Supporting Information

Dual Blue Fluorescence and Green Phosphorescence of Hybrid Cadmium Halide for Anti-counterfeiting

Qi Wang,^{a,b} Jian-Qiang Zhao,^c Peng-Yao Xuan,^b Xin-Yuan Li,^b Zhao-Xi Wang,^b Hao-Shuo Lu,^b Xiao-Wu Lei,^b Zhi-Hong Jing,^{*a} Cheng-Yang Yue^{*b}

^aSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China

^bResearch institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

> Corresponding Author: Zhi-Hong Jing, Cheng-Yang Yue E-mail: zhhjing@126.com; yuechengyang@126.com

Fig. S1. Experimental and simulated PXRD patterns of [BTPP]Br.

Fig. S2. The solid-state UV-Vis absorption spectra *vs* wavelength (a) and photo energy (b) of [BTPP]Br at 300 K.

Fig. S3. The PL excitation and emission spectra of [BTPP]Br in prompt- and delayed-mode.

Fig. S4. 3D consecutive PL excitation-emission correlation map (a) and the corresponding CIE coordinates (b) of [BTPP]Br at 300 K.

Fig. S5. The PL decay curves monitoring at 463 nm, 494 nm and 519 nm excited by 310 nm (a), Time-resolved transient emission spectra (b) of [BTPP]Br at 300 K.

Fig. S6. Experimental and simulated PXRD patterns of [BTPP]₂CdBr₄.

Fig. S7. The thermogravimetric analysis curve of [BTPP]₂CdBr₄.

Fig. S8. The solid-state UV-Vis absorption spectra vs wavelength (a) and photo energy (b) of $[BTPP]_2CdBr_4$ at 300 K.

Fig. S9. The prompt-mode (a) and delayed-mode (b) emission wavelength dependent PL excitation spectra of [BTPP]₂CdBr₄.

Fig. S10. The prompt-mode (a) and delayed-mode (b) excitation wavelength dependent PL emission spectra of [BTPP]₂CdBr₄.

Fig. S11. The PLQY of blue light emission excited by 357 UV light for [BTPP]₂CdBr₄ at 300 K.

Fig. S12. The power density-dependent luminescence intensity of [BTPP]₂CdBr₄.

Fig. S13. Integrated PL intensity as a function of reciprocal temperature of [BTPP]₂CdBr₄.

Fig. S14. Experimental and fitted temperature-dependent FWHM of [BTPP]₂CdBr₄.

Fig. S15. PL decay curve monitoring at 469 nm excited by 309 nm for [BTPP]₂CdBr₄ at 300 K.

Fig. S16. The PLQY of green afterglow excited by 309 nm UV light for $[BTPP]_2CdBr_4$ at 300 K.

Fig. S17 The high-symmetry k points in the Brillouin zone of [BTPP]₂CdBr₄.

Compound	[BTPP] ₂ CdBr ₄
chemical formula	$C_{50}P_2H_{44}CdBr_4$
Fw	1138.83
Space group	<i>P</i> -1 (No. 1)
a (Å)	10.482(5)
<i>b</i> (Å)	12.470(6)
c (Å)	18.446(8)
α (°)	105.694(1)
β(°)	93.067(2)
γ (°)	92.602(2)
$V(Å^3)$	2313.3(2)
Ζ	2
$D_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.635
Temp (K)	293
μ (mm ⁻¹)	4.029
F (000)	1124.0
Reflections collected	52439
GOF on F^2	1.024
$aR_1, wR_2(I > 2\sigma(I))$	0.0355/0.0652
${}^{b}R_{1}, wR_{2}$ (all data)	0.0703/0.0746

Table S1. Crystal data and structure refinement for [BTPP]₂CdBr₄.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{o}|| / \sum |F_{o}|. {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

Cd1-Br2	2.6460(11)	Cd1-Br4	2.5817(10)	
Cd1-Br1	2.5682(9)	Cd1-Br3	2.5713(10)	
Br1-Cd1-Br2	111.69(4)	Br4-Cd1-Br2	108.07(2)	
Br1-Cd1-Br4	111.62(3)	Br3-Cd1-Br2	105.46(2)	
Br1-Cd1-Br3	109.01(3)	Br3-Cd1-Br4	110.82(4)	

Table S2. Selected bond lengths (Å) and bond angles (°) for $[BTPP]_2CdBr_4$.

 Table S3. Hydrogen bonds data for [BTPP]₂CdBr₄.

D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)
C13-H13A···Br2	0.97	2.89	3.847(4)	170
C13-H13B…Br2	0.97	2.88	3.806(4)	161
C24-H24… Br2	0.93	2.88	3.793(4)	169