Supporting Information (SI)

Cs₄PbX₆-UCLNPs/PS film for multimodal anti-counterfeiting and information encryption storage upon triple strategies of water treatment, light excitation and heating/cooling

Xintong Huo¹, Yunrui Xie^{2*}, Yaolin Hu², Yuqi Sheng¹, Zheng Wang², Haina Qi¹, Hong Shao², Qianli Ma², Wensheng Yu², Xiangting Dong^{1,2*}

1. College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022

2. Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022
* E-mail: yrxie2012@163.com, xtdong@cust.edu.cn; Fax: 86-0431-85383815; Tel: 86-0431-85582574

1. Experimental

1.1 Reagents and materials

 Cs_2CO_3 (99.0 %), PbCl₂ (99.0 %), PbBr₂ (99.0 %), PbI₂ (99.0 %), 1-octadecene (ODE, 90%), oleic acid (OA, 90%), Y(NO₃)₃·6H₂O (99.5 %), Er(NO₃)₃·6H₂O (99.9 %), Yb(NO₃)₃·5H₂O (99.9 %), oleylamine (OLA, 80-90%), polystyrene (PS), CH₂Cl₂ (DCM, 99%), ethylene diamine tetraacetic acid (EDTA, 99.5 %), NaF (98 %), polyvinyl pyrrolidone (PVP, K30) were used, and all of the chemicals were of analytic grade and purchased from Aladdin reagent Co. LTD, Shanghai, China.

1.2 Characterizations

An X-ray diffractometer (XRD, made by Bruker Corporation) was used to analyze the phase components of the prepared samples. The internal structure and morphology of the products were observed by a scanning electron microscope (SEM, JSM-7610F), a light microscope (LM, CVM500E), a fluorescence microscope (FM, Nikon Ti-s), an energy-dispersive X-ray (EDX) spectroscopy and a transmission electron microscope (TEM, Tecnai G2 F30). The elemental composition, chemical state and electronic state on the surface of the samples were analyzed by an X-ray photoelectron spectroscopy (XPS, Nexsa). The photoluminescence (PL) properties of the films were studied by a Hitachi fluorescent spectrophotometer (F-7000). The UCL emission spectra of the specimens were acquired by a laser device (FC-980-500-SM) under 980-nm laser excitation. The UV-Vis absorption spectrums of the samples were measured by an ultraviolet-visible-near-infrared spectrophotometer (Shimadzu Co. UV-3600). All tests were carried out at RT.

Fig. S1. Schematic Diagram of single-nozzle electrospinning process and physical photo of Cs₄PbX₆-UCLNPs/PS film obtained

2. Results and Discussion

Fig. S2. XRD patterns of Cs₄PbX₆ QDs with different halide compositions before (a) and after (b) water treatment

Fig. S3. XRD patterns of UCLNPs

Fig. S4. SEM images of UCLNPs (a) and CsPbBr₃-UCLNPs/PS film (b); TEM images of Cs₄PbBr₆-UCLNPs/PS fiber (c) and CsPbBr₃-UCLNPs/PS fiber (d)

Fig. S5. Size distributions of the Cs₄PbBr₆ QDs before (a) and after (b) water treatment; Length (c) and diameter (d) distributions of the UCLNPs; Diameter distributions of fibers in Cs₄PbBr₆-UCLNPs/PS film (e) and CsPbBr₃-UCLNPs/PS film (f)

Fig. S6. High-resolution TEM image and corresponding EDX elemental mappings of Cs₄PbX₆-UCLNPs/PS fiber

Fig. S7. High-resolution TEM image and corresponding EDX elemental mappings of CsPbX₃-UCLNPs/PS fiber

Fig. S8. Comparison of high-resolution XPS peaks for (a) Br 3d, (b) Na 1s, (c) Y 3d, (d) F 1s, (e)Yb 4d and (f) Er 4d in Cs₄PbBr₆-UCLNPs/PS film before and after water treatment

Fig. S9. Digital photos of UCLNPs under daylight and 980-nm laser illumination

Fig. S10. A simplified energy level scheme of the UCL emission mechanism for UCLNPs in Cs_4PbX_6 -UCLNPs/PS film

Fig. S11. CIE chromaticity coordinates diagram of Cs₄PbX₆-UCLNPs/PS film with different UCLNPs contents (a) and Cs₄PbX₆-UCLNPs/PS film with different halide compositions (b)

Table S1. CIE chromaticity coordinates of Cs₄PbX₆-UCLNPs/PS film with different UCLNPs contents

Mass percentage	CIE (x, y)
UCLNPs:PS=25%	(0.2482,0.7348)
UCLNPs:PS=50%	(0.2386,0.7357)
UCLNPs:PS=75%	(0.2393,0.7336)
UCLNPs:PS=100%	(0.2397,0.7340)
UCLNPs:PS=125%	(0.2404,0.7359)

Mass percentage	CIE (x, y)
Cs ₄ PbCl ₃ Br ₃	(0.2398,0.7336)
$Cs_4PbCl_2Br_4$	(0.2398,0.7337)
Cs_4PbBr_6	(0.2394,0.7341)
$Cs_4PbBr_4I_2$	(0.2394,0.7344)
$Cs_4PbBr_3I_3$	(0.2395,0.7344)

Fig. S12. UCL emission spectra of Cs₄PbX₆-UCLNPs/PS film before and after water treatment

Fig. S13. Schematic diagram of the DCL mechanism of the conversion of Cs_4PbX_6 QDs to $CsPbX_3$ QDs after water treatment

compositions

Table S2. CIE chromaticity coordinates of Cs₄PbX₆-UCLNPs/PS film with different halide

Fig. S14. CIE chromaticity coordinates diagram of CsPbX₃-UCLNPs/PS film after water treatment

Fig. S15. DCL spectrum (a), normalized DCL intensity plot (b) and CIE chromaticity coordinates diagram (c) of CsPbBr₃-UCLNPs/PS film with different UCLNPs contents

Table S3. CIE chromaticity coordinates of CsPbX₃-UCLNPs/PS film with different UCLNPs contents

Mass percentage	CIE (x, y)
UCLNPs:PS=25%	(0.1037,0.7782)
UCLNPs:PS=50%	(0.1045,0.7793)
UCLNPs:PS=75%	(0.1036,0.7787)
UCLNPs:PS=100%	(0.1039,0.7769)
UCLNPs:PS=125%	(0.1042,0.7775)

Fig. S16. Temperature-dependent normalized DCL intensity plot of CsPbX₃-UCLNPs/PS film during heating process (a) and cooling process (b); Plot for normalized intensity of DCL peak at 517 nm of CsPbX₃-UCLNPs/PS film in heating/cooling cycle at 20 °C and 100 °C (c)

Fig. S17. Physical photos of CsPbX₃-UCLNPs/PS film after a heating/cooling cycle process under UV light

Fig. S18. Digital photos of silk-screen printing plates (a); Physical photo of the Cs₄PbBr₆-UCLNPs/PS film measured by film thickness meter (b)

Fig. S19. Digital photos of designable patterns printed on Cs₄PbX₆-UCLNPs/PS film by using waterbased ink *via* silk-screen printing technology under daylight

Fig. S20. Digital photos of anti-counterfeiting patterns on Cs₄PbX₆-UCLNPs/PS film placed in a natural environment for a month

Fig. S21. Digital photos of patterns for Cs₄PbX₆-UCLNPs/PS film after five times heating/cooling cycle

Table S4. Calculated cost for synthesizing one cm ² of Cs ₄ PbX ₆ -UCLNPs/PS film based on the price	es
quoted at the places of purchase	

	Ingradiants	Usage	Unit price	Price
	ingreutents	amount	(USD/g)	(USD)
	Cs ₂ CO ₃	6.96E-05 g	0.34	2.37E-05
	PbBr ₂	1.11E-04 g	0.64	7.10E-05
Ca DhV	OA	2.05E-03 mL	0.014	2.87E-05
Cs4FDA ₆ - UCLNPs/PS film fabrication	OLA	1.78E-03 mL	0.040	7.12E-05
	ODE	0.021 mL	0.018	3.78E-04
	EDTA	1.04E-03 g	0.014	1.45E-05
	NaF	1.79E-03 g	0.008	1.43E-05
	$Y(NO_3)_3 \cdot 6H_2O$	1.06E-03 g	0.048	5.08E-05
	$Yb(NO_3)_3 \cdot 5H_2O$	3.21E-04 g	0.30	9.63E-05
	Er(NO ₃) ₃ ·6H ₂ O	3.29E-05 g	0.15	4.93E-06

	PS	3.57E-03 g	g 0.017	6.07E-05
	DCM	0.017 g	0.0085	1.44E-04
Total				0.001
2	After water brush b		c	
		HINA	TRUE	
	Day light	980-nm laser	IIV light	

Fig. S22. Digital photos of dynamic anti-counterfeiting of Cs₄PbBr₆-UCLNPs/PS film after water brush writing

Table S5 A summary of research progress of fluorescent anti-counterfeiting and information storage encryption materials

Used component	Strategy of anti- counterfeiting	Luminesce nce of utilization	Preparation method	Color of luminescence	Application	Anti- counterfeiti ng level	Ref.
LiYF ₄ :Yb ³⁺ , Ho ³⁺ , Ce ³⁺ /carbon QDs	980-nm laser+ 365-nm light	UCL+DCL	Hydrothermal +screen printing	Green to red (UCL) +blue (DCL)	Static anti- counterfeiting	Medium	[2]
NaYF4:Yb ³⁺ , Tm ³⁺ - CsPbX3 QDs glasses	980-nm laser+ 365-nm light	UCL+DCL	Ball milling	Bluish purple or red (UCL)+blue to green to red multicolor (DCL)	Static anti- counterfeiting+i nformation encryption	Medium	[3]
$CsCa_2Ta_3O_{10}$: Yb ³⁺ , Er ³⁺ @Cs(Pb _x Mn ₁₋ x)(Cl _y Br _{1-y}) ₃	980-nm laser+ 365-nm light	UCL+DCL	Solid state reaction	Green (UCL)+red , green and blue (DCL)	Static anti- counterfeiting+i nformation encryption	Medium	[4]
SrAl ₂ O ₄ :Eu ²⁺ /TPU	365-nm light	DCL	Electrospinning	Green (DCL)	Static anti- counterfeiting	Low	[8]
$Ca_2YMgScSi_3O_{12}:\\Mn^{2+}$	X-ray+254- nm+UV(365, 395, 463 nm) light	DCL	High-temperature solid-state reaction	Green to deep-red multicolor (DCL)	Static anti- counterfeiting	Low	[10]
CsPbBr ₃ @mesoporous silica nanospheres	Water treatment+ 365-nm light	DCL	Hot-injection	Green (DCL)	Static anti- counterfeiting	Medium	[12]
Bi ₂ Ti ₄ O ₁₁ : Yb ³⁺ , Er ³⁺ @TPU film	980-nm laser	UCL	Electrospinning	Red, yellow and green (UCL)	Static anti- counterfeiting+ dynamic anti- counterfeiting	Medium	[13]
CsPb(Br _x Cl _y) ₃ (x=y)/CsPb(Br _x Cl _y) ₃ (x>y)-polymethyl methacrylate (PMMA)	Water treatment+ 365-nm light	DCL	Photolithographic patterning	Blue to green (DCL)	Static anti- counterfeiting	Low	[14]
Cs_3TbF_6 : Eu^{3+}	Water treatment+ 365-nm light	DCL	Hot-injection	Green to yellow to red multicolor (DCL)	Static anti- counterfeiting	Medium	[17]
Fluorescence dyes (fluorescein isothiocyanate, rhodamine and dansyl acid- disulfide)	365-nm light	DCL	Photodynamic disulfide chemistry	Blue, green and red (DCL)	Static anti- counterfeiting+ dynamic anti- counterfeiting+i nformation storage	Medium	[18]

NaYF4:Yb/Tm@Na YF4:Yb-CsPbX3	980-nm laser+ 365-nm light	UCL+DCL	Two-step high temperature reflux method and hot- injection method	Blue to green to red multicolor (UCL)+blue to green to red multicolor (DCL)	Static anti- counterfeiting	Medium	[19]
Boric acid@carbon QDs	365-nm light+ heating/cooling	DCL	Hydrothermal	Blue to orange (DCL)	Static anti- counterfeiting+i nformation encryption Static anti-	Medium	[20]
Mn:CsPbCl ₃ QDs and CsPbBr ₃ QDs	365-nm light+ heating/cooling	DCL	Hot-injection	Green and orange (DCL)	counterfeiting+i nformation encryption+ information storage	Medium	[27]
Cs₄PbX ₆ QDs	Water treatment+ 365-nm light	DCL	Inkjet printing patterned	Blue to green to red multicolor (DCL)	Static anti- counterfeiting+i nformation encryption Static anti-	Medium	[40]
Cs₄PbX₀- UCLNPs/PS film	980-nm laser+water treatment+365-nm light+ heating/cooling	UCL+DCL	Electrospinning	Green(UCL)+blue to green to red multicolor (DCL)	counterfeiting+ dynamic anti- counterfeiting+i nformation encryption+ information storage	High	This work