821(w), 802(w), 794(w), 762(m), 730(vs), 650(s), 619(m), 595(m), 560(m), 520(m), 462(m), 

425(vs).

1.4.4 Preparation of 1-H:

Zn2(9-AC)4(IM)2 was fumigated with concentrated HCl to obtain a yellow powder sample. IR 

spectrum of Zn2(9-AC)4(IM)2-H (KBr pellets, cm-1): 3137(w), 3055(w), 1675(s), 1608(m), 1482(w), 

1444(w), 1424(m), 1386(w), 1318(w), 1292(m), 1254(s), 1225(w), 1176(w), 1143(w), 1099(w), 

1070(m), 1012(w), 954(w), 916(w), 887(m), 858(w), 840(w), 790(m), 732(vs), 636(m), 597(m), 

558(w), 520(w), 472(w), 433(m).

1.4.5 Preparation of 1-OH:

Zn2(9-AC)4(IM)2-H was fumigated with concentrated NH3·H2O to obtain a light-yellow powder 

sample. IR spectrum of Zn2(9-AC)4(IM)2-OH (KBr pellets, cm-1): 3137(w), 3055(w), 1610(s), 1552(m), 

1489(w), 1441(m), 1402(s), 1393(s), 1318(s), 1270(m), 1254(m), 1238(w), 1180(w), 1141(w), 



1103(w), 1074(s), 1016(w), 958(w), 919(w), 890(m), 861(m), 842(m), 794(m), 765(m), 736(vs), 

649(s), 601(m), 562(w), 524(m), 475(m), 437(m).
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Fig. S8 (a) Emission spectra for complex 1 measured at temperatures from 303 to 453 K. (b) Time-
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temperatures from 303 to 453 K. (c-h) Time-resolved emission decay fitting curves for complex 1 

measured at temperatures from 303 to 453 K.
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grinding and fuming by CH3CN. (c) Solid-state UV-vis absorption spectra of 1-P, 1-G and 1-F. 
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Table S1 Crystallographic data and structure refinement details of 1.

Complex Cd2(9-AC)4(IM)2 Z 4

Formula C66H44N4O8Cd2 Dcalc (mg/m3) 1.550

Mr 1245.85 θ Range (°) 2.219-25.041

Temperature (K) 296.15 F (000) 2512

Crystal system monoclinic Data/restraint/parameter

s

9411 / 1032 / 721

Space group P21/c Reflections collected 121925

Crystal size 

(mm)

0.06 × 0.05 × 0.04 Independent reflections 9411

a (Å) 23.1894(11) Goodness-of-fit on F2 1.027

b (Å) 23.0008(9) Rint 0.0614

c (Å) 10.0936(4) R1[I>2σ(І)] 0.0427

α (°) 90 wR2[I>2σ(І)] 0.0799

β (°) 97.3350(10) R1(all data) 0.0652

γ (°) 90 wR2(all data) 0.0901

V(Å3) 5339.6(4) Residuals(e Å-3) 0.705, -0.846

R1 = Σ||Fo|–|Fc||/Σ|Fo|, wR2 = [Σw(Fo
2–Fc

2)2/Σw(Fo
2)2]1/2

Table S2 Bond lengths and angles related to the coordination environment.

Bond lengths (Å) Bond angles (º)

Cd1–O1 2.276(3) O1–Cd1–O2 154.60(11) O3–Cd1–O4 155.95(13)
Cd1–O2 2.224(3) O1–Cd1–O3 88.48(12) N1–Cd1–O1 97.09(12)

Cd1–O3 2.243(3) O1–Cd1–O4 83.15(12) N1–Cd1–O2 108.20(12)

Cd1–O4 2.212(3) O2–Cd1–O3 97.77(13) N1–Cd1–O3 96.83(13)

Cd1–N1 2.197(3) O2–Cd1–O4 87.35(13) N1–Cd1–O4 106.53(13)

Cd2–O5 2.233(3) O5–Cd2–O6 155.39(11) O7–Cd2–O8 155.97(12)

Cd2–O6 2.285(3) O5–Cd2–O7 87.57(13) N4–Cd2–O5 105.81(13)

Cd2–O7 2.229(3) O5–Cd2–O8 91.12(13) N4–Cd2–O6 98.43(12)

Cd2–O8 2.237(3) O6–Cd2–O7 81.68(12) N4–Cd2–O7 105.91(13)

Cd2–N4 2.210(3) O6–Cd2–O8 89.86(13) N4–Cd2–O8 97.53(13)

Table S3 Photophysical data of 1-C and 1-P in the solid state.

Complex T/K λem
a/nm Φb τc/ms kr

d/s-1 knr
e/s-1

1-C 298 K 450 3.12% 0.23 1.36×102 4.21×103

1-P 298 K 450 5.55% 0.12 4.63×102 7.87×103



a Emission Maxima. b Emission quantum yields. c Emission lifetimes.

d Radiative rate constants, kr = Φ/τ. e Non-radiative rate constants, knr = (1-Φ)/τ.
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