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Experimental Section

Single-Crystal X-ray Diffraction. 

Single-crystal X-ray diffraction data of (A2I)[PbI(OOC(CH2)2COO)] (A = Rb, K) 

were collected on a Rigaku Saturn 724 CCD diffractometer equipped with a graphite-

monochromated Mo Kα radiation. The data reduction was integrated with the 

program Crystal Clear version 1.30. Their structures were solved by a direct method 

with the aid of the SHELXT and refined by the SHELXL full-matrix least-squares 

program.[1, 2] Their structures were further checked by the PLATON and no higher 

symmetries were suggested.[3] Details of crystallographic data are listed in Tables S1-

2. Atomic coordinates, equivalent isotropic displacement parameters and bond 

valence sum (BVS), anisotropic displacement parameters, as well as bond lengths and 

angles are summarized in Tables S3-S8, respectively. CCDC 2474360 for for 

(Rb2I)[PbI(OOC(CH2)2COO)] and 2474361 for (K2I)[PbI(OOC(CH2)2COO)].

Powder X-ray diffraction (PXRD)

PXRD measurements for (A2I)[PbI(OOC(CH2)2COO)] (A = Rb, K) were conducted 

using a Rigaku Miniflex 600 diffractometer, employing Cu Kα radiation (λ = 

1.540598 Å) at room temperature. PXRD data were collected within the 2θ range of 

5-55° with a step width of 0.02°.
Energy dispersive X-ray spectroscope and elemental analyses
Elemental analyses were performed by using a field emission scanning electron 

microscope (FESEM, JSM6700F) with an energy dispersive X-ray spectroscope (EDS, 

Oxford INCA). C and H analyses were carried out with a Vario EL III element 

analyzer.
Thermogravimetric and differential thermal analysis (TGA-DTA)
TGA-DTA of (A2I)[PbI(OOC(CH2)2COO)] (A = Rb, K) were employed on a 

NETZCH STA 449F3 thermal analysis instrument with an Al2O3 crucible as a 

reference. In a flowing nitrogen gas, the temperature was raised from 25 to 800 
oC at a heating rate of 10 oC·min-1. 
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Optical properties
According to attenuated total reflectance (ATR) method, IR spectra were as 

recorded on a VERTEX70 FT-IR spectrometer instrument at room temperature. 

The crystal sample was tightly fitted to the total reflection crystal and then the 

data were collected spanning over 400 to 4000 cm-1. 

In addition, within the wavelength range of 200-2500 nm, their UV-Vis-NIR 

diffuse reflectance spectra were measured using a PrkinElmer Lambda 950 

ultraviolet/visible/near-infrared spectrophotometer with solid sample referenced 

against BaSO4. The reflection spectrum was converted to absorption spectrum 

by using the Kubelka-Munk function: α/S = F(R) = (1–R)2/2R, (where S is the 

scattering coefficient, α is the absorption coefficient, and R is the reflectance) [4, 

5].
Second-harmonic generation (SHG) measurements 
Powder SHG measurements were performed on a pulsed Q-switched Nd: YAG solid-

state laser with the modified Kurtz-Perry method under a wavelength of 1064 nm and 

room temperature.[6] Crystalline samples and microcrystalline KDP as the references 

were ground and sieved into progressively increasing particle size ranges: 25-45, 45-

53, 53-75, 75-109, 109-150, 150-212 and 212-355 μm. 
The heat-treatment procedure 
Select clean and impurity-free crystals and place them on a watch glass. Then put 

them into an oven for the heat-treatment in the air. Then, crystals have been heated 

successively at 100, 150, 200 and 250°C for 30 minutes at respective temperature.   
Computational details
Theoretical calculations based on density functional theory (DFT) have been 

performed using the Vienna ab initio simulation package (VASP) [7, 8] with the 

Perdew-Burke-Ernzerhof (PBE) [9] exchange correlation functional. The 

projected augmented wave (PAW) [10] potentials have been used to treat the 

ion-electron interactions. A Γ-centered 3×7×3 Monkhorst-Pack grid for the 

Clillouin zone sampling [11] and a cutoff energy of 500 eV for the plane wave 

expansion were found to get convergent lattice parameters and self-consistent 

energies. In calculation of the static χ(2) coefficients, the so-called length-gauge 
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formalism derived by Aversa and Sipe [12] and modified by Rashkeevet al [13] is 

adopted, which has been proved to be successful in calculating the second order 

susceptibility for semiconductors and insulators.[14-16] The 

dynamic SHG coefficient is calculated by the formula developed by Aversa, 

Sipe and Rashkeev et al. [12, 13] In the static case, the imaginary part of the static 

second-order optical susceptibility can be expressed as:

𝜒𝑎𝑏𝑐 =
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where r is the position operator, ħωnm = ħωn - ħωm is the energy difference for 

the bands m and n, fmn = fm - fn is the difference of the Fermi distribution 

functions, subscripts a, b, and c are Cartesian indices, and rb
mn;a is the so-called 

generalized derivative of the coordinate operator in k space.
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where Δa
nm = (pa

nn - pa
mm ) / m is the difference between the electronic 

velocities at the bands n and m.

The χ(2) coefficients here were calculated from PBE wavefunctions with a 

3×7×3 k-point grid and about 450 bands. A scissor operator has been added to 

correct the conduction band energy (corrected to the experimental gap), which 

has been proved to be reliable in predicting the second-order susceptibility for 

semiconductors and insulators. [17-19].

For an external radiation electric field E, the dipole moment 𝜇𝑖 of a group can 

be expressed as a Taylor series expansion [15 16] 

𝜇𝑖 = 𝜇0
𝑖 + 𝛼𝑖𝑗𝐸𝑗 +

1
2!

𝛽𝑖𝑗𝑘𝐸𝑗𝐸𝑘 +
1
3!

𝛾𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙
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where i, j, k, and l subscripts represent the different Cartesian coordinate 

components x, y, or z.  is the permanent dipole moment of a group, namely 𝜇0
𝑖

the dipole moment without an applied electric field. Physical quantities α, β, 

and γ correspond to the linear polarizability (α, which corresponds to the linear 

optical coefficient of a group), first-order hyperpolarizability tensor (β, which is 

the second-order nonlinear optical coefficient of a group), and second-order 

hyperpolarizability tensor (γ, which is the third-order nonlinear optical 

coefficient of a group).

We calculate the static linear polarizability (α) and static first-order 

hyperpolarizability (β) of [PbI2O4] and [OOC(CH2)2COO] groups at the 

PBE1PBE level [9] of theory with a reasonably large basis set def2TZVP [20, 21] 

by using the Gaussian 09 program.[22] The polarizability anisotropy (∆α) was 

obtained by the following formula to reflect the sources of birefringence.[23] 

∆𝛼 = [(𝛼𝑥𝑥 ‒ 𝛼𝑦𝑦)2 + (𝛼𝑥𝑥 ‒ 𝛼𝑧𝑧)2 +  (𝛼𝑦𝑦 ‒ 𝛼𝑧𝑧)2]/2

    

                                                                                                                                                                                                                                                                                                    

Table S1. Crystal data and structural refinements for (Rb2I)[PbI(OOC(CH2)2COO)].

Empirical formula (Rb2I)[PbI(OOC(CH2)2COO)]
Formula weight 748.00
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Temperature(K) 293(2)
Crystal color Colorless
Wavelength(Å) 0.71073
Crystal system Orthorthombic
Space group Ima2
a / Å 12.0622(11)
b / Å 6.8832(5)
c / Å 15.0775(15)
α / o 90
β / o 90
γ / o 90
Volume / Å3 1251.83(19)
Z 4
Absorption correction spherical harmonics
Crystal size 0.3 mm × 0.3 mm × 0.3 mm
ρcalcd / g·cm-3 3.969
µ / mm-1 26.118
F(000) 1288.0
Data / restraints / parameters 2573/1/66
2-Theta range for data collection 5.404 to 68.82
Limiting indices -19 ≤h ≤ 19,-10≤K≤10, -21≤1≤23
Reflections collected / unique 9899
Independent reflections 2573 [Rint=0.0399, Rsigma=0.0284]
Completeness 100%
Goodness-of-fit on F2 1.086
R1,wR2 (I > 2σ) [a] R1 = 0.0353, wR2 = 0.0824
R1,wR2 (all data) R1 = 0.0409, wR2 = 0.0846
Largest diff. peak and hole/ e·Å-3 1.39 / -1.52
Flack parameter -0.017(6)
[a]R1 = Σ||Fo| - |Fc||/Σ|Fo| and wR2 = [Σw(Fo2 – Fc2)2/ ΣwFo

4]1/2. 

Table S2. Crystal data and structural refinements for (K2I)[PbI(OOC(CH2)2COO)].

Empirical formula (K2I)[PbI(OOC(CH2)2COO)]
Formula weight 655.26
Temperature(K) 297.77(10)
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Crystal color Colorless
Wavelength(Å) 0.71073
Crystal system Orthorthombic
Space group Ima2
a / Å 11.7525(5)
b / Å 6.8495(3)
c / Å 15.1124(7)
α / o 90
β / o 90
γ / o 90
Volume / Å3 1216.53(9)
Z 4
Absorption correction spherical harmonics
Crystal size 0.3 mm × 0.3 mm × 0.3 mm
ρcalcd / g·cm-3 3.578
µ / mm-1 19.609
F(000) 1144
Data / restraints / parameters 1659/1/65
2-Theta range for data collection 5.392 to 60.832
Limiting indices -15 ≤ h ≤ 14, -8 ≤ k ≤9, -20 ≤ l ≤ 21
Reflections collected 6944
Independent reflections 1659 [Rint=0.0420, Rsigma=0.0379]
Completeness 100%
Goodness-of-fit on F2 1.068
R1,wR2 (I > 2σ) [a] R1 = 0.0264, wR2 = 0.0564
R1,wR2 (all data) R1 = 0.0329, wR2 = 0.0585
Largest diff. peak and hole/ e·Å-3 0.65 / -1.18
Flack parameter 0.004(5)
[a]R1 = Σ||Fo| - |Fc||/Σ|Fo| and wR2 = [Σw(Fo2 – Fc2)2/ ΣwFo

4]1/2. 

Table S3. Atomic coordinates, equivalent isotropic displacement parameters (Å2) and 
BVS for (Rb2I)[PbI(OOC(CH2)2COO)].
Atom Wyck. x y z Ueq

a BVSb

Pb1 4a 0.5 0.5 0.43766(2) 0.02573(13) 1.69
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I1 4a 0.25 0.52394(14) 0.34849(9) 0.0333(2) -0.72
I2 4b 0 1 0.33644(7) 0.03 (2)

Rb1 4b 0.75 0.4609(2) 0.66416(13) 0.0378(4) 0.78
Rb2 4b 0.25 1.01317(14) 0.47054(13) 0.0308(3) 1.10
O1 8c 0.5979(5) 0.6887(8) 0.5519(5) 0.0351(13) -2.07
O2 8c 0.4178(5) 0.7549(8) 0.5556(4) 0.0322(12) -1.87
C1 8c 0.5156(6) 0.7779(11) 0.5849(6) 0.0267(16)
C2 8c 0.5362(10) 0.9097(13) 0.6614(6) 0.039(2)

aUeq is defined as 1/3 of the trace of the orthogonalisedUij tensor.
bBond valence sums were calculated by the equation：s = exp [(R0 - Ri)/b], where R0 and b are the 
bond valence parameters and Ri is the observed bond lengths.

Table S4. Atomic coordinates, equivalent isotropic displacement parameters (Å2) and 
BVS for (K2I)[PbI(OOC(CH2)2COO)].

Atom Wyck. x Y z Ueq
a BVSb

Pb1 4a 0.5 0.5 0.56589(2) 0.0319(14) 1.71
I1 4a 1 0 0.66338(7) 0.0397(3)
I2 4b 0.75 0.53391(14) 0.65554(9) 0.048(3) -0.70
K1 4b 0.75 0.5383(4) 0.3501(3) 0.0499(8) 0.72
K2 4b 0.75 0.0125(3) 0.5295(3) 0.0441(8) 0.91
O1 8c 0.5997(5) 0.3076(8) 0.4506(4) 0.0428(14) -2.00
O2 8c 0.4148(5) 0.2465(8) 0.4456(4) 0.0394(14) -1.90
C1 8c 0.5139(6) 0.2221(12) 0.4161(6) 0.032(19)
C2 8c 0.5363(10) 0.915(13) 0.3404(6) 0.044(2)

aUeq is defined as 1/3 of the trace of the orthogonalisedUij tensor.
bBond valence sums were calculated by the equation：s = exp [(R0 - Ri)/b], where R0 and b are the 
bond valence parameters and Ri is the observed bond lengths.

Table S5. Anisotropic displacement parameters (Å2) for 
(Rb2I)[PbI(OOC(CH2)2COO)].
Atom U11 U22 U33 U23 U13 U12

Pb1 0.02058(18) 0.0327(2) 0.0239(2) 0 0 -0.0025(12)

I1 0.0195(4) 0.0455(10) 0.0351(5) -0.0005 (4) 0 0

I2 0.0309(9) 0.0313(4) 0.0279(5) 0 0 0.0005(2)

Rb1 0.0294(6) 0.0463(8) 0.0376(8) 0.0068(6) 0 0

Rb2 0.0291(5) 0.0334(5) 0.035(7) -0.0039(4) 0 0

O1 0.033(3) 0.031(3) 0.041(4) 0(3) -0.004(3) 0.002(2)

O2 0.034(3) 0.031(3) 0.032(3) -0.005(2) -0.002(3) 0(2)

C1 0.034(4) 0.021(3) 0.025(4) 0.006(3) -0.004(3) -0.003(2)

C2 0.075(6) 0.025(4) 0.016(4) 0.001(3) -0.017(4) -0.004(4)

Table S6. Anisotropic displacement parameters (Å2) for (K2I)[PbI(OOC(CH2)2COO)].
Atom U11 U22 U33 U23 U13 U12

Pb1 0.024(2) 0.0396(2) 0.0321(3) 0 0 0.00247(14)
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I1 0.049(7) 0.0321(5) 0.0379(6) 0 0 -0.0004(2)

I2 0.0216(4) 0.0758(6) 0.0465(6) 0.0107(7) 0 0

K1 0.0362(15) 0.0471(17) 0.066(3) 0.0074(15) 0 0

K2 0.0327(16) 0.0478(16) 0.052(2) 0.0068(11) 0 0

O1 0.038(3) 0.041(3) 0.049(4) 0.003(3) 0.004(3) -0.002(2)

O2 0.033(3) 0.044(3) 0.041(4) -0.005(3) 0.003(3) 0.003(2)

C1 0.042(5) 0.024(3) 0.030(4) 0.006(3) 0.004(4) 0.004(3)

C2 0.076(6) 0.031(4) 0.026(5) 0.002(3) 0.017(4) 0.004(5)

Table S7. Selected bond lengths (Å) and angles (deg.) for 
(Rb2I)[PbI(OOC(CH2)2COO)].
Pb(1)-O(1) 2.459(6) Pb(1)-O(2)#1 2.687(6)
Pb(1)-O(1)#1 2.459(6) Pb(1)-I(1) 3.3058(6)
Pb(1)-O(2) 2.687(6) Pb(1)-I(1)#1 3.3058(6)

O(1)-Pb(1)-O(1)#1 91.1(3) O(1)#1-Pb(1)-I(1)#1 134.15(14)
O(1)-Pb(1)-O(2) 50.9(2) O(2)-Pb(1)-O(2)#1 97.2(3)
O(1)-Pb(1)-O(2)#1 72.8(2) O(2)-Pb(1)-I(1) 84.26(13)
O(1)-Pb(1)-I(1) 134.15(14) O(2)-Pb(1)-I(1)#1 129.65(13)
O(1)-Pb(1)-I(1)#1 82.72(15) O(2)#1-Pb(1)-I(1) 129.65(13)
O(1)#1-Pb(1)-O(2) 72.8(2) O(2)#1-Pb(1)-I(1)#1 84.26(13)
O(1)#1-Pb(1)-O(2)#1 50.9(2) I(1)-Pb(1)-I(1)#1 132.01(4)
O(1)#1-Pb(1)-I(1) 82.72(15)
Symmetry transformations used to generate equivalent atoms: #1 1 - x, 1 - y, z. 

Table S8. Selected bond lengths (Å) and angles (deg.) for 
(K2I)[PbI(OOC(CH2)2COO)].
Pb(1)-O(1) 2.479(6) Pb(1)-O(2)#1 2.706(6)
Pb(1)-O(1)#1 2.479(6) Pb(1)-I(2) 3.2437(6)
Pb(1)-O(2) 2.707(6) Pb(1)-I(2)#1 3.2438(6)

O(1)-Pb(1)-O(1)#1 90.7(3) O(1)#1-Pb(1)-I(2)#1 84.47(14)
O(1)-Pb(1)-O(2) 50.3(2) O(2)-Pb(1)-O(2)#1 95.6(3)
O(1)-Pb(1)-O(2)#1 72.19(19) O(2)-Pb(1)-I(2) 131.43(12)
O(1)-Pb(1)-I(2) 84.47(14) O(2)-Pb(1)-I(2)#1 84.23(12)
O(1)-Pb(1)-I(2)#1 84.47(14) O(2)#1-Pb(1)-I(2) 84.23(12)
O(1)#1-Pb(1)-O(2) 72.20(19) O(2)#1-Pb(1)-I(2)#1 131.43(12)
O(1)#1-Pb(1)-O(2)#1 50.3(2) I(2)-Pb(1)-I(2)#1 130.63(5)
O(1)#1-Pb(1)-I(2) 133.12(13)
Symmetry transformations used to generate equivalent atoms: #1 1 - x, 1 - y, z.

Table S9. The local dipole moment (μ) in Debye, as well as polarizability anisotropy 
(∆α) for four [PbI2O4] polyhedrons and four [OOC(CH2)2COO] groups in per unit cell 
of [Rb2I][PbI(OOC(CH2)2COO)]. The charge of the structural group was estimated by 
the Bader charge of each atom.
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Dipole moment μx μy μz μ ∆α
[PbI2O4] 0.00 0.00 -18.14 18.14 37.89
[PbI2O4] 0.00 0.00 -18.14 18.14 37.89
[PbI2O4] 0.00 0.00 -18.14 18.14 37.89
[PbI2O4] 0.00 0.00 -18.14 18.14 37.89

[OOC(CH2)2COO] 0.00 0.00 4.81 4.81 29.65
[OOC(CH2)2COO] 0.00 0.00 4.81 4.81 29.65
[OOC(CH2)2COO] 0.00 0.00 4.81 4.81 29.65
[OOC(CH2)2COO] 0.00 0.00 4.81 4.81 29.65

Total 0.00 0.00 -53.32

Table S10. The first-order hyperpolarizability (β) in 10-30 esu for four [PbI2O4] 
polyhedrons and four [OOC(CH2)2COO] groups in per unit cell of 
(Rb2I)[PbI(OOC(CH2)2COO)]. 
First-order hyperpolarizability x y z

[PbI2O4] 0.00 0.00 420.67
[PbI2O4] 0.00 0.00 420.67
[PbI2O4] 0.00 0.00 420.67
[PbI2O4] 0.00 0.00 420.67

[OOC(CH2)2COO] 0.00 0.00 1.83
[OOC(CH2)2COO]] 0.00 0.00 1.83
[OOC(CH2)2COO] 0.00 0.00 1.83
[OOC(CH2)2COO] 0.00 0.00 1.83

Table S11. The local dipole moment (μ) in Debye, as well as polarizability anisotropy 
(∆α) for four [PbI2O4] polyhedrons and four [OOC(CH2)2COO] groups in per unit cell 
of (K2I)[PbI(OOC(CH2)2COO)]. The charge of the structural group was estimated by 
the Bader charge of each atom.
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Dipole moment μx μy μz μ ∆α
[PbI2O4] 0.00 0.00 18.8 18.8 17.2
[PbI2O4] 0.00 0.00 18.8 18.8 17.2
[PbI2O4] 0.00 0.00 18.8 18.8 17.2
[PbI2O4] 0.00 0.00 18.8 18.8 17.2

[OOC(CH2)2COO] 0.00 0.00 -4.84 4.84 29.32
[OOC(CH2)2COO] 0.00 0.00 -4.84 4.84 29.32
[OOC(CH2)2COO] 0.00 0.00 -4.84 4.84 29.32
[OOC(CH2)2COO] 0.00 0.00 -4.84 4.84 29.32

Total 0.00 0.00 55.84

Table S12. The first-order hyperpolarizability (β) in 10-30 esu for four [PbI2O4] 
polyhedrons and four [OOC(CH2)2COO] groups in per unit cell of 
(K2I)[PbI(OOC(CH2)2COO)].
First-order hyperpolarizability x y z

[PbI2O4] 0.03 -0.05 -174.61
[PbI2O4] -0.05 0.08 -174.59
[PbI2O4] 0.01 0.01 -174.64
[PbI2O4] 0.03 -0.04 -174.62

[OOC(CH2)2COO] 0.00 0.00 -2.39
[OOC(CH2)2COO] 0.00 0.00 -2.39
[OOC(CH2)2COO] 0.00 0.00 -2.39
[OOC(CH2)2COO] 0.00 0.00 -2.39

1 mm
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Figure S1. A photograph of the as-grown crystal without polishing for 

(Rb2I)[PbI(OOCCH2CH2COO)]. 

Figure S2. A photograph of the as-grown crystal without polishing for 

(K2I)[PbI(OOCCH2CH2COO)].

1 mm
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Figure S3. Experimental and simulated PXRD patterns of 

(Rb2I)[PbI(OOC(CH2)2COO)].

Figure S4. Experimental and simulated PXRD patterns of 

(K2I)[PbI(OOC(CH2)2COO)].
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Figure S5. The IR spectrum of (Rb2I)[PbI(OOC(CH2)2COO)]. 

Figure S6. The IR spectrum of (K2I)[PbI(OOC(CH2)2COO)].
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Figure S7. The EDS spectrum of (Rb2I)[PbI(OOC(CH2)2COO)].

Figure S8. The EDS spectrum of (K2I)[PbI(OOC(CH2)2COO)].

(b)(a)

(c) (d)
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Figure S9. (a) The coordination environment of the Pb(II) atom in 

(Rb2I)[PbI(OOC(CH2)2COO)]. (b) The coordination mode of the succinate group. The 

environments of (c) the Rb1+ and (d) the Rb2+ cations. (e) The uniform alignment of 

the wave-like layers. (f) The structure of (Rb2I)[PbI(OOC(CH2)2COO)]. Symmetry 

codes: a 1 - x, 1 - y, z; b 1- x, - 0.5 + y, 0.5 + z; c 1.5 - x, y, z; d 0.5 + x, 1 - y, z; e 0.5 

+ x, - 0.5 + y, 0.5 + z; f - 0.5 + x, 2 - y, z; g 1 - x, 2 - y, z; h 0.5 - x , y, z; i x, 1 + y, z.

(e) (f)
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Figure S10. Photographs were taken of (K₂I)[PbI(OOC(CH₂)₂COO)] crystals after 

heat-treatment at 100, 150, 200 and 250 °C for 30 minutes in air, respectively.
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Figure S11. The UV-Vis-NIR spectrum of (Rb2I)[PbI(OOC(CH2)2COO)]. Inset: the 

bandgap of (Rb2I)[PbI(OOC(CH2)2COO)].

Figure. S12. The UV-Vis–NIR spectrum of (K2I)[PbI(OOC(CH2)2COO)]. Inset: the 

bandgap of (K2I)[PbI(OOC(CH2)2COO)].
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Figure S13. The calculated band structure of (Rb2I)[PbI(OOC(CH2)2COO)].

Figure S14. The calculated band structure of (K2I)[PbI(OOC(CH2)2COO)].
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Figure S15. Optical refractive indices along principal axes versus photon energy for 

(Rb2I)[PbI(OOC(CH2)2COO)].

Figure S16. The calculated birefringence versus photon energy for 

(Rb2I)[PbI(OOC(CH2)2COO)].
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Figure S17. Optical refractive indices along principal axes versus photon energy for 

(K2I)[PbI(OOC(CH2)2COO)].

Figure S18. The calculated birefringence versus photon energy for 

(K2I)[PbI(OOC(CH2)2COO)].
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