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Experimental Section

Single-Crystal X-ray Diffraction.

Single-crystal X-ray diffraction data of (A,I)[PbI(OOC(CH,),COO)] (A = Rb, K)
were collected on a Rigaku Saturn 724 CCD diffractometer equipped with a graphite-
monochromated Mo Ko radiation. The data reduction was integrated with the
program Crystal Clear version 1.30. Their structures were solved by a direct method
with the aid of the SHELXT and refined by the SHELXL full-matrix least-squares
program.[!> 21 Their structures were further checked by the PLATON and no higher
symmetries were suggested.l] Details of crystallographic data are listed in Tables S1-
2. Atomic coordinates, equivalent isotropic displacement parameters and bond
valence sum (BVS), anisotropic displacement parameters, as well as bond lengths and
angles are summarized in Tables S3-S8, respectively. CCDC 2474360 for for
(Rb,D[PbI(OOC(CH,;),CO0)] and 2474361 for (K,I)[PbI(OOC(CH,),COO)].
Powder X-ray diffraction (PXRD)

PXRD measurements for (A,I)[PbI(OOC(CH,),COO)] (A = Rb, K) were conducted
using a Rigaku Miniflex 600 diffractometer, employing Cu Ka radiation (4 =
1.540598 A) at room temperature. PXRD data were collected within the 20 range of

5-55° with a step width of 0.02°.
Energy dispersive X-ray spectroscope and elemental analyses

Elemental analyses were performed by using a field emission scanning electron
microscope (FESEM, JSM6700F) with an energy dispersive X-ray spectroscope (EDS,
Oxford INCA). C and H analyses were carried out with a Vario EL III element

analyzer.
Thermogravimetric and differential thermal analysis (TGA-DTA)
TGA-DTA of (A;D)[PbI(OOC(CH,),COO)] (A = Rb, K) were employed on a

NETZCH STA 449F3 thermal analysis instrument with an Al,O3 crucible as a
reference. In a flowing nitrogen gas, the temperature was raised from 25 to 800

°C at a heating rate of 10 °C-min!.



Optical properties

According to attenuated total reflectance (ATR) method, IR spectra were as
recorded on a VERTEX70 FT-IR spectrometer instrument at room temperature.
The crystal sample was tightly fitted to the total reflection crystal and then the
data were collected spanning over 400 to 4000 cm-'.

In addition, within the wavelength range of 200-2500 nm, their UV-Vis-NIR
diffuse reflectance spectra were measured using a PrkinElmer Lambda 950
ultraviolet/visible/near-infrared spectrophotometer with solid sample referenced
against BaSO,. The reflection spectrum was converted to absorption spectrum
by using the Kubelka-Munk function: o/S = F(R) = (1-R)?/2R, (where S is the

scattering coefficient, a is the absorption coefficient, and R is the reflectance) [+
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Second-harmonic generation (SHG) measurements

Powder SHG measurements were performed on a pulsed Q-switched Nd: YAG solid-
state laser with the modified Kurtz-Perry method under a wavelength of 1064 nm and
room temperature.[%! Crystalline samples and microcrystalline KDP as the references
were ground and sieved into progressively increasing particle size ranges: 25-45, 45-

53, 53-75, 75-109, 109-150, 150-212 and 212-355 um.
The heat-treatment procedure

Select clean and impurity-free crystals and place them on a watch glass. Then put
them into an oven for the heat-treatment in the air. Then, crystals have been heated

successively at 100, 150, 200 and 250°C for 30 minutes at respective temperature.
Computational details

Theoretical calculations based on density functional theory (DFT) have been
performed using the Vienna ab initio simulation package (VASP) - 8] with the
Perdew-Burke-Ernzerhof (PBE) [®1 exchange correlation functional. The
projected augmented wave (PAW) [0 potentials have been used to treat the
ion-electron interactions. A I'-centered 3%7x3 Monkhorst-Pack grid for the
Clillouin zone sampling 'l and a cutoff energy of 500 eV for the plane wave
expansion were found to get convergent lattice parameters and self-consistent

energies. In calculation of the static ¥ coefficients, the so-called length-gauge
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formalism derived by Aversa and Sipe ['2l and modified by Rashkeevet al [13] is
adopted, which has been proved to be successful in calculating the second order
susceptibility for semiconductors and insulators.[14-16] The
dynamic SHG coefficient is calculated by the formula developed by Aversa,
Sipe and Rashkeev et al. 12 13] In the static case, the imaginary part of the static

second-order optical susceptibility can be expressed as:
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where r is the position operator, Zw,,, = hw, - hw,, is the energy difference for
the bands m and n, f,, = f. - f, 1s the difference of the Fermi distribution
functions, subscripts a, b, and ¢ are Cartesian indices, and 7%,,., is the so-called
generalized derivative of the coordinate operator in k space.
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where 4%, = (% - P%wm ) / m is the difference between the electronic
velocities at the bands 7 and m.

The x? coefficients here were calculated from PBE wavefunctions with a
3x7x3 k-point grid and about 450 bands. A scissor operator has been added to
correct the conduction band energy (corrected to the experimental gap), which
has been proved to be reliable in predicting the second-order susceptibility for
semiconductors and insulators. [17-19],

For an external radiation electric field E, the dipole moment y; of a group can
be expressed as a Taylor series expansion [15 16]
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where i, j, k, and [ subscripts represent the different Cartesian coordinate

components x, y, Or z. K (i) is the permanent dipole moment of a group, namely
the dipole moment without an applied electric field. Physical quantities a, /£,
and y correspond to the linear polarizability (a, which corresponds to the linear
optical coefficient of a group), first-order hyperpolarizability tensor (5, which is
the second-order nonlinear optical coefficient of a group), and second-order
hyperpolarizability tensor (y, which is the third-order nonlinear optical
coefficient of a group).

We calculate the static linear polarizability (a) and static first-order
hyperpolarizability (f) of [Pbl,O4] and [OOC(CH,),COO] groups at the
PBEIPBE level [°1 of theory with a reasonably large basis set def2TZVP [20. 21]
by using the Gaussian 09 program.l??l The polarizability anisotropy (Aa) was

obtained by the following formula to reflect the sources of birefringence.[?3]

Aa = \/[(axx - ayy)z + (axx - azz)z + (ayy — 2]/2

Table S1. Crystal data and structural refinements for (Rb,I)[PbI(OOC(CH,),COO)].

Empirical formula (Rb,)[PbI(OOC(CH,),CO0)]
Formula weight 748.00




Temperature(K)

Crystal color

Wavelength(A)

Crystal system

Space group

alA

b/ A

c/A

al°

pre

y/°

Volume / A3

Z

Absorption correction

Crystal size

Pcaled / g‘Cm'3

u/ mm!

F(000)

Data / restraints / parameters
2-Theta range for data collection
Limiting indices

Reflections collected / unique
Independent reflections
Completeness
Goodness-of-fit on F?
R],WR2 (I > 20) [a]

R;,wR; (all data)

Largest diff. peak and hole/ e-A-3
Flack parameter

293(2)

Colorless

0.71073

Orthorthombic

Ima?2

12.0622(11)

6.8832(5)

15.0775(15)

90

90

90

1251.83(19)

4

spherical harmonics

0.3 mm x 0.3 mm X 0.3 mm
3.969

26.118

1288.0

2573/1/66

5.404 to 68.82

-19 <h <£19,-10<K<10, -21<1<23
9899

2573 [Rin=0.0399, Ryigma=0.0284]
100%

1.086

R;=0.0353, wR, = 0.0824
R; =0.0409, wR, = 0.0846
1.39/-1.52

-0.017(6)

WR, = X||Fy| - |[F|l/Z|F.| and wR, = [Ew(Fo® —

Table S2. Crystal data and structural refinements for (K,I)[PbI(OOC(CH,),COO)].

Fc2)?/ SwF 412,

Empirical formula

(K2)[PbI(OOC(CH,),CO0)]

Formula weight
Temperature(K)

655.26
297.77(10)



Crystal color
Wavelength(A)
Crystal system
Space group
alA

bl A

c/A

al°

ple

y/°

Volume / A3
Z

Absorption correction

Crystal size

Colorless

0.71073
Orthorthombic
Ima?2

11.7525(5)
6.8495(3)
15.1124(7)

90

90

90

1216.53(9)

4

spherical harmonics
0.3 mm x 0.3 mm % 0.3 mm

Pealed / g cm3 3.578

u/ mm! 19.609

F(000) 1144

Data / restraints / parameters 1659/1/65

2-Theta range for data collection 5.392 to 60.832

Limiting indices -15<h<14,-8<k<9,-20<1<21
Reflections collected 6944

Independent reflections 1659 [Rint=0.0420, Rgjgma=0.0379]
Completeness 100%

Goodness-of-fit on F? 1.068

R;,WR; (1> 20) [ R; =0.0264, wR, = 0.0564
R,wR; (all data) R;=0.0329, wR, = 0.0585
Largest diff. peak and hole/ e-A- 0.65/-1.18

Flack parameter 0.004(5)

IR, = ||Fy| - |Fol|/Z|F.| and wR, = [EW(Fo? — Fc2)2/ SwF4V2,

Table S3. Atomic coordinates, equivalent isotropic displacement parameters (A2) and
BVS for (Rb,])[PbI(OOC(CH,),COO)].

Atom  Wyck. x y z Uy BVSP

Pbl 4a 0.5 0.5 0.43766(2) 0.02573(13) 1.69



1 4a 0.25 0.52394(14)  0.34849(9) 0.0333(2) -0.72

2 4b 0 1 0.33644(7) 0.03 (2)
Rbl 4b 0.75 0.4609(2)  0.66416(13)  0.0378(4) 0.78
Rb2 4b 0.25 1.01317(14)  0.47054(13)  0.0308(3) 1.10
o1 8¢ 0.5979(5)  0.6887(8) 0.5519(5) 0.0351(13) 2.07
02 8¢ 0.4178(5)  0.7549(8) 0.5556(4) 0.0322(12) -1.87
Cl 8¢ 0.5156(6)  0.7779(11) 0.5849(6) 0.0267(16)

(&) 8¢ 0.5362(10) _ 0.9097(13) 0.6614(6) 0.039(2)

aU,q is defined as 1/3 of the trace of the orthogonalisedUj; tensor.
"Bond valence sums were calculated by the equation: s = exp [(Rg - R;)/b], where Ry and b are the

bond valence parameters and R; is the observed bond lengths.

Table S4. Atomic coordinates, equivalent isotropic displacement parameters (A2) and
BVS for (K,)[PbI(OOC(CH,),CO0)].

Atom Wyck. x Y z Uy? BVSP
Pbl 4a 0.5 0.5 0.56589(2) 0.0319(14) 1.71
1 4a 1 0 0.66338(7) 0.0397(3)
W 4b 0.75 0.53391(14)  0.65554(9) 0.048(3) -0.70
Kl 4b 0.75 0.5383(4) 0.3501(3) 0.0499(8) 0.72
K2 4b 0.75 0.0125(3) 0.5295(3) 0.0441(8) 0.91
ol 8¢ 0.5997(5) 0.3076(8) 0.4506(4) 0.0428(14)  -2.00
02 8¢ 0.4148(5) 0.2465(8) 0.4456(4) 0.0394(14)  -1.90
Cl 8¢ 0.5139(6)  0.2221(12) 0.4161(6) 0.032(19)
c2 8¢ 0.5363(10) 0.915(13) 0.3404(6) 0.044(2)

aUq is defined as 1/3 of the trace of the orthogonalisedUj; tensor.
"Bond valence sums were calculated by the equation: s = exp [(Ry - R;)/b], where Ry and b are the

bond valence parameters and R; is the observed bond lengths.

Table Ss. Anisotropic displacement parameters (A2 for
(Rb,D)[PbI(OOC(CH,;),CO0)].

Atom Un Uz, Us; Uz Ui U

Pbl 0.02058(18)  0.0327(2) 0.0239(2) 0 0 -0.0025(12)
11 0.0195(4) 0.0455(10)  0.0351(5) 0.0005(4) 0 0

2 0.0309(9) 0.0313(4) 0.0279(5) 0 0 0.0005(2)
Rbl 0.0294(6) 0.0463(8) 0.0376(8) 0.0068(6) 0 0

Rb2 0.0291(5) 0.0334(5) 0.035(7) 20.00394) 0 0

01 0.033(3) 0.031(3) 0.041(4) 0(3) -0.004(3) 0.002(2)
02 0.034(3) 0.031(3) 0.032(3) -0.005(2) -0.002(3) 0(2)

Cl1 0.034(4) 0.021(3) 0.025(4) 0.006(3) -0.004(3) -0.003(2)
C2 0.075(6) 0.025(4) 0.016(4) 0.001(3) -0.017(4) -0.004(4)

Table S6. Anisotropic displacement parameters (A2) for (K,I)[PbI(OOC(CH,),COO)].
Atom Un Un, Us; Us Uss Up
Pbl 0.024(2) 0.0396(2) 0.03213) 0 0 0.00247(14)




11 0.049(7) 0.0321(5) 0.0379(6) 0 0 -0.0004(2)
12 0.0216(4) 0.0758(6) 0.0465(6) 0.0107(7) 0 0

Kl 0.0362(15) 0.0471(17)  0.066(3) 0.0074(15) 0 0

K2 0.0327(16) 0.0478(16)  0.052(2) 0.0068(11) 0 0

o1 0.038(3) 0.041(3) 0.049(4) 0.003(3) 0.004(3) -0.002(2)
02 0.033(3) 0.044(3) 0.041(4) -0.005(3) 0.003(3) 0.003(2)
Cl 0.042(5) 0.024(3) 0.030(4) 0.006(3) 0.004(4) 0.004(3)
2 0.076(6) 0.031(4) 0.026(5) 0.002(3) 0.017(4) 0.004(5)
Table S7. Selected bond lengths (A) and angles (deg.) for
(Rb,)[PbI(OOC(CH,),CO0O)].

Pb(1)-O(1) 2.459(6) Pb(1)-O(2)*! 2.687(6)
Pb(1)-O(1)*! 2.459(6) Pb(1)-I(1) 3.3058(6)
Pb(1)-0(2) 2.687(6) Pb(1)-I(1)*! 3.3058(6)
O(1)-Pb(1)-O(1)*! 91.1(3) O(1)*1-Pb(1)-I(1)*! 134.15(14)
O(1)-Pb(1)-0(2) 50.9(2) 0(2)-Pb(1)-0(2)"! 97.2(3)
O(1)-Pb(1)-0(2)"! 72.8(2) 0(2)-Pb(1)-I(1) 84.26(13)
O(1)-Pb(1)-I(1) 134.15(14) 0(2)-Pb(1)-I(1)*! 129.65(13)
O(1)-Pb(1)-I(1)*! 82.72(15) 0(2)*1-Pb(1)-I(1) 129.65(13)
O(1)*1-Pb(1)-0(2) 72.8(2) 0(2)*1-Pb(1)-I(1)*! 84.26(13)
O(1)*1-Pb(1)-O(2)*! 50.9(2) 1(1)-Pb(1)-I(1)* 132.01(4)
O(1)*1-Pb(1)-I(1) 82.72(15)

Symmetry transformations used to generate equivalent atoms: #1 1 -x, 1 -y, z.

Table S8. Selected bond lengths (A) and angles (deg.) for
(K;D[PbI(OOC(CH,;),COO)].

Pb(1)-O(1) 2.479(6) Pb(1)-O(2)*! 2.706(6)
Pb(1)-O(1)*! 2.479(6) Pb(1)-1(2) 3.2437(6)
Pb(1)-0(2) 2.707(6) Pb(1)-1(2)"! 3.2438(6)
O(1)-Pb(1)-O(1)*! 90.7(3) O(1)*1-Pb(1)-1(2)*! 84.47(14)
O(1)-Pb(1)-0(2) 50.3(2) 0(2)-Pb(1)-0(2)"! 95.6(3)
O(1)-Pb(1)-0(2)"! 72.19(19) 0(2)-Pb(1)-1(2) 131.43(12)
O(1)-Pb(1)-I(2) 84.47(14) 0(2)-Pb(1)-I(2)*! 84.23(12)
O(1)-Pb(1)-I(2)! 84.47(14) 0(2)*1-Pb(1)-1(2) 84.23(12)
O(1)*1-Pb(1)-0(2) 72.20(19) 0(2)*1-Pb(1)-1(2)*" 131.43(12)
O(1)*1-Pb(1)-O(2)*! 50.3(2) 1(2)-Pb(1)-1(2)* 130.63(5)
O(1)*1-Pb(1)-1(2) 133.12(13)

Symmetry transformations used to generate equivalent atoms: #1 1 -x, 1 -y, z.

Table S9. The local dipole moment («) in Debye, as well as polarizability anisotropy
(Aa) for four [Pbl,O4] polyhedrons and four [OOC(CH,),COO] groups in per unit cell
of [Rb,I][PbI(OOC(CH,;),COO)]. The charge of the structural group was estimated by

the Bader charge of each atom.



Dipole moment Ly Ly yra U Aa

[PbLO,] 0.00 0.00 -18.14 18.14 37.89
[Pbl,0.] 0.00 0.00 -18.14 18.14 37.89
[PbL,O,] 0.00 0.00 -18.14 18.14 37.89
[PbLO,] 0.00 0.00 -18.14 18.14 37.89
[0OOC(CH,),COO0] 0.00 0.00 4.81 4.81 29.65
[0OOC(CH,),COO] 0.00 0.00 4.81 4.81 29.65
[0OOC(CH,),COO] 0.00 0.00 481 481 29.65
[0OOC(CH,),COO] 0.00 0.00 481 481 29.65
Total 0.00 0.00 -53.32

Table S10. The first-order hyperpolarizability (8) in 1039 esu for four [Pbl,04]
polyhedrons and four [OOC(CH,),COO] groups in per unit cell of
(Rb,)[PbI(OOC(CH,),COO0)].

First-order hyperpolarizability X y Z
[PbI,04] 0.00 0.00 420.67
[PbI,0O4] 0.00 0.00 420.67
[Pbl,0O4] 0.00 0.00 420.67
[PbI,04] 0.00 0.00 420.67

[OOC(CH,),CO0] 0.00 0.00 1.83
[OOC(CH,),COO0]] 0.00 0.00 1.83
[OOC(CH,),COO] 0.00 0.00 1.83
[OOC(CH,),COO] 0.00 0.00 1.83

Table S11. The local dipole moment () in Debye, as well as polarizability anisotropy
(Aa) for four [Pbl,04] polyhedrons and four [OOC(CH,),COO] groups in per unit cell
of (K,I)[PbI(OOC(CH;),COO)]. The charge of the structural group was estimated by

the Bader charge of each atom.

10



Dipole moment Ly Ly yra U Aa

[Pbl,0,] 0.00 0.00 18.8 18.8 17.2
[PbL,O.] 0.00 0.00 18.8 18.8 17.2
[PbL,O.] 0.00 0.00 18.8 18.8 17.2
[PbL,0,] 0.00 0.00 18.8 18.8 17.2
[0OOC(CH,),COO] 0.00 0.00 -4.84 4.84 29.32
[0OOC(CH,),CO0] 0.00 0.00 -4.84 4.84 29.32
[0OOC(CH,),CO0] 0.00 0.00 -4.84 4.84 29.32
[OOC(CH,),CO0] 0.00 0.00 -4.84 4.84 29.32
Total 0.00 0.00 55.84

Table S12. The first-order hyperpolarizability (8) in 10-3° esu for four [Pbl,O4]
polyhedrons and four [OOC(CH,),COO] groups in per unit cell of
(K,D)[PbI(OOC(CH,;),CO0)].

First-order hyperpolarizability X y Z
[PbI,0O4] 0.03 -0.05 -174.61
[PbI,04] -0.05 0.08 -174.59
[PbI,04] 0.01 0.01 -174.64
[PbI,0O4] 0.03 -0.04 -174.62

[OOC(CH,),COO0] 0.00 0.00 -2.39
[OOC(CH,),COO] 0.00 0.00 -2.39
[OOC(CH,),COO0] 0.00 0.00 -2.39
[OOC(CH,),COO0] 0.00 0.00 -2.39




Figure S1. A photograph of the as-grown crystal without polishing for
(Rb,I)[PbI(OOCCH,CH,COO)].

Figure S2. A photograph of the as-grown crystal without polishing for

(K,D)[PbI(OOCCH,CH,COO0)].
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Figure S3. Experimental and simulated PXRD patterns of
(Rb,[)[PbI(OOC(CH,),COO0)].
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Figure S4. Experimental and simulated PXRD patterns of
(K,D)[PbI(OOC(CH,;),CO0)].
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Figure S5. The IR spectrum of (Rb,I)[PbI(OOC(CH,),COO)].
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Figure S6. The IR spectrum of (K,I)[PbI(OOC(CH,),COO)].
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Figure S9. (a) The coordination environment of the Pb(Il) atom in
(Rb,)[PbI(OOC(CH;),COO)]. (b) The coordination mode of the succinate group. The
environments of (c) the Rb1™ and (d) the Rb2* cations. (¢) The uniform alignment of
the wave-like layers. (f) The structure of (Rb,])[PbI(OOC(CH,),COO)]. Symmetry
codes:al-x,1-y,z;b1-x,-05+y,05+2zc15-%x,y,2,d05+x,1-y,2;¢0.5

+x,-05+y,05+zf-05+x,2-y,z;g1-x,2-y,zh05-x,y,z;ix,1 +y, z
1
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100°C

:
i



Figure S10. Photographs were taken of (K,I)[PbI(OOC(CH;),COO)] crystals after

heat-treatment at 100, 150, 200 and 250 °C for 30 minutes in air, respectively.
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Figure S11. The UV-Vis-NIR spectrum of (Rb,I)[PbI(OOC(CH,),COO)]. Inset: the
bandgap of (Rb,I)[PbI(OOC(CH,),COO)].
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Figure. S12. The UV-Vis—NIR spectrum of (K,I)[PbI(OOC(CH,),COO)]. Inset: the

bandgap of (K,I)[PbI(OOC(CH,),COO)].




Figure S13. The calculated band structure of (Rb,I)[PbI(OOC(CH,),COO)].
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Figure S14. The calculated band structure of (K,I)[PbI(OOC(CH,),COO)].
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Figure S15. Optical refractive indices along principal axes versus photon energy for

(Rb,])[PbI(OOC(CH,),COO0)].
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Figure S16. The calculated birefringence versus photon energy for

(Rb,])[PbI(OOC(CH,),COO)].
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Figure S17. Optical refractive indices along principal axes versus photon energy for

(Ka)[PbI(OOC(CH,),CO0)].
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Figure S18. The calculated birefringence versus photon energy for

(Ka)[PbI(OOC(CH,),CO0)].
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