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Experimental 

Synthesis 

All chemicals were purchased and used without any further purification: The 

chemical reagents employed in this study, including 4-morpholinopyridine (C9H12N2O, 

98%), manganese chloride tetrahydrate (MnCl2·4H2O, 98%), hydrochloric acid (HCl, 

36-38%) were purchased as commercially available reagent and used without further 

purification. Crystals of 1 were prepared by slowly evaporating the methanol solution 

of 4-morpholinopyridine, hydrochloric acid and MnCl2·4H2O with the stoichiometric 

ratio of 2:2:1. Colorless crystals were obtained after 5 days. 

Thermal analyses 

Thermogravimetric analysis (TGA) was performed on TG 209 F3 thermal 

analyzer from room temperature to 650 ℃ at a heating rate of 10 K min−1 under argon 

atmosphere. DSC analyses were performed from 273 K to 473 K on TA DSC250 

thermal analyzer under nitrogen atmosphere with rate of 10 K min−1.  

PL and Common characterization 

Photoluminescence (PL) and photoluminescence excitation spectra (PLE) 

measurements were performed with an Edinburgh FS5 spectrofluorimeter. The time-

resolved photoluminescence (TRPL) spectra and absolute PL quantum yields were 

measured by the Edinburgh FLS1000 Steady-State/transient Fluorescence 

Spectrometer equipped with integrating spheres. Ultraviolet-visible spectra were 

recorded with a Persee TU-1901 double beam ultraviolet-visible spectrophotometer. 

The infrared spectra were measured by the Thermo Fisher Nicolet Summit FTIR 

spectrometer. The Raman spectra were tested by the Thermofisher DXR2 Laser Micro-

Raman Spectrometer. The nonlinear optical signal was measured by Mini nots 

1064+2100 second-order nonlinear optical test system.  
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X-ray diffraction crystallography 

SCXRD measurements were performed on a Rigaku XtaLAB Synergy 

DW_Hypix6000 single crystal diffraction (Mo Kα, λ = 0.71073 Å). Data processing, 

including cell refinement and data reduction, was carried out with the CrystalClear 

software (Rigaku). The crystal structures were solved by direct method. The structures 

were solved and refined with the SHELX program package within the Olex2 interface.S1 

Refinement was carried out against F² using a full-matrix least-squares technique. All 

non-hydrogen atoms were refined with anisotropic thermal parameters, whereas the 

hydrogen atoms of organicmolecules were positioned isotropically. The crystal data 

and structure refinement results at different temperatures for 1 are listed in Table S1. 

Powder X-ray diffraction (PXRD) data were collected at room temperature in air using 

Rigaku diffractometer with graphite-monochromated Cu Kα radiation (λ = 1.54184 Å) 

in the 2θ range of 5◦–50◦.  

Deep Potential Development 

Deep Potential Molecular Dynamics (DPMD) leverages machine learning to 

construct a high-dimensional potential energy surface (PES) that maps atomic 

structures (lattice parameters, atom types, and coordinates) to their corresponding 

energies, forces, and virials. This approach enables efficient and accurate MD 

simulations by replacing computationally expensive quantum mechanical calculations 

with a deep-learned potential. In this work, the deep-learned potential was developed 

using the DP-GEN framework,S2 which combines active learning, first-principles 

calculations, and neural network training to iteratively refine the potential. The 

workflow consists of three main stages. (i) Initial Training. An initial dataset was 

generated from 5% down-sampling short AIMD trajectories in NPT-F ensemble at 600 

K, 1 atm, 5 ps with time-step of 1 fs, using CP2K 2023.1 at PBE-D3.S3-S5 /DZVP-

MOLOPT-SR-GTH with the aids of dpdataS6 and Multiwfn.S7,S8 The sampling were 

initiated from the experimental structures of the 1α, 1β, and 1β (200)@H2O phases with 

disorder parts properly removed. The DFT settings included a plane-wave cutoff energy 
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of 800 Ry/60 Ry referring to the convergence benchmarks in our previous workS9, with 

gamma-point sampling and a self-consistent field (SCF) convergence threshold of 

1×10–5. The initial dataset was used to train deep neural networks with the DeePMD-

kit 2.2.9 package.S10,S11 The structural information were represented as per-atom local 

environment with cutoff radius of 6.0 Å, smooth radius of 0.5 Å, and maximum 

neighbour of 160. The architecture employed the DPA1 without attention layers,S12 

featuring an embedding network sized (12, 24, 48) and sub-matrix sized 12, and a fitting 

network of sizes (160, 160, 160). The training steps were 600000 with learning rate 

decaying from 10–3 to 3×10–8 every 3000 steps. (ii) Exploration and Model Deviation. 

Four models were trained in parallel with different random initialization seeds. The 

exploration stage was conducted with a short MD using Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS),S13,S14 where new atomic configurations were 

sampled based on model deviations monitored during the MD. The temperature and 

pressure covered the range of 300 to 600 K and 0 to 1 bar. (iii) Labeling. Configurations 

with relative force deviation ranging from 0.5 to 0.75 were labeled using DFT and 

added to the training dataset, iteratively improving the potential’s accuracy. The above 

procedure finally sampled 8498 frames within 10 iterations. Finally, the accuracy 

achieved more than 99%. Model compressionS15 was applied to accelerate MD 

simulations without sacrificing accuracy. 

Molecular Dynamics Simulation 

DPMD simulations were performed using LAMMPS to investigate the 

temperature-dependent behavior of the system. A single continuous simulation was 

carried out with stepwise stage-like targeting to the temperatures of 300 K. The initial 

structure was constructed by cleaving the (200) surface of 1β, followed by expanding 

it into a 2×3×1 supercell and adding an amorphous water layer containing 60 molecules 

above the surface. The simulations were carried out in the NVT ensemble with a 

timestep of 1 fs. The temperature and pressure were controlled using a Nosé-Hoover 

thermostat, with damping times of 0.05 ps. The system was firstly energy-minimized, 

followed by continuous production runs for 2 ns at each temperature, during which the 
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trajectory data were saved every 1000 steps. 

Post processing was carried out with the aids of MDAnalysisS16 to characterize the 

torsion of [MnCl4]2– with or without water existence. For each recorded frame at time 

ti, the distance between each Mn atom and surrounding Cl atoms was computed as   

푑����� = |퐫�� − 퐫��| �1� 

where rMn and rCl denote the instantaneous position vectors of the Mn and Cl 

atoms, respectively. Periodic boundary conditions were applied using the minimum 

image convention to ensure the shortest interatomic distance within the simulation cell. 

Only Cl atoms satisfying dMn–Cl < 3.0 Å were considered as bonded neighbors. For each 

Mn atom with two or more neighboring Cl atoms, the metal–halide–halide bond angle 

θCl–Mn–Cl was calculated according to   

푐표푠(훩��������) =
퐯� − 퐯�
|퐯�||퐯�|

�2� 

where v1 = rCl1– rMn and v2 = rCl2 − rMn are the bond vectors from the Mn center 

to two neighboring Cl atoms. The average Mn–Cl distance ⟨dMn–Cl⟩ and average Cl–

Mn–Cl angle ⟨θCl–Mn–Cl⟩ were evaluated at each sampled frame, and their time evolution 

was recorded throughout the trajectory. 
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Figure S1. TGA curve for 1. 

 

Figure S2. The (a) second and (c) third cycle of DSC measurements for 1, which 

reveals no thermal anomaly. 

 

Figure S3. Temperature-dependent PL spectra of 1 during (a) heating and (b) cooling 

progress. 
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Figure. S4. PL and PLE spectra for (a) 1α, (b) 1TS and (c) 1β. 

 

 

Figure. S5. The PLQYs of (a) 1α and (b) 1β. 

Figure S6. The simulated and experimental PXRD patterns of (a) 1α and (b) 1β. (c) 

The PXRD pattern of the sample restored from 1β to 1α. 
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Figure S7. The first cycle of DSC measurement of the sample restored from 1β to 1α. 

 

Figure S8. Standard saturated salt solutions in vials to control the humidity. 
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Figure S9. SHG signals of (a) 1α and (b) 1β with KDP.  

 
Figure S10. FTIR spectra during the 1β to 1α process. 

 

Figure S11. The (a) coordination structure and (b) packing view of the single crystal 

returned from 1β to 1α. 



 
 S10

 

Figure S12. Formation of Mn–O bonds between C9H13N2O+ cations and Mn2+ during 

the molecular dynamics process. 
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Table S1. Single crystal X-ray diffraction data of 1α, 1β and 1TS crystals. 

Compound (C9H13N2O)2MnCl4 
Formula weight 527.17 527.17 527.17 
Temperature/K 297.89(10) 377.96(17) 422.99(19) 
Phase 1α 1TS 1β 
Crystal system triclinic triclinic tetragonal 
Space group P1� P1� I4�2d 
a/Å 7.3089(4) 7.3414(5) 17.1951(12) 
b/Å 8.6750(5) 8.6898(6) 17.1951(12) 
c/Å 8.9616(7) 8.9857(6) 8.3920(10) 
α/° 89.030(5) 89.023(5) 90 
β/° 70.310(6) 70.399(6) 90 
γ/° 87.782(4) 87.801(5) 90 
Volume/Å3 534.58(6) 539.62(6) 2481.3(5) 
Z 1 1 4 
ρ calc g/cm3 1.638 1.622 1.411 
μ/mm–1 1.141 1.130 0.983 
Goodness–of–fit on F 2 1.112 1.162 1.000 
Final R indexes [I>=2σ 
(I)] 

R1 = 0.0502, 
wR2 = 0.1337 

R1 = 0.1094, wR2 = 
0.3387 

R1 = 0.0610, wR2 = 
0.1893 

Final R indexes [all data] R1 = 0.0576, 
wR2 = 0.1374 

R1 = 0.1194, wR2 = 
0.3426 

R1 = 0.1306, wR2 = 
0.2445 

CCDC number. 2499777 2499778 2499779 
aR1=||Fo| – |Fc||/|Fo|. bwR2 =[w(Fo

2 – Fc
2)2/w(Fo

2)2]1/2 

Table S2. Single crystal X-ray diffraction data of the crystal returned from 1β to 1α. 

Compound (C9H13N2O)2MnCl4 
Formula weight 534.61 
Temperature/K 298.1(8) 
Crystal system triclinic 
Space group P1� 
a/Å 7.3127(9) 
b/Å 8.6726(10) 
c/Å 8.9574(9) 
α/° 89.030(9) 
β/° 70.344(10) 
γ/° 87.892(9) 
Volume/Å3 534.61(11) 
Z 1 
ρ calc g/cm3 1.631 
μ/mm–1 1.141 
Goodness–of–fit on F 2 1.208 
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Final R indexes [I>=2σ (I)] R1 = 0.0592, wR2 = 0.1673 
Final R indexes [all data] R1 = 0.0665, wR2 = 0.1695 

Table S3. Selected bond lengths (Å) and bond angles (°) for 1α.  

Atom Length/Å Atom Angle/˚ 
Mn1–Cl1 2.520(2) Cl1–Mn1–Cl11 180.0 
Mn1–Cl11 2.520(2) Cl11–Mn1–Cl21 89.2(1) 
Mn1–Cl21 2.531(1) Cl11–Mn1–Cl2 90.7(0) 
Mn1–Cl2 2.531(1) Cl1–Mn1–Cl21 90.7(0) 
Mn1–O11 2.271(2) Cl1–Mn1–Cl2 89.2(0) 
Mn1–O1 2.271(2) Cl2–Mn1–Cl21 180.0 
O1–C7 1.426(4) O11–Mn1–Cl1 92.5(1) 
O1–C8 1.428(4) O1–Mn1–Cl1 87.4(1) 
N2–C3 1.356(4) O11–Mn1–Cl11 87.4(1) 
N2–C9 1.471(4) O1–Mn1–Cl11 92.5(1) 
N2–C6 1.462(4) O1–Mn1–Cl2 86.9(1) 
N1–C5 1.344(5) O11–Mn1–Cl2 93.0(1) 
N1–C1 1.330(5) O11–Mn1–Cl21 86.9(1) 
C3–C4 1.412(4) O1–Mn1–Cl21 93.0(1) 
C3–C2 1.421(4) O1–Mn1–O11 180.0 
C4–C5 1.359(4) C7–O1–Mn1 124.3(2) 
C2–C1 1.364(5) C7–O1–C8 109.5(2) 
C7–C6 1.508(5) C8–O1–Mn1 124.6(2) 
C9–C8 1.502(4) C3–N2–C9 119.8(3) 

  C3–N2–C6 120.2(3) 
  C6–N2–C9 116.4(2) 
  C1–N1–C5 120.8(3) 
  N2–C3–C4 121.8(3) 
  N2–C3–C2 121.7(3) 
  C4–C3–C2 116.5(3) 
  C5–C4–C3 120.3(3) 
  C1–C2–C3 119.6(3) 
  O1–C7–C6 110.8(3) 
  N1–C5–C4 121.1(3) 
  N2–C9–C8 112.2(3) 
  N1–C1–C2 121.6(3) 
  O1–C8–C9 111.2(3) 
  N2–C6–C7 112.4(3) 

Table S4. Selected bond lengths (Å) and bond angles (°) for 1TS.  

Atom Length/Å Atom Angle/˚ 

Mn1–Cl11  2.523(2)  Cl1–Mn1 –Cl11  180.0  
Mn1–Cl1  2.523(2)  Cl1–Mn1 –Cl21  90.8(1)  
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Mn1–Cl21  2.532(2)  Cl1–Mn1 –Cl2  89.1(1)  
Mn1–Cl2  2.532(2)  Cl11–Mn1 –Cl21  89.1(1)  
Mn1–O1  2.288(7)  Cl11–Mn1 –Cl2  90.8(1)  
Mn1–O11  2.288(7)  Cl2–Mn1 –Cl21  180.0(1)  
O1–C1  1.435(12)  O11–Mn1 –Cl1  87.6(2)  
O1–C4  1.416(12)  O11 –Mn1 –Cl11  92.4(2)  
N1–C5  1.352(11)  O1 –Mn1 –Cl11  87.6(2)  
N1–C3  1.464(12)  O1 –Mn1 –Cl1  92.4(2)  
N1–C2  1.462(12)  O1 –Mn1 –Cl21  87.4(2)  
N2–C7  1.350(14)  O11 –Mn1 –Cl21  92.6(2)  
N2–C8  1.350(14)  O1 –Mn1 –Cl2  92.6(2)  
C9–C5  1.404(13)  O11 –Mn1 –Cl2  87.4(2)  
C9–C8  1.347(14)  O11 –Mn1 –O1  180.0  
C5–C6  1.412(13)  C1 –O1 –Mn1  124.2(6)  
C7–C6  1.360(15)  C4 –O1 –Mn1  124.6(7)  
C1–C2  1.503(14)  C4 –O1 –C1  110.1(8)  
C3–C4  1.496(14)  C5 –N1 –C3  119.7(8)  
  C5 –N1 –C2  120.1(8)  
  C2 –N1 –C3  116.7(8)  
  C8 –N2 –C7  120.7(9)  
  C8 –C9 –C5  122.3(10)  
  N1 –C5 –C9  122.9(9)  
  N1 –C5 –C6  121.8(9)  
  C9 –C5 –C6  115.3(8)  
  N2 –C7 –C6  120.5(10)  
  O1 –C1 –C2  110.3(8)  
  C7 –C6 –C5  120.9(10)  
  C9 –C8 –N2  120.0(10)  
  N1–C3 –C4  113.0(9)  
  O1 –C4 –C3  111.1(9)  
  N1 –C2 –C1  112.6(10)  

Table S5. Selected bond lengths (Å) and bond angles (°) for 1β.  

Atom Length/Å Atom Angle/˚ 
Mn1–Cl1 2.374(2) Cl1–Mn1–Cl11 105.8(1) 
Mn1–Cl11 2.374(2) Cl12–Mn1–Cl13 105.8(1) 
Mn1–Cl12 2.374(2) Cl11–Mn1–Cl12 117.1(1) 
Mn1–Cl13 2.374(2) Cl1–Mn1–Cl12 105.8(1) 
N2–C3 1.294(17) Cl11–Mn1–Cl13 105.8(1) 
N2–C44 1.411(12) Cl1–Mn1–Cl13 117.1(1) 
N2–C4 1.411(12) C3–N2–C44 124.5(8) 
N1–C14 1.283(16) C3–N2–C4 124.5(8) 
N1–C1 1.283(16) C44–N2–C4 111.1(16) 
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C3–C2 1.364(11) C1–N1–C14 120.3(18) 
C3–C24 1.364(11) N2–C3–C24 122.9(6) 
C2–C1 1.299(17) N2–C3–C2 122.9(6) 
O1–C5 1.205(18) C2–C3–C24 114.3(13) 
O1–C54 1.204(18) C1–C2–C3 121.4(12) 
  C54–O1–C5 122(2) 
  N1–C1–C2 121.3(15) 
  O1–C5–C4 122.8(16) 
  N2–C4–C5 120.0(13) 
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