Supporting Information

 π -Bridge Strategy for Asymmetric Small Molecule Acceptors in Organic Photovoltaics

Kun Wang^{a,*}, Cheng Zhang^{a,b}, Jingshun Gao^a, Weijie Qin^a, Jianan Hu^a, Yan Gao^a, Longxin Li^a, Lei Meng^b, Yongfang Li^b

 ^a School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 451191, China
 ^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic

Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

*Corresponding author.

E-mail address: <u>kwang@zut.edu.cn</u> (K. Wang)

Experimental Section

1.Materials.

All chemicals and solvents were of reagent grade and were purchased from Alfa Aesar, J&K and Aldrich, respectively. The molecular structures and synthetic routes of **IDT-2Cl2F**, **IDT-S-2Cl2F**, **IDT-S-2F2Cl** and **IDT-S-4F** are shown in Scheme S1, Scheme

S2 and Scheme S3, as follows:

Scheme S1. The synthetic route and molecular structure of IDT-2Cl2F.

Compound 3

A mixture of compound **1** (200 mg, 0.21 mmol) and compound **2** (72.5 mg, 0.315 mmol) in chloroform (CF, 15 mL) was charged into a two-necked flask equipped with a magnetic stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostated oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give compound **3** (162.23 mg, yield=67.3%).

Compound 4

POCl₃ (6.5 mL) and DMF (9.75 mL) were sequentially injected via syringe into a dry 100 mL two-necked flask under anhydrous conditions. The mixture was maintained at ice-water bath with vigorous stirring for 30 min. A solution of compound **3** (150 mg, 0.13 mmol) in CF was then introduced through the side neck using syringe transfer. The reaction vessel was immersed in a thermostated oil bath and heated at 65°C with continuous reflux for 18 h. The cooled reaction mixture was quenched with distilled water and extracted with CF. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give compound **4** (128.86 mg, yield=84.3%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.85 (s, 1H), 9.05 (d, *J* = 61.9 Hz, 2H), 8.28 (s, 1H), 7.75 (d, *J* = 2.7 Hz, 2H), 7.64 (d, *J* = 52.5 Hz, 2H), 7.18 – 7.06 (m, 16H), 2.62 – 2.52 (m, 8H), 1.58 (dd, *J* = 11.9, 7.2 Hz, 8H), 1.31 (dd, *J* = 17.2, 7.9 Hz, 24H), 0.87 (t, *J* = 6.2 Hz, 12H).

Compound IDT-2Cl2F

A mixture of compound 4 (110 mg, 0.093 mmol) and compound 5 (36.56 mg, 0.139 mmol) in chloroform (20 mL) was charged into a two-necked flask equipped with a magnetic stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostated oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column

chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give **IDT-2Cl2F** (88.94 mg, yield=67.3%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (d, *J* = 3.1 Hz, 1H), 8.77 (d, *J* = 3.1 Hz, 1H), 7.93 (d, *J* = 4.1 Hz, 1H), 7.76 – 7.71 (m, 3H), 7.65 (d, *J* = 34.3 Hz, 1H), 7.18 – 7.05 (m, 19H), 2.57 (q, *J* = 6.3, 5.1 Hz, 8H), 1.63 – 1.58 (m, 8H), 1.34 – 1.27 (m, 24H), 0.87 (t, *J* = 6.6 Hz, 12H).

Figure S1. ¹H NMR of IDT-2F-CHO in CDCl₃.

Figure S2. ¹H NMR of IDT-2Cl2F in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 chemical shift(ppm)

Figure S3. ¹³C NMR of IDT-2Cl2F in CDCl₃.

Figure S4. HRMS of IDT-2Cl2F. MS (HRMS) m/z: Calcd for $C_{90}H_{78}Cl_2F_2N_4O_2S_2$:

1418.49;

Scheme S2. The synthetic route and molecular structure of IDT-S-2Cl2F.

Compound 3

A mixture of compound **1** (200 mg, 0.17 mmol) and compound **5** (67.08 mg, 0.255 mmol) in CF (15 mL) was charged into a two-necked flask equipped with a magnetic stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostated oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give compound **3** (153.7 mg, yield=64.3%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.74 (d, *J* = 20.4 Hz, 2H), 7.93 (s, 1H), 7.74 (s, 1H), 7.72 (s, 1H), 7.52 (s, 1H), 7.44 (s, 1H), 7.30 (d, *J* = 4.9 Hz, 1H), 7.20 – 7.00 (m, 17H), 2.93 (d, *J* = 6.2 Hz, 2H), 2.62 – 2.50 (m, 8H), 1.62 – 1.54 (m, 11H), 1.33 – 1.25 (m, 30H), 0.86 (q, *J* = 7.9, 7.4 Hz, 19H).

Compound 4

POCl₃ (6.5 mL) and DMF (9.75 mL) were sequentially injected via syringe into a dry

100 mL two-necked flask under anhydrous conditions. The mixture was maintained at ice-water bath with vigorous stirring for 30 min. A solution of compound **3** (140 mg, 0.099 mmol) in CF was then introduced through the side neck using syringe transfer. The reaction vessel was immersed in a thermostatic oil bath and heated at 65°C with continuous reflux for 18h. The cooled reaction mixture was quenched with distilled water and extracted with CF. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂ / petroleum ether, v/v 1:3) to give compound **4** (115.4 mg, yield=81.3%). ¹H NMR (500 MHz, Chloroform-d) δ 9.83 – 9.79 (m, 1H), 8.76 (d, J = 19.4 Hz, 2H), 7.94 (s, 1H), 7.76 – 7.63 (m, 3H), 7.59 – 7.44 (m, 3H), 7.20 – 7.00 (m, 15H), 2.90 (dd, J = 39.8, 6.2 Hz, 2H), 2.64 – 2.48 (m, 8H), 1.65 – 1.54 (m, 11H), 1.38 – 1.26 (m, 30H), 0.89 – 0.82 (m, 18H).

Compound IDT-S-2Cl2F

A mixture of compound 4 (110 mg, 0.076 mmol) and compound 2 (26.24 mg, 0.114 mmol) in CF (20 mL) was charged into a two-necked flask equipped with a magnetic stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostatic oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂ / petroleum ether, v/v 1:3) to give **IDT-S-**2Cl2F (78.86 mg, yield=63.1%). ¹H NMR (400 MHz, Chloroform-d) δ 8.90 (d, J = 3.1

Hz, 1H), 8.77 (d, J = 3.1 Hz, 1H), 7.93 (d, J = 4.1 Hz, 1H), 7.76 – 7.71 (m, 3H), 7.65 (d, J = 34.3 Hz, 1H), 7.18 – 7.05 (m, 19H), 2.57 (q, J = 6.3, 5.1 Hz, 8H), 1.63 – 1.58 (m, 8H), 1.34 – 1.27 (m, 24H), 0.87 (t, J = 6.6 Hz, 12H).

Figure S5. ¹H NMR of IDT-S-2Cl in CDCl₃.

Figure S6. ¹H NMR of IDT-S-2Cl-CHO in CDCl₃.

Figure S8. ¹³C NMR of IDT-S-2Cl2F in CDCl₃.

Figure S9. HRMS of IDT-S-2Cl2F. MS (HRMS) m/z: Calcd for

 $C_{102}H_{96}Cl_2F_2N_4O_2S_4$: 1647.05;

Scheme S3. The synthetic route and molecular structure of IDT-S-2F2Cl.

Compound 3

A mixture of compound 1 (200 mg, 0.17 mmol) and compound 2 (58.69 mg, 0.255 mmol) in CF (15 mL) was charged into a two-necked flask equipped with a magnetic

stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostatic oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give compound **3** (145.7 mg, yield=62.4%).¹H NMR (500 MHz, Chloroform-*d*) δ 8.70 (s, 1H), 8.53 (dd, *J* = 9.9, 6.5 Hz, 1H), 7.72 – 7.63 (m, 2H), 7.52 (s, 1H), 7.44 (s, 1H), 7.29 (d, *J* = 4.9 Hz, 1H), 7.17 (dd, *J* = 14.5, 8.3 Hz, 8H), 7.13 – 6.98 (m, 10H), 2.92 (s, 2H), 2.61 – 2.52 (m, 8H), 1.58 (dt, *J* = 14.4, 7.9 Hz, 11H), 1.35 – 1.25 (m, 30H), 0.89 – 0.83 (m, 18H).

Compound 4

POCl₃ (6.5 mL) and DMF (9.75 mL) were sequentially injected via syringe into a dry 100 mL two-necked flask under anhydrous conditions. The mixture was maintained at ice-water bath with vigorous stirring for 30 min. A solution of compound **3** (140 mg, 0.1 mmol) in CF was then introduced through the side neck using syringe transfer. The reaction vessel was immersed in a thermostatic oil bath and heated at 65°C with continuous reflux for 18h. The cooled reaction mixture was quenched with distilled water and extracted with CF. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂/ petroleum ether, v/v 1:3) to give compound **4** (120.43 mg, yield=85.9%). ¹H NMR (500 MHz, Chloroform-d) δ 9.83 – 9.79 (m, 1H), 8.73 – 8.52

(m, 2H), 7.75 – 7.64 (m, 3H), 7.61 – 7.42 (m, 3H), 7.22 – 6.97 (m, 16H), 2.90 (dd, J = 38.2, 6.2 Hz, 2H), 2.63 – 2.52 (m, 8H), 1.63 – 1.54 (m, 11H), 1.37 – 1.25 (m, 30H), 0.90 – 0.81 (m, 18H).

Compound IDT-S-2F2Cl and IDT-S-4F

A mixture of compound 4 ((1) 110 mg, 0.078 mmol; (2) 100 mg, 0.07mmol) and compound 5 (30.77 mg, 0.117 mmol) or compound 2 (24.16 mg, 0.105 mmol) in CF (20 mL) was charged into a two-necked flask equipped with a magnetic stirrer. The system was degassed via argon purging (bubbling) for 20 min, followed by rapid addition of pyridine (1 mL) under continuous argon flow. The mixture was further purged with argon for 10 min and then heated at 65°C in a thermostated oil bath. Reaction progress was monitored by TLC. After removal of the solvent under reduced pressure, the residue was purified by means of column chromatography on silica gel using a mixed solvent as eluent (CH₂Cl₂ / petroleum ether, v/v 1:3) to give **IDT-S-2F2CI** (82.69 mg, yield=64.4%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (d, *J* = 9.1 Hz, 1H), 8.81 – 8.48 (m, 3H), 8.01 – 7.36 (m, 8H), 7.21 – 7.09 (m, 16H), 2.92 (dd, *J* = 30.8, 6.1 Hz, 2H), 2.63 – 2.53 (m, 8H), 1.58 (s, 11H), 1.37 – 1.23 (m, 30H), 0.86 (td, *J* = 12.7, 10.9, 4.7 Hz, 18H).

IDT-S-4F (70.41 mg, yield=62.3%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 1H), 8.72 (s, 1H), 8.54 (dt, *J* = 9.9, 6.4 Hz, 2H), 7.76 – 7.54 (m, 7H), 7.21 – 7.06 (m, 16H), 2.95 (d, *J* = 6.1 Hz, 2H), 2.58 (dq, *J* = 8.2, 4.2 Hz, 8H), 1.61 (dt, *J* = 12.8, 7.7 Hz, 11H), 1.37 – 1.24 (m, 30H), 0.90 – 0.82 (m, 18H).

Figure S10. ¹H NMR of IDT-S-2F in CDCl₃.

Figure S11. ¹H NMR of IDT-S-2F-CHO in CDCl₃.

Figure S12. ¹H NMR of IDT-S-2F2Cl in CDCl₃.

Figure S13. ¹³C NMR of IDT-S-2F2Cl in CDCl₃.

Figure S14. HRMS of IDT-S-2F2Cl. MS (HRMS) m/z: Calcd for $C_{102}H_{96}Cl_2F_2N_4O_2S_4$: 1647.05;

Figure S15. ¹H NMR of IDT-S-4F in CDCl₃.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 chemical shift(ppm)

Figure S16. ¹³C NMR of IDT-S-4F in CDCl₃.

Figure S17. HRMS of IDT-S-4F. MS (HRMS) m/z: Calcd for C₁₀₂H₉₆F₄N₄O₂S₄: 1614.15;

2. Device Fabrication Method

The OSC devices were fabricated with the ITO/PEDOT: PSS/PM6: IDT-2Cl2F or PM6: IDT-S-2Cl2F or PM6: IDT-S-2F2Cl or PM6:IDT-S-4F/PDINN/Ag (100 nm) structure. Prior to fabrication, the ITO-coated glass substrate was cleaned with deionized water, acetone, and isopropanol. Afterwards, the substrate was treated with UV-ozone for 30 minutes. The PEDOT: PSS was spin-coated onto the ITO-coated glass surface at a spinning rate of 7000 rpm for 30 seconds. It was then dried at 150°C for 30 minutes and transferred into a nitrogen glove box with less than 5 ppm oxygen and moisture. The active layer was deposited onto the PEDOT: PSS layer by spin-coating a mixed solution of PM6:SMAs (SMAs=IDT-2CI2F, IDT-S-2CI2F, IDT-S-2F2CI, IDT-S-4F) with a blend concentration of 22 mg mL⁻¹. The PDINN solution, with a concentration of 1 mg mL⁻¹ in methanol, was spin-coated onto the surface of the ITO-coated active layer at 3400 rpm for 30 seconds. Subsequently, 100 nm of Ag was evaporated onto the active layer in a vacuum chamber under a pressure of approximately 4×10^{-4} Pa.

3.Electron mobility measurements

ITO/ZnO/Active Layer/PDINN/Ag was used to test the electron mobility of these materials. The electron mobilities are calculated according to the space charge limited current (SCLC) method with the equation: $J = 9\mu\varepsilon_{\rm r}\varepsilon_0 V^2 / 8d^3$, where J is the current density, μ is the hole or electron mobility, V is the internal voltage in the device, $\varepsilon_{\rm r}$ is the relative dielectric constant of active layer material, ε_0 is the permittivity of empty space, and d is the thickness of the active layer.

Figure S18. Optical band gaps of IDT-2Cl2F, IDT-S-2Cl2F, IDT-S-2F2Cl and IDT-S-4F calculated from thin film UV-vis absorption spectra
Table S1. Optical and electrochemical properties of IDT-2Cl2F, IDT-S-2Cl2F, IDT-S-2Cl2F

	UV-	vis in solid	film		CV		
Material	λ_{\max} (nm)	λ_{edge} (nm)	$E_{\rm g}^{\rm opt}$ (eV)	HOMO (eV)	LUMO (eV)	E_{g}^{cv} (eV)	
IDT-2Cl2F	633	768	1.65	-5.98	-4.01	1.97	
IDT-S-2Cl2F	765	881	1.46	-5.64	-4.02	1.62	
IDT-S-2F2Cl	774	892	1.43	-5.68	-4.01	1.67	
IDT-S-4F	760	872	1.48	-5.68	-4.07	1.61	

S-2F2Cl and IDT-S-4F.

Figure S19. The chemical structures of **IDT-2Cl2F**, **IDT-S-2Cl2F**, **IDT-S-2F2Cl**, and **IDT-S-4F**, along with their corresponding molecular conformations, electron cloud distributions of the frontier molecular orbitals, and electrostatic potential (ESP) maps, were determined based on DFT theoretical calculations at the B3LYP/6-31G(d,p) level.

Figure S20. *J-V* plots of PM6: IDT-2Cl2F-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²,

Table S2. Photovoltaic parameters of PM6: IDT-2Cl2F-based OSCs with differentsolvents under the illumination of AM 1.5G, 100 mW cm⁻²

Solvent	V _{oc} (V)	J _{sc} mA cm ⁻²)	FF (%)	PCE (%)
CB	0.857	10.13	46.07	4.00
CF	0.854	6.93	36.95	2.18
Tol	0.804	4.20	36.54	1.23
Oxy	0.819	8.58	38.29	2.69

Figure S21. (a) *J-V* plots of PM6: **IDT-2Cl2F**-based OSCs with different D/A under the illumination of AM 1.5G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

PM6: IDT- 2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
1:1	0.858	11.10	10.78	43.97	4.18
1:1.2	0.852	11.08	10.76	45.94	4.34
1:1.4	0.848	10.99	10.67	43.91	4.09

Table S3. Photovoltaic parameters of PM6: **IDT-2Cl2F**-based OSCs with different D/A under the illumination of AM 1.5G, 100 mW cm⁻²

Figure S22. (a) *J-V* plots of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S4. Photovoltaic parameters of PM6: IDT-2Cl2F-based OSCs (1:1.2, w/w) with

Additive	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
CN ^{b)}	0.808	10.83	10.52	44.09	3.85
DIO ^{c)}	0.817	11.67	11.33	49.87	4.75

different additive under the illumination of AM 1.5 G, 100 mW $\rm cm^{-2}$

^{a)} Integral J_{sc} from EQE curves, ^{b)} CN is an abbreviation of 1-Chloronaphthalene; ^{c)} DIO is an abbreviation of 1,8-Diiodooctane.

Figure S23. (a) *J-V* plots of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different DIO contents under the illumination of AM 1.5 G, 100 mW cm⁻², (b) The corresponding EQE curves of the OSCs.

Table S5. Photovoltaic parameters of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different DIO contents under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT- 2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
0.15% DIO	0.794	10.63	10.32	40.76	3.44
0.30% DIO	0.817	11.07	10.75	42.47	3.86
0.50% DIO	0.817	11.67	11.33	49.87	4.75
0.75% DIO	0.772	10.31	10.01	48.34	3.58

Figure S24. (a) *J-V* plots of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.50% DIO as additive under the illumination of AM 1.5 G, 100 mW cm^{-2} ; (b) The corresponding EQE curves of the OSCs.

Table S6. Photovoltaic parameters of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.50% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: ID	Г-2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 80°C	0.812	12.27	11.91	48.74	4.85
0.50% DIO	TA 90°C	0.812	12.31	11.95	49.01	4.90
TA 5min	TA 100°C	0.808	12.29	11.93	48.82	4.85
	TA 110°C	0.807	11.99	11.64	48.78	4.58

Figure S25. (a) *J-V* plots of PM6: IDT-2Cl2F-based OSCs (1:1.2, w/w) with different TA time, 0.50% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S7. Photovoltaic parameters of PM6: **IDT-2Cl2F**-based OSCs (1:1.2, w/w) with different TA time, 0.50% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT-2Cl2F		V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 5min	0.810	11.80	11.46	52.49	5.01
0.50% DIO TA 90°C	TA 10min	0.798	11.77	11.43	49.27	4.63
	TA 15min	0.786	11.60	11.26	48.03	4.38

Figure S26. *J-V* plots of PM6: IDT-S-2Cl2F-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²,

Table S8. Photovoltaic parameters of PM6: **IDT-S-2Cl2F**-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²

	Solvent	V _{oc} (V)	J _{sc} mA cm ⁻²)	FF (%)	PCE (%)
	CB	0.898	16.38	54.57	8.03
	CF	0.914	14.82	43.35	5.87
	Tol	0.903	13.45	38.55	4.68
	Oxy	0.908	15.63	48.47	6.88
Current density [mA cm ⁻²] (e)		08 10	(b) 90 80 70 60 55 90 90 90 90 90 90 90 90 90 90 90 90 90		88 0 0 0 0 Integrated J _{SC} [mA cm ⁻²] 0 0
Ū	Voltage [V]	300 400	Wavelenght [nm]	

Figure S27. (a) *J-V* plots of PM6: **IDT-S-2Cl2F**-based OSCs with different D/A under the illumination of AM 1.5G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

PM6: IDT-S- 2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
1:1	0.914	17.99	17.47	50.86	8.36
1:1.2	0.906	18.32	17.79	54.84	9.10
1:1.4	0.898	18.31	17.78	54.72	8.99

Table S19. Photovoltaic parameters of PM6: IDT-S-2Cl2F-based OSCs with different

D/A under the illumination of AM 1.5G, 100 mW cm^{-2}

^{a)} Integral J_{sc} from EQE curves.

Figure S28. (a) J-V plots of PM6: IDT-S-2Cl2F-based OSCs (1:1.2, w/w) with different additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S10. Photovoltaic parameters of PM6: IDT-S-2Cl2F-based OSCs (1:1.2, w/w)

Additive	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
CN ^{b)}	0.890	18.91	18.36	55.50	9.34
DIO ^{c)}	0.880	19.69	19.12	58.84	10.2

with different additive under the illumination of AM 1.5 G, 100 mW cm^{-2}

^{a)} Integral J_{sc} from EQE curves, ^{b)} CN is an abbreviation of 1-Chloronaphthalene; ^{c)} DIO is an abbreviation of 1,8-Diiodooctane.

Figure S29. (a) *J-V* plots of PM6: IDT-S-2Cl2F-based OSCs (1:1.2, w/w) with different DIO contents under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S11. Photovoltaic parameters of PM6: IDT-S-2Cl2F-based OSCs (1:1.2, w/w)

PM6: IDT-S- 2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
0.15% DIO	0.886	19.09	18.53	55.77	9.43
0.30% DIO	0.880	19.69	19.12	58.84	10.2
0.50% DIO	0.880	18.99	18.44	56.72	9.48
0.75% DIO	0.873	18.65	18.11	57.78	9.41

with different DIO contents under the illumination of AM 1.5 G, 100 mW $\rm cm^{-2}$

Figure S30. (a) *J-V* plots of PM6: IDT-S-2Cl2F-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.30% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S12. Photovoltaic parameters of PM6: **IDT-S-2Cl2F**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.30% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT	-S-2Cl2F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 80°C	0.890	18.87	18.32	57.87	9.72
0.30% DIO	TA 90°C	0.891	20.21	19.62	58.51	10.53
TA 5min	TA 100°C	0.884	18.65	18.11	58.81	9.70
	TA 110°C	0.886	18.64	18.10	57.89	9.56

Figure S31. (a) *J-V* plots of PM6: **IDT-S-2Cl2F**-based OSCs (1:1.2, w/w) with different TA time, 0.30% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S13. Photovoltaic parameters of PM6: **IDT-S-2Cl2F**-based OSCs (1:1.2, w/w) with different TA time, 0.30% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT-S-2Cl2F		V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
	TA 5 min	0.887	21.12	20.5	58.13	10.89
0.30% DIO TA 90°C	TA 10 min	0.877	20.96	20.35	59.61	10.95
	TA 15 min	0.872	20.06	19.48	55.71	9.74

Figure S32. *J-V* plots of PM6: IDT-S-2F2Cl-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²,

Table S14. Photovoltaic parameters of PM6: **IDT-S-2F2CI**-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²

Solvent	V _{oc}	$J_{\rm sc}$	FF	PCE
	(V)	mA cm ⁻²)	(%)	(%)
CB	0.880	16.14	52.28	7.42
CF	0.897	12.84	38.38	4.42
Tol	0.888	15.43	44.67	6.12
Oxy	0.885	17.51	54.24	8.41

Figure S33. (a) *J-V* plots of PM6: IDT-S-2F2Cl-based OSCs with different D/A under the illumination of AM 1.5G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

PM6: IDT-S- 2F2Cl	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
1:1	0.916	17.82	17.30	51.54	8.41
1:1.2	0.897	19.76	19.18	54.30	9.34
1:1.4	0.890	19.48	18.91	52.11	8.77

Table S15. Photovoltaic parameters of PM6: IDT-S-2F2CI-based OSCs with different

D/A under the illumination of AM 1.5G, 100 mW cm^{-2}

^{a)} Integral J_{sc} from EQE curves.

Figure S34. (a) *J-V* plots of PM6: IDT-S-2F2CI-based OSCs (1:1.2, w/w) with different additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S16. Photovoltaic parameters of PM6: IDT-S-2F2Cl-based OSCs (1:1.2, w/w)

Additive	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
CN ^{b)}	0.882	19.63	19.06	57.71	9.99
DIO ^{c)}	0.864	20.57	19.97	61.96	11.01

with different additive under the illumination of AM 1.5 G, 100 mW cm^{-2}

^{a)} Integral J_{sc} from EQE curves, ^{b)} CN is an abbreviation of 1-Chloronaphthalene; ^{c)} DIO is an abbreviation of 1,8-Diiodooctane.

Figure S35. (a) *J-V* plots of PM6: IDT-S-2F2Cl-based OSCs (1:1.2, w/w) with different DIO contents under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S17. Photovoltaic parameters of PM6: IDT-S-2F2Cl-based OSCs (1:1.2, w/w)

PM6: IDT-S- 2F2Cl	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
0.15% DIO	0.864	20.91	20.30	61.69	11.14
0.30% DIO	0.864	20.57	19.97	61.96	11.01
0.50% DIO	0.855	20.16	19.58	61.84	10.66
0.75% DIO	0.853	18.60	18.06	60.77	9.64

with different DIO contents under the illumination of AM 1.5 G, 100 mW $\rm cm^{-2}$

Figure S36. (a) *J-V* plots of PM6: **IDT-S-2F2Cl**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.15% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S18. Photovoltaic parameters of PM6: **IDT-S-2F2CI**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.15% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT	-S-2F2Cl	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 80°C	0.864	20.85	20.25	62.22	10.88
0.15% DIO	TA 90°C	0.875	20.98	20.37	62.44	11.13
TA 5min	TA 100°C	0.866	21.03	20.62	63.82	11.39
	TA 110°C	0.872	20.91	20.30	62.96	11.15

Figure S37. (a) *J-V* plots of PM6: IDT-S-2F2CI-based OSCs (1:1.2, w/w) with different TA time, 0.15% DIO as additive and TA treatment at 100°C under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S19. Photovoltaic parameters of PM6: **IDT-S-2F2CI**-based OSCs (1:1.2, w/w) with different TA time, 0.15% DIO as additive and TA treatment at 100°C under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT-S-2F2Cl		V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 5min	0.866	21.03	20.62	63.82	11.39
0.15% DIO TA 100°C	TA 10min	0.868	21.01	20.43	56.20	10.24
	TA 15min	0.855	19.93	19.35	56.87	9.41

Figure S38. *J-V* plots of PM6: IDT-S-4F-based OSCs with different solvents under the illumination of AM 1.5G, 100 mW cm⁻²,

Table S20. Photovoltaic parameters of PM6: IDT-S-4F-based OSCs with differentsolvents under the illumination of AM 1.5G, 100 mW cm $^{-2}$

-	Solvent	V _{oc} (V)	J _{sc} mA cm ⁻²)	FF (%)	РСЕ (%)
-	CB	0.903	17.04	52.73	8.35
	CF	0.911	15.23	41.44	5.92
	Tol	0.889	15.79	39.82	5.76
	Oxy	0.892	16.85	49.47	7.66
(a) 5]			(b) 00		
אר cm ⁻²]	- - -1:1 - - -1:1.2		80 - 70 - 60 -		Z

Figure S39. (a) J-V plots of PM6: IDT-S-4F-based OSCs with different D/A under the illumination of AM 1.5G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

PM6: IDT-S- 4F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
1:1	0.909	19.62	19.05	56.18	10.02
1:1.2	0.901	19.68	19.11	58.32	10.34
1:1.4	0.903	19.63	19.06	55.18	9.78

Table S21. Photovoltaic parameters of PM6: IDT-S-4F-based OSCs with differentD/A under the illumination of AM 1.5G, 100 mW cm $^{-2}$

Figure S40. (a) *J-V* plots of PM6: IDT-S-4F-based OSCs (1:1.2, w/w) with different additive under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S22. Photovoltaic parameters of PM6: IDT-S-4F-based OSCs (1:1.2, w/w) with

Additive	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
CN ^{b)}	0.897	18.83	18.28	52.78	8.91
DIO ^{c)}	0.881	21.32	20.70	56.26	10.57

different additive under the illumination of AM 1.5 G, 100 mW cm⁻²

^{a)} Integral J_{sc} from EQE curves, ^{b)} CN is an abbreviation of 1-Chloronaphthalene; ^{c)} DIO is an abbreviation of 1,8-Diiodooctane.

Figure S41. (a) *J-V* plots of PM6: IDT-S-4F-based OSCs (1:1.2, w/w) with different DIO contents under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S23. Photovoltaic parameters of PM6: **IDT-S-4F**-based OSCs (1:1.2, w/w) with

PM6: IDT-S- 4F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	PCE (%)
0.15% DIO	0.880	21.54	20.91	56.94	10.79
0.30% DIO	0.881	21.32	20.70	56.26	10.57
0.50% DIO	0.877	21.14	20.52	61.43	11.39
0.75% DIO	0.872	19.96	19.38	61.60	10.72

different DIO contents under the illumination of AM 1.5 G, 100 mW cm^{-2}

Figure S42. (a) *J-V* plots of PM6: **IDT-S-4F**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.50% DIO as additive under the illumination of AM 1.5 G,

100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S24. Photovoltaic parameters of PM6: **IDT-S-2F2CI**-based OSCs (1:1.2, w/w) with different TA temperature for 5 min, 0.50% DIO as additive under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: ID	T-S-4F	V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
	TA 80°C	0.878	21.39	20.77	59.34	11.14
0.50% DIO	TA 90°C	0.874	21.43	20.81	59.69	11.18
TA 5min	TA 100°C	0.874	21.26	20.64	59.44	11.04
	TA 110°C	0.870	21.03	20.42	57.70	10.25

a) Integral J_{sc} from EQE curves.

Figure S43. (a) *J-V* plots of PM6: IDT-S-4F-based OSCs (1:1.2, w/w) with different TA time, 0.50% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²; (b) The corresponding EQE curves of the OSCs.

Table S25. Photovoltaic parameters of PM6: **IDT-S-4F**-based OSCs (1:1.2, w/w) with different TA time, 0.50% DIO as additive and TA treatment at 90°C under the illumination of AM 1.5 G, 100 mW cm⁻²

PM6: IDT-S-4F		V _{oc} (V)	J _{sc} mA cm ⁻²)	Cal. J _{sc} ^{a)} (mA cm ⁻²)	FF (%)	РСЕ (%)
0.50% DIO TA 90°C	TA 5min	0.880	21.68	21.06	63.86	12.18
	TA 10min	0.881	21.52	20.89	62.46	11.84
	TA 15min	0.879	21.43	20.81	61.64	11.61

Active Layer	A (V ms ⁻¹)	t _{max} (μs)	<i>∆j</i> (mA)	<i>j(0)</i> (mA)	∆j⁄ j(0)	d (nm)	$\mu^{a)}$ (cm ² V ⁻¹ s ⁻¹)
PM6: IDT- 2Cl2F	72.5	3.270	5.75	1.85	3.108	100	4.04×10 ⁻⁵
PM6: IDT- S-2Cl2F	72.5	2.369	4.39	2.61	1.680	100	1.02×10 ⁻⁴
PM6: IDT- S-2F2Cl	72.5	2.273	3.00	1.18	2.540	100	9.29×10 ⁻⁵
РМ6: IDT-S-4F	72.5	2.037	2.88	1.55	1.858	100	1.32×10 ⁻⁴

Table S26. Parameters extracted from photo-CELIV plots.

^{a)} Calculated from the formula, $\mu = 2d^2/[3At^2_{max} (1+0.36\Delta j/j(0))]$, where *d* is the active layer thickness, *A* is the voltage ramp, t_{max} is the maximum current time, Δj is the peak transient current, and j(0) is the displacement current.

Figure S44. (a) GIWAXS patterns; (b) 1D GIWAXS profiles of the IDT-2Cl2F, IDT-

S-2Cl2F, IDT-S-2F2Cl, IDT-S-4F, PM6-based neat films.

	Ir	n plane (100)		Out of plane (010)		
Active layer	Location (Å ⁻¹)	d-spacing (Å)	CCL (Å)	Location (Å ⁻¹)	d-spacing (Å)	CCL (Å)
PM6	0.28	22.44	38.80	1.66	3.79	7.54
IDT-2Cl2F	0.36	17.45	26.67	1.46	4.30	7.50
IDT-S-2Cl2F	0.33	19.04	28.55	1.59	3.95	7.67
IDT-S-2F2Cl	0.30	20.94	35.33	1.73	3.63	8.43
IDT-S-4F	0.35	17.95	28.63	1.49	4.22	7.28
(a) 50 40 - - - - - - - - - - - - - - - - - -	IDT-S-2CI2F μ ₆ =6.15*10 ⁻⁴ cm ² V ⁻¹ s ⁻¹	•	(b) 50 40 30 20 20 0 0	IDT-S-2F2Cl μ ₀ =6.32*10 ⁻⁴ cm ² V ⁻¹ s • • 1 2 3 Voltage [V	• • 4 5	

Table S27. GIWAXS parameters of the PM6, IDT-S-2Cl2F, IDT-S-2F2Cl, IDT-

2Cl2F and IDT-S-4F films.

Figure S45 $J^{1/2} \sim V$ characteristics of the charge carrier mobility measurements of the blend films in the dark.

Active layer	Ir	n plane (100)		Out of plane (010)			
	Location (Å ⁻¹)	d-spacing (Å)	CCL (Å)	Location (Å ⁻¹)	d-spacing (Å)	CCL (Å)	
PM6: IDT- 2Cl2F	0.29	21.67	46.15	1.68	3.74	13.58	
Pm6: IDT-S- 2Cl2F	0.30	20.94	47.33	1.72	3.65	13.06	
PM6: IDT-S- 2F2Cl	0.30	20.94	46.12	1.72	3.65	13.83	
PM6: IDT-S- 4F	0.30	20.94	48.15	1.72	3.65	17.62	

Table S28. GIWAXS parameters of the PM6:IDT-2Cl2F, PM6:IDT-S-2Cl2F,PM6:IDT-S-2F2Cl and PM6:IDT-S-4F films.