Accelerating Spin-Flip Process of Multi-Resonance Emitter

via Advanced Nitrogen Group Heavy Atom Strategy

Weibo Cui^[a], Yexuan Pu^[a], Linjie Li^[a], Lixiao Guo^[a], Pingping Zheng^[a], Yun Geng*^[b] and

Chenglong Li*[a]

[a] W. Cui, Y. Pu, L. Li, L. Guo, P. Zheng, C. Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
E-mail: chenglongli@jlu.edu.cn (C. Li)
[b] Y. Geng
School of Physics, Northeast Normal University, Changchun 130024, P. R. China.
E-mail: gengy575@nenu.edu.cn (Y. Geng)

Content

1. Figure S1 Bond lengths (in Å) of the studied molecules in the S_0 state.

2. Figure S2 Contour surfaces of hole-electron distribution of the S_1 , T_1 , and T_2 states of the studied molecules (white represents the hole part and blue represents the electron part).

3. Figure S3 Frontier molecular orbital energy levels and contour surfaces (Isosurface = 0.03) for the S₀ states of the studied molecules.

4. Figure S4 Absorption spectra of the studied molecules.

5. Figure S5 Huang-Rhys Factors and crucial displacement vectors for the normal modes with large HR in the low-frequency regime (<500 cm⁻¹) for the studied molecules.

6. Table S1 Maximum absorption peak λ_{abs} (nm), maximum emission peak λ_{emi} (nm), and corresponding oscillator strengths *f* of experimental molecules DABNA-1 and CzBN, using different functionals and 6-31G(d) basis set.

7. Table S2 Comparison of the calculated values (computational methods as described in the text) with the experimental values of the experimental molecules DABNA-1 and CzBN.

8. Table S3 Dihedral angle values ϕ_1 near the B atom in the ground state and first singlet/triplet excited states of the studied molecules (dihedral angle labels as shown in Figure 2).

9. Table S4 Dihedral angle values ϕ_2 and ϕ_3 near the heavy atoms in the ground state and first singlet/triplet excited states of the studied molecules.

10. Table S5 Singlet-triplet energy gaps $\Delta E_{\text{S-T}}$ (eV), and spin-orbit coupling SOC (cm⁻¹) between S₂ and T₁/T₂ states for the studied molecules.

11. Table S6 Spin-orbit coupling (SOC) for the S_1 - T_1 process of the studied molecules.

12. Table S7 Phosphorescence radiative transition rates k_r^T (s⁻¹) and reverse intersystem crossing rates k_{RISC} (s⁻¹) for the studied molecules.

13. Table S8 Singlet-triplet energy gaps ΔE_{S-T} (eV), spin-orbit coupling SOC (cm⁻¹), and reverse intersystem crossing rates k_{RISC} (s⁻¹) for the studied molecules and the corresponding oxygen group heavy atom substituted molecules (1-Z, Z=O/S/Se).

14. Table S9 Absorption properties of the studied molecules, including maximum absorption peaks λ_{abs} (nm), oscillator strength *f*, vertical excitation energies E_{vt} (eV), transition moments μ (D), and corresponding transition nature by TPSSh/6-31G(d).

15. Table S10 Fluorescence properties of the studied molecules, including fluorescence emission wavelengths λ_{emi} (nm), oscillator strength *f*, vertical excitation energies E_{vt} (eV), transition moments μ (D), and corresponding transition nature by TPSSh/6-31G(d).

16. Table S11 Cartesian coordinates of all studied compounds at optimized S_0 geometry.

Figure S1 Bond lengths (in Å) of the studied molecules in the S_0 state.

Figure S2 Contour surfaces of hole-electron distribution of the S_1 , T_1 , and T_2 states of the studied molecules (white represents the hole part and blue represents the electron part).

Figure S3 Frontier molecular orbital energy levels and contour surfaces (Isosurface = 0.03) for the S₀ states of the studied molecules.

Figure S4 Absorption spectra of the studied molecules.

Figure S5 Huang-Rhys Factors and crucial displacement vectors for the normal modes with large HR in the low-frequency regime (<500 cm⁻¹) for the studied molecules.

Mol.	Functional	f	λ_{abs}/nm	f	$\lambda_{ m emi}/ m nm$
	TPSSh	0.24	425.32	0.23	462.15
DABNA-1	O3LYP	0.24	422.70	0.23	458.45
	B3LYP	0.27	403.56	0.29	433.16
	M06-2X	0.41	353.48	0.50	372.18
	ω_{B97XD}	0.27	2(7.80	0.00	296 11
	(ω=0.1371) ^{b)}	0.37	307.89	0.30	380.11
	Experimental date ^{a)}		437		462
	TPSSh	0.41	458.75	0.46	490.85
	O3LYP	0.40	456.96	0.46	488.30
	B3LYP	0.46	432.87	0.53	459.09
CzBN	M06-2X	0.64	372.51	0.80	391.44
	$\omega_{ m B97XD}$	0.61	297.20	0.54	400.84
	(ω=0.1371)	0.01	387.20	0.34	400.84
	Experimental date ^{a)}		458		479

Table S1 Maximum absorption peak λ_{abs} (nm), maximum emission peak λ_{emi} (nm), and corresponding oscillator strengths *f* of experimental molecules **DABNA-1** and **CzBN**, using different functionals and 6-31G(d) basis set.

^{a)} Measured in dichloromethane solution (2×10⁻⁵ M) at 298 k. ^{b)} The ω value is regulated using the optDFTw program.¹

 Table S2 Comparison of the calculated values (computational methods as described in the text)

 with the experimental values of the experimental molecules DABNA-1 and CzBN.

Mol		λ_{abs}/nm	$\lambda_{ m emi}/ m nm$	$\Delta E_{\rm ST}/{\rm eV}$	$k_{\rm RISC}/{\rm s}^{-1}$	$k_{\rm f}/{ m s}^{-1}$	FWHM
DADNA 1	Calc.	425	462	0.16	1.14×10 ³	7.33×10 ⁷	30
DABNA-1	Exp. ^{a)}	437	462	0.15	9.90×10 ³	9.60×10 ⁷	33
CaDN	Calc.	459	491	0.12	2.94×10^{4}	1.28×10^{8}	26
CZBN	Exp. ^{a)}	458	479	0.12	1.69×10^{4}	1.20×10^{8}	30

^{a)} Measured in dichloromethane solution (2×10^{-5} M) at 298 k.

Table S3 Dihedral angle values ϕ_1 near the B atom in the ground state and first singlet/triplet excited states of the studied molecules (dihedral angle labels as shown in **Figure 2**).

Mol.		<i>φ</i> ₁ (°)	
	S_0	S_1	T ₁
DABNA-1	13	10	10
DABNA-P	30	30	29
DABNA-As	31	31	30
CzBN	11	10	10
CzBN-P	36	32	32

CzBN-As	42	38	36
---------	----	----	----

Table S4 Dihedral angle values ϕ_2 and ϕ_3 near the heavy atoms in the ground state and first singlet/triplet excited states of the studied molecules.

Mol.		φ _{2(°)}			φ _{3(°)}		
		S ₀	S_1	T ₁	S ₀	S_1	T ₁
	DABNA-1	176	177	177	176	177	177
ϕ_2 ϕ_2 ϕ_3 ϕ_3 ϕ_3 ϕ_3 ϕ_3 ϕ_3 ϕ_4 ϕ_2 ϕ_3 ϕ_4 ϕ_4 ϕ_2 ϕ_3 ϕ_4	DABNA-P	106	107	107	106	123	126
	DABNA-As	99	100	100	99	115	116
$\phi_2 \xrightarrow{\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	CzBN	174	175	175	174	175	175
	CzBN-P	95	110	113	95	95	94
CzBN-X	CzBN-As	88	102	106	88	87	87

Table S5 Singlet-triplet energy gaps ΔE_{S-T} (eV), and spin-orbit coupling SOC (cm⁻¹) between S₂ and T₁/T₂ states for the studied molecules.

Mol.	$\Delta E_{\rm S2-T1}/{\rm eV}$	$\Delta E_{\mathrm{S2-T2}}/\mathrm{eV}$	$\left< T_{1} \right \hat{H}_{\mathrm{SOC}} \left S_{2} \right>_{\mathrm{cm}}$	$\langle \mathbf{T}_2 \hat{H}_{SOC} \mathbf{S}_2 \rangle_{cm}$	
			-1	-1	
DABNA-1	1.06	0.50	0.11	0.11	
DABNA-P	0.53	0.27	0.05	0.23	
DABNA- As	0.44	0.28	2.25	1.11	
CzBN	0.80	0.43	3.34	1.69	
CzBN-P	0.48	0.23	25.76	4.17	
CzBN-As	0.36	0.30	16.86	7.19	

Table S6 Spin-orbit coupling (SOC) for the S_1 - T_1 process of the studied molecules.

Mol.	$\langle \mathbf{S}_1 \hat{H}_{SOC} \mathbf{T}_1 \rangle_{cm^{-1}}$
DABNA-1	0.03
DABNA-P	0.85
DABNA-As	4.44
CzBN	0.03
CzBN-P	0.80
CzBN-As	2.95

Table S7 Phosphorescence radiative transition rates k_r^T (s⁻¹) and reverse intersystem crossing rates k_{RISC} (s⁻¹) for the studied molecules.

Mol.	$k_{r/s^{-1}}^{T}$	k _{RISC} /s ⁻¹
DABNA-1	0.00×10^{0}	1.14×10 ³
DABNA-P	3.26×10^{0}	6.49×10 ⁵
DABNA-As	1.23×10 ²	2.24×10^{7}
CzBN	0.00×10^{0}	2.94×10^{4}
CzBN-P	3.74×10^{0}	2.92×10 ⁵
CzBN-As	1.22×10 ²	9.13×10 ⁶

Table S8 Singlet-triplet energy gaps $\Delta E_{\text{S-T}}$ (eV), spin-orbit coupling SOC (cm⁻¹), and reverse intersystem crossing rates k_{RISC} (s⁻¹) for the studied molecules and the corresponding oxygen group heavy atom substituted molecules (**1-Z**, Z=O/S/Se).

Mol.	$\Delta E_{\rm S1-T1}/{\rm eV}$	$\left< T_{1} \right \hat{H}_{\mathrm{SOC}} \left S_{1} \right>_{/\mathrm{cm}}$	k _{RISC} /s ⁻¹
1-0	0.20	0.05	2.26×10 ³
1-S	0.16	0.72	2.42×10^{5}
1-Se	0.15	3.16	1.05×10^{7}
DABNA-1	0.16	0.03	1.14×10^{3}
DABNA-P	0.16	1.06	6.49×10 ⁵
DABNA-As	0.17	3.95	2.24×107
CzBN	0.12	0.03	2.94×10^{4}
CzBN-P	0.18	0.83	2.92×10^{5}
CzBN-As	0.27	2.47	9.13×10 ⁶

Table S9 Absorption properties of the studied molecules, including maximum absorption peaks λ_{abs} (nm), oscillator strength *f*, vertical excitation energies E_{vt} (eV), transition moments μ (D), and corresponding transition nature by TPSSh/6-31G(d).

Mol.	λ_{abs}/nm	f	$E_{\rm vt}/{\rm eV}$	$\mu/{ m D}$	Tra	nsition nature
DABNA-1	425.32	0.24	2.92	3.32	$S_0 \rightarrow S_1$	H→L (97.82%)
DABNA-P	426.93	0.15	2.90	2.14	$S_0 \rightarrow S_1$	H→L (98.57%)
DABNA-As	405.37	0.14	3.06	1.82	$S_0 \rightarrow S_1$	H→L (98.68%)
CzBN	458.75	0.41	2.70	6.14	$S_0 \rightarrow S_1$	H→L (98.78%)
CzBN-P	438.92	0.16	2.82	2.31	$S_0 \rightarrow S_1$	H→L (98.63%)
CzBN-As	413.69	0.08	3.00	1.12	$S_0 \rightarrow S_1$	H→L (97.95%)

(D), and corresponding transition nature by TPSSh/6-31G(d).							
Mol.	λ _{emi} /nm	f	$E_{\rm vt}/{\rm eV}$	μ/D	Tra	nsition nature	
DABNA-1	462.15	0.23	2.68	3.57	$S_1 \rightarrow S_0$	H→L (98.82%)	-
DABNA-P	556.66	0.11	2.23	2.04	$S_1 \rightarrow S_0$	H→L (99.44%)	
DABNA-As	525.27	0.10	2.36	1.80	$S_1 \rightarrow S_0$	H→L (99.47%)	
CzBN	490.85	0.46	2.53	7.50	$S_1 \rightarrow S_0$	H→L (99.33%)	
CzBN-P	543.38	0.18	2.28	3.18	$S_1 \rightarrow S_0$	H→L (99.36%)	
CzBN-As	554.54	0.10	2.24	1.85	$S_1 \rightarrow S_0$	H→L (99.49%)	

Table S10 Fluorescence properties of the studied molecules, including fluorescence emission wavelengths λ_{emi} (nm), oscillator strength *f*, vertical excitation energies E_{vt} (eV), transition moments μ (D), and corresponding transition nature by TPSSh/6-31G(d).

Table S11 Cartesian coordinates of all studied compounds at optimized S0 geometry.

	DA	ABNA-1	
С	1.221101	2.329798	-0.021669
С	0.000000	3.000496	-0.000001
С	-1.221101	2.329798	0.021668
С	-1.223957	0.922984	0.006767
С	0.000000	0.191587	0.000000
С	1.223957	0.922984	-0.006768
Н	2.145892	2.892764	-0.034731
Н	0.000000	4.087510	-0.000001
Н	-2.145892	2.892764	0.034730
В	0.000000	-1.326211	0.000000
Ν	-2.439353	0.225201	0.008605
Ν	2.439353	0.225201	-0.008605
С	-2.545662	-1.165081	-0.163341
С	-3.833347	-1.739204	-0.288341
С	-1.381661	-1.989221	-0.224626
С	-3.976497	-3.097275	-0.536055
С	-1.588219	-3.358751	-0.521657
С	-2.848805	-3.918959	-0.680145
Н	-4.975424	-3.513479	-0.637610
Н	-0.719491	-3.994308	-0.656685
Н	-2.960380	-4.974450	-0.911451
С	-3.655240	0.998206	0.115955
С	-4.280993	1.480119	-1.038898
С	-4.193660	1.262188	1.378948
С	-5.454970	2.229744	-0.925851
Н	-3.847264	1.265686	-2.011050
С	-5.368252	2.012459	1.485610
С	-5.999008	2.496216	0.335017
Н	-5.942696	2.604287	-1.821147

Н	-5.788459	2.217823	2.465891
Н	-6.911662	3.078964	0.420299
С	2.545662	-1.165081	0.163342
С	3.833347	-1.739204	0.288342
С	1.381662	-1.989221	0.224627
С	3.976497	-3.097275	0.536056
С	1.588219	-3.358751	0.521659
С	2.848805	-3.918958	0.680146
Н	4.975425	-3.513479	0.637612
Н	0.719491	-3.994308	0.656686
Н	2.960380	-4.974450	0.911453
С	3.655240	0.998206	-0.115956
С	4.193660	1.262187	-1.378949
С	4.280993	1.480120	1.038897
С	5.368252	2.012458	-1.485611
С	5.454970	2.229745	0.925850
Н	3.847264	1.265687	2.011050
С	5.999007	2.496216	-0.335018
Н	5.788459	2.217822	-2.465892
Н	5.942696	2.604287	1.821146
Н	6.911662	3.078964	-0.420300
Н	4.717521	-1.117929	0.209474
Н	3.692811	0.880416	-2.263532
Н	-4.717521	-1.117929	-0.209473
Н	-3.692811	0.880417	2.263532

DABNA-P			
С	-1.119179	-2.448500	-0.462104
С	0.000130	-3.143482	-0.001289
С	1.119325	-2.448605	0.460019
С	1.137186	-1.046019	0.438633
С	-0.000089	-0.312239	-0.000360
С	-1.137236	-1.045906	-0.439782
Н	-1.985485	-3.000221	-0.817989
Н	0.000257	-4.230329	-0.001669
Н	1.985694	-3.000446	0.815568
В	-0.000156	1.246022	-0.000109
С	2.586537	1.403944	0.277088
С	3.802261	2.088128	0.108025
С	1.361180	2.002198	-0.123362
С	3.830309	3.341092	-0.505030
С	1.429530	3.274593	-0.740092
С	2.639840	3.935205	-0.940899
Н	4.780384	3.848445	-0.650685

Н	0.509714	3.737869	-1.087453
Н	2.659409	4.905558	-1.429332
С	4.016351	-1.088764	0.429511
С	4.152000	-1.277206	-0.958901
С	5.004949	-1.598361	1.286439
С	5.253849	-1.960977	-1.473848
Н	3.393036	-0.887546	-1.631902
С	6.110382	-2.283621	0.768964
С	6.234782	-2.465020	-0.610080
Н	5.349678	-2.101736	-2.547105
Н	6.868881	-2.673202	1.442278
Н	7.091801	-2.997073	-1.013844
С	-2.586786	1.403969	-0.277204
С	-3.802563	2.088061	-0.108012
С	-1.361459	2.002189	0.123337
С	-3.830636	3.340931	0.505209
С	-1.429842	3.274498	0.740263
С	-2.640170	3.935027	0.941142
Н	-4.780708	3.848272	0.650947
Н	-0.510050	3.737741	1.087727
Н	-2.659789	4.905323	1.429689
С	-4.016306	-1.088884	-0.429188
С	-5.005374	-1.598376	-1.285631
С	-4.151087	-1.277616	0.959261
С	-6.110432	-2.283845	-0.767630
С	-5.252565	-1.961603	1.474730
Н	-3.391765	-0.888018	1.631890
С	-6.233974	-2.465556	0.611453
Н	-6.869307	-2.673340	-1.440570
Н	-5.347729	-2.102598	2.548015
Н	-7.090689	-2.997781	1.015632
Н	-4.733190	1.631327	-0.435643
Н	-4.909839	-1.458095	-2.359436
Н	4.732911	1.631400	0.435606
Н	4.908751	-1.458318	2.360217
Р	-2.587693	-0.192556	-1.178643
Р	2.587249	-0.192702	1.178286

	DA	BNA-As	
С	1.088800	-2.482993	0.519879
С	0.000169	-3.184442	-0.001007
С	-1.088339	-2.482857	-0.521370
С	-1.109123	-1.083358	-0.485577
С	0.000002	-0.343715	0.000016

С	1.109450	-1.083637	0.484975
Н	1.939510	-3.025025	0.926358
Η	0.000316	-4.271266	-0.001315
Η	-1.939163	-3.024443	-0.928356
В	-0.000218	1.220578	0.000176
С	-2.583560	1.464599	-0.359660
С	-3.776605	2.190889	-0.241902
С	-1.353940	2.002448	0.091134
С	-3.788156	3.431622	0.396362
С	-1.402799	3.264260	0.733913
С	-2.595839	3.965738	0.899131
Н	-4.723077	3.974777	0.506825
Н	-0.483444	3.690602	1.126674
Н	-2.598848	4.925520	1.408648
С	-4.037576	-1.080489	-0.271695
С	-3.975049	-1.123131	1.130323
С	-5.127013	-1.667410	-0.927696
С	-4.987694	-1.743868	1.862543
Н	-3.130946	-0.668622	1.641762
С	-6.144663	-2.290606	-0.194719
С	-6.074702	-2.328805	1.199717
Н	-4.932186	-1.773077	2.947639
Н	-6.986102	-2.743239	-0.712298
Н	-6.862664	-2.811956	1.771023
С	2.583173	1.464697	0.359395
С	3.776199	2.190941	0.241214
С	1.353400	2.002729	-0.090605
С	3.787491	3.431887	-0.396695
С	1.401922	3.264767	-0.733117
С	2.594933	3.966299	-0.898671
Η	4.722382	3.974961	-0.507530
Η	0.482353	3.691235	-1.125301
Н	2.597780	4.926166	-1.407735
С	4.038051	-1.080090	0.272097
С	5.127080	-1.667503	0.928291
С	3.976081	-1.122140	-1.129965
С	6.144867	-2.290575	0.195539
С	4.989005	-1.742782	-1.862027
Η	3.132263	-0.667333	-1.641725
С	6.075532	-2.328138	-1.198956
Н	6.986112	-2.743606	0.713284
Η	4.934007	-1.771561	-2.947115
Н	6.863766	-2.811192	-1.770087
Н	4.703363	1.770365	0.624094

Н	5.180500	-1.638420	2.013931
Н	-4.703599	1.770624	-0.625421
Н	-5.180955	-1.637904	-2.013354
As	2.635300	-0.216948	1.317739
As	-2.635508	-0.217159	-1.317923
	(CzBN	
С	-2.478149	0.851397	-0.207685
Ν	-2.433074	-0.525408	0.017887
С	-1.222691	-1.243143	-0.010960
С	0.000001	-0.497920	-0.000007
С	-1.366370	1.708834	-0.265829
С	1.222699	-1.243133	0.010934
Ν	2.433076	-0.525395	-0.017893
С	3.770986	-0.985285	-0.144279
С	4.290081	-2.226917	-0.532599
С	-1.214540	-2.643510	-0.076551
С	0.000017	-3.319594	-0.000049
С	1.214567	-2.643501	0.076478
С	-1.676934	3.060858	-0.542019
С	-2.992809	3.505654	-0.710170
Н	3.662228	-3.055964	-0.828191
С	-4.076552	2.622942	-0.591863
Н	-2.124965	-3.208078	-0.207989
С	-3.819954	1.276152	-0.330591
Н	2.125003	-3.208063	0.207884
С	4.646167	0.108045	0.105987
Н	-0.869539	3.780010	-0.641815
С	6.033383	-0.063617	0.045441
Н	-5.094899	2.985065	-0.703942
С	6.547917	-1.315128	-0.289928
Н	6.696621	0.773952	0.242587
С	5.679171	-2.374208	-0.592201
Н	6.086983	-3.335047	-0.892582
С	-3.770987	-0.985292	0.144301
Н	-3.662248	-3.055954	0.828273
С	2.478147	0.851408	0.207686
Н	-6.086999	-3.335025	0.892668
С	-4.290092	-2.226911	0.532654
Н	-6.696618	0.773950	-0.242590
С	-5.679182	-2.374195	0.592261
Н	5.094895	2.985081	0.703930
С	-6.547924	-1.315120	0.289964
Н	0.869532	3.780018	0.641805

С	-6.033384	-0.063619	-0.045431
С	-4.646167	0.108037	-0.105980
С	3.819953	1.276164	0.330588
С	4.076549	2.622956	0.591852
С	2.992803	3.505666	0.710156
С	1.676928	3.060867	0.542012
С	1.366366	1.708841	0.265829
В	-0.000003	1.044952	0.000007
Н	0.000023	-4.405763	-0.000071
Н	-7.622157	-1.465552	0.341139
Н	7.622149	-1.465567	-0.341096
Н	-3.180836	4.553713	-0.925204
Н	3.180829	4.553727	0.925185

CzBN-P			
С	-2.534124	0.977127	0.167471
С	-1.145337	-1.415894	0.400542
С	0.000019	-0.654955	-0.000214
С	-1.362425	1.677966	-0.160587
С	1.145404	-1.415642	-0.401142
С	4.229914	-0.912607	-0.517938
С	5.025309	-2.037362	-0.758479
С	-1.128090	-2.816722	0.428514
С	0.000127	-3.515944	-0.000663
С	1.128265	-2.816521	-0.429586
С	-1.538187	2.885019	-0.873821
С	-2.815289	3.316180	-1.257663
Н	4.609817	-2.914354	-1.247150
С	-3.949957	2.532680	-1.009069
Н	-2.001382	-3.366270	0.769640
С	-3.813233	1.326782	-0.304321
Н	2.001593	-3.365866	-0.770956
С	4.792810	0.249800	0.086979
Н	-0.668014	3.465603	-1.170408
С	6.147983	0.248600	0.447327
Н	-4.915976	2.846466	-1.396397
С	6.922493	-0.893321	0.235363
Н	6.594728	1.130061	0.899673
С	6.364272	-2.034818	-0.355742
Н	6.976089	-2.918628	-0.512404
С	-4.229777	-0.912741	0.518251
Н	-4.609563	-2.914456	1.247653
С	2.534240	0.977248	-0.167825
Н	-6.976020	-2.918667	0.513619

С	-5.025146	-2.037449	0.759087
Н	-6.594933	1.129943	-0.898782
С	-6.364229	-2.034881	0.356721
Н	4.915477	2.846603	1.396958
С	-6.922581	-0.893409	-0.234289
Н	0.667544	3.465473	1.169757
С	-6.148089	0.248487	-0.446531
С	-4.792828	0.249638	-0.086560
С	3.813160	1.326947	0.304422
С	3.949593	2.532813	1.009295
С	2.814814	3.316225	1.257596
С	1.537843	2.884984	0.873360
С	1.362379	1.677971	0.159975
В	0.000002	0.940145	-0.000238
Н	0.000130	-4.602417	-0.000842
Н	-7.968877	-0.894282	-0.526563
Н	7.968704	-0.894216	0.527939
Н	-2.924421	4.247595	-1.806376
Н	2.923711	4.247596	1.806429
Р	-2.559836	-0.517002	1.160841
Р	2.560195	-0.516873	-1.161070

CzBN-As			
С	-2.541718	1.071157	0.093348
С	-1.134106	-1.361385	0.420136
С	0.000000	-0.602226	0.000037
С	-1.353154	1.739176	-0.228389
С	1.134092	-1.361389	-0.420091
С	4.318115	-0.818421	-0.451452
С	5.162277	-1.904402	-0.687960
С	-1.117323	-2.759528	0.451609
С	-0.000015	-3.462732	0.000010
С	1.117298	-2.759531	-0.451583
С	-1.475767	2.882142	-1.049507
С	-2.725547	3.274772	-1.547968
Н	4.814508	-2.755561	-1.267258
С	-3.870543	2.505118	-1.309377
Н	-1.984651	-3.304076	0.815810
С	-3.781792	1.365764	-0.492239
Н	1.984617	-3.304082	-0.815800
С	4.791753	0.314244	0.267777
Н	-0.586064	3.436851	-1.338059
С	6.109165	0.316946	0.748582
Н	-4.808089	2.776218	-1.788160

С	6.932835	-0.791025	0.539454
Н	6.491357	1.176699	1.292785
С	6.461346	-1.903230	-0.168372
Н	7.107136	-2.762826	-0.324210
С	-4.318128	-0.818404	0.451441
Н	-4.814552	-2.755535	1.267252
С	2.541722	1.071151	-0.093332
Н	-7.107163	-2.762787	0.324165
С	-5.162304	-1.904376	0.687942
Н	-6.491320	1.176715	-1.292859
С	-6.461363	-1.903198	0.168330
Н	4.808153	2.776226	1.788092
С	-6.932830	-0.790996	-0.539516
Н	0.586118	3.436874	1.338093
С	-6.109146	0.316966	-0.748639
С	-4.791744	0.314257	-0.267808
С	3.781813	1.365760	0.492218
С	3.870592	2.505124	1.309338
С	2.725607	3.274789	1.547946
С	1.475812	2.882158	1.049524
С	1.353169	1.739178	0.228430
В	0.000002	1.000181	0.000054
Н	-0.000021	-4.549415	-0.000001
Н	-7.948454	-0.785509	-0.925256
Н	7.948467	-0.785543	0.925175
Н	-2.800365	4.156900	-2.177945
Н	2.800445	4.156926	2.177907
As	-2.609428	-0.410845	1.277214
As	2.609403	-0.410856	-1.277194

References

1. T. Lu, optDFTw program v1.0, webpage: http://sobereva.com/346.