Supporting Information

High-Performance Green Emission from Mn²⁺-Doped 0D OIHMH Crystals for

White LEDs and Anti-Counterfeiting Applications

Qianrong Jin^a, Yuexiao Pan^{a,*}, Yali Tang^a, Yingnuo Chen^a, Suqin Chen^a, Jun Zou^{b,c*}

^{*a*} Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry

and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

E-mail: yxpan@wzu.edu.com

^b Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou

325024, P.R. China.

^c School of Science, Shanghai Institute of Technology, Shanghai, 201418, P.R. China.

E-mail: zoujun@sit.edu.cn

Fig. S1 High-resolution XPS full spectra of Zn 2p, Mn 2p, Cl 2p for C₆H₁₄N₂ZnCl4:Mn²⁺.

Fig. S2 The EDS pattern of C₆H₁₄N₂ZnCl4:Mn²⁺.

Fig. S3 The XRD patterns of $C_6H_{14}N_2Zn_{1-x}Mn_xCl_4$ with various Mn^{2+} ions concentrations.

Fig. S4 PL spectra of C₆H₁₄N₂Zn_{1-x}Mn_xCl₄ with various x values under 455 nm

excitation.

Fig. S5 Thermal gravimetric analysis (TGA) curves measured from room temperature to 900 °C at the heating rate of 10 °C min⁻¹ on a synchronous thermal analyzer (TGA/DSC, Mettler, Switzerland).

Fig. S6 XRD of C₆H₁₄N₂Zn_{0.6}Mn_{0.4}Cl₄ after being exposed to air for different months.

Fig. S7 EL spectra of $C_6H_{14}N_2Zn_{0.6}Mn_{0.4}Cl_4$ -based LED under different applied current.

Fig. S8 CCT and CRI of C₆H₁₄N₂Zn_{0.6}Mn_{0.4}Cl₄-based LED under different applied current.

Table S1 Comparison of efficiency and thermal decomposition temperature with

Materials	Emission peak (nm)	PLQY (%)	Thermal decomposition (°C)	Ref	
(C8H20N)2MnCl4	520	87%	300	[1]	
$\{TETA[Pb_2Cl_6]_n:Mn^{2+}$	551	25%	450	[2]	

reported relevant materials.

$Cs_2ZnCl_4:30\%Mn^{2+},10\%Sb^{3+}$	530	64.43%	600	[3]
$M_2CdCl_4{:}Mn^{2+}$	605	87%	297	[4]
$[(CH_3)_4N]_2MnX_4$	523	51%	300	[5]
$C_6H_{14}N_2ZnCl_4:Mn^{2+}$	535	70%	340	This work

References:

- [1] T. Chang, Y. R. Dai, Q. L.Wei, X. Xu, S. Cao, B. S. Zou, Q. L. Zhang and R. S. Zeng, Temperature-Dependent Reversible Optical Properties of Mn-Based Organic-Inorganic Hybrid (C₈H₂₀N)₂MnCl₄ Metal Halides, ACS Appl. Mater. Interfaces, 2023, 15, 5487-5494.
- [2] F. Ahmad, M. S. Lassoued, P. C. Wei, Y. G. Gao and Z. Z. Yan, Effect of Mn²⁺ Doping on the Photoluminescence of Hybrid OneDimensional Lead Halide Post-Perovskites, ACS Appl. Mater. Interfaces, 2024, 16, 31067-31075.
- [3] T. C. Zheng, H. X. Yang, Y. L. Liu, Y. Li, Q. Huang, L. B. Zhang and X. Y. Li, Mn²⁺ and Sb³⁺ Codoped Cs₂ZnCl₄ Metal Halide with ExcitationWavelength-Dependent Emission for Fluorescence Anticounterfeiting, *Inorg. Chem.*, 2023, **62**, 17352-17361.
- [4] Y. C. Xu, W. X. Dong, P. Su, T. C. Lang, H. C. He, H. M. Jiang, B. Jia, X. Y. Liu and T. Han, Mn-Doped M₂CdCl₄ (M = CH₃NH³⁺, C₂H₈N⁺, and C₃H₁₀N⁺) Layered Hybrid Perovskite and Its Flexible Film Based on Simple Mechanochemical Synthesis, *Inorg. Chem.*, 2024, **63**, 2562-2568.
- [5] H. D. Tang, Y. Q. Xu, X. B. Hu, H. J. Chen, S. H. Wang, W. H. Jiang, Q. Hu, L. J. Wang and W. Jiang, Scalable Synthesis of Lead-Free Tetramethylammonium Manganese Halides for Highly Efficient Backlight Displays, *Laser Photonics Rev.*, 2023, 18, 2300672.