Electronic Supplementary Information

A Chiral Metal-Organic Framework Fluorescent Sensor incorporating H₈-BINOL

Pattara Siripanich^a, Jierui Zhang^b, Martina Lessio^b, Carol Hua^{*a}

^a School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia; ^b School of Chemistry, University of New South Wales, Kensington, New South Wales 2052, Australia Corresponding author e-mail address: <u>carol.hua@unimelb.edu.au</u>

Table of Contents

Synthesis of Br-H₈-BINOL
Figure S1. ¹ H-NMR spectra of (S)-Br-H ₈ -BINOL
Figure S2. ¹ H-NMR spectra of (R)-Br-H ₈ -BINOL
Figure S3. ¹ H-NMR spectra of (S)-Br-OEt-H ₈ -BINOL
Figure S4. ¹ H-NMR spectra of (R)-Br-OEt-H ₈ -BINOL.
Figure S5. ¹ H-NMR spectra of (S)-L
Figure S6. ¹ H-NMR spectra of (R)-L
Figure S7. The coordination environments of (a) (S)-1 and (b) (R)-1
Figure S8. The bond angles in a Cd(II) complex of (R)-1. (a) axial-equatorial bond angles and (b) equatorial
bond angles
Figure S9. The torsional angle between the naphthyl rings of (S)-1 and R-(1)S10
Figure S10. The intermolecular interactions found in (R)-1
Figure S11. The intermolecular interactions between (S)-1 and (R)-1 and the DMF solvent molecule. S11
Figure S12. PXRD of (a) (S)-1 and (b) (R)-1 with calculated (red) and experimental (black) patterns. S11
Figure S13. Thermal Gravimetric Analysis (TGA) of (a) (S)-1 and (b) (R)-1S12
Figure S14. ATR-FTIR spectra of (a) (S)-1 and (b) (R)-1 S12
Figure S15. Absorption spectra of (S)-1 (blue) and (R)-1 (red) in ethanol (0.2 g·L ^{-1})S13
Figure S16. Emission spectra of (a) (S)-1 and (b) (R)-1 in ethanol ($\lambda_{ex} = 270 \text{ nm}$)S13
Figure S17. The fluorescence spectra of (S)-1 (0.2 g \cdot L ⁻¹) with various (a) (L)-amino acids, (b) (D)-amino
acids (520 $\mu M)$ with an excitation wavelength ($\lambda_{ex})$ of 270 nm in ethanol. The color bars indicate quenching
affinity of the amino acids' series (Green: slight quenching, Blue: moderated quenching, Red: strong
quenching)
Figure S18. Fluorescence titration spectra of (S)-1 with (a) (L)-Val and (b) (D)-Val, ranging from 0 µM to
667 μM of analyte
Figure S19. Fluorescence titration spectra of (S)-1 with (a) (L)-Ser and (b) (D)-Ser, ranging from 0 μ M to
667 μM of analyte
Figure S20. Fluorescence titration spectra of (S)-1 with (a) (L)-Leu and (b) (D)-Leu, ranging from 0 μ M
to 667 μM of analyteS15
Figure S21. Fluorescence titration spectra of (S)-1 with (a) (L)-Asp and (b) (D)-Asp, ranging from 0 μ M
to 667 μM of analyteS16
Figure S22. Fluorescence titration spectra of (S)-1 with (a) (L)-Phe and (b) (D)-Phe, ranging from 0 μ M
to 667 μM of analyteS16
Figure S23. Fluorescence titration spectra of (S)-1 with (a) (L)-Cystine and (b) (D)-Cystine, ranging from
$0~\mu M$ to 667 μM of analyteS17

Figure S24. Fluorescence titration spectra of (S)-1 with (a) (L)-Cystine and (b) (D)-Cystine, ranging from
0 μM to 667 μM of analyte
Figure S25. Fluorescence titration spectra of (R)-1 with (a) (L)-Val and (b) (D)-Val, ranging from 0 μ M to 620 μ M of analyte
$\mathbf{F} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$
Figure S26. Fluorescence titration spectra of (R)-1 with (a) (L)-Ser and (b) (D)-Ser, ranging from 0 μ M to 620 μ M of analyte
Figure S27. Fluorescence titration spectra of (R)-1 with (a) (L)-Leu and (b) (D)-Leu, ranging from 0 μ M
to $620 \ \mu\text{M}$ of analyte
Figure S28. Fluorescence titration spectra of (R)-1 with (a) (L)-Asp and (b) (D)-Asp, ranging from 0 μ M to 620 μ M of analyte
Figure S20 Elyprocesson as titration spectra of (\mathbf{D}) 1 with (\mathbf{a}) (I) Pho and (\mathbf{b}) (D) Pho ranging from 0 uM
to 620 uM of applyte
$520 \mu\text{M}$ of analyte
Figure S50. Fluorescence unation spectra of (\mathbf{K}) -1 with (a) (L) -Cystine and (b) (D) -Cystine, ranging from 0 uM to 620 uM of analyte
520 Eigene S21 Elypersone titration spectra of (D) 1 with (a) (I) Two and (b) (D) Two remains from 0 wM
to $620 \ \mu\text{M}$ of analyte
Figure S32. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of aspartic acid (Asp).S21
Figure S33. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylalanine (Phe).
Figure S34. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of value (Val)
Figure S35. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of tyrosine (Tyr)S22
Figure S36. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of leucine (Leu)S23
Figure S37. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of serine (Ser)
Figure S38. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of cystine
Figure S39. The fluorescence spectra of (S)-1 (0.2 g·L-1) with various (a) (L)-amino acid esters
hydrochloride and (S)-Man, (b) (D)-amino acid esters hydrochloride and (R)-Man (520 μ M) with an
excitation wavelength (λ_{ex}) of 270 nm. Tyrosine methyl ester hydrochloride was an exception, used at a
concentration of 182 μ M
Figure S40. Fluorescence titration spectra of (S)-1 with (a) (L)-Val-ME and (b) (D)-Val-ME, ranging
from 0 μ M to 667 μ M of analyteS24
Figure S41. Fluorescence titration spectra of (S)-1 with (a) (L)-Phe-ME and (b) (D)-Phe-ME, ranging
from 0 μ M to 667 μ M of analyteS25
Figure S42. Fluorescence titration spectra of (S)-1 with (a) (L)-Asp-ME and (b) (D)-Asp-ME, ranging
from 0 μ M to 667 μ M of analyte
Figure S43. Fluorescence titration spectra of (S)-1 with (a) (S)-Man and (b) (R)-Man, ranging from $0 \mu M$
to 667 µM of analyteS26
Figure S44. Fluorescence titration spectra of (S)-1 with (a) (L)-Tyr-ME and (b) (D)-Tyr-ME, ranging
from 0 µM to 182 µM of analyteS26
Figure S45. Fluorescence titration spectra of (R)-1 with (a) (L)-Val-ME and (b) (D)-Val-ME, ranging
from 0 μM to 667 μM of analyte
Figure S46. Fluorescence titration spectra of (R)-1 with (a) (L)-Phe-ME and (b) (D)-Phe-ME, ranging
from 0 μM to 667 μM of analyte
Figure S47. Fluorescence titration spectra of (R)-1 with (a) (L)-Asp-ME and (b) (D)-Asp-ME, ranging
from 0 μ M to 667 μ M of analyteS28
Figure S48. Fluorescence titration spectra of (R)-1 with (a) (S)-Man and (b) (R)-Man, ranging from 0 μ M
to 667 μ M of analyteS28

Figure S49. Fluorescence titration spectra of (R)-1 with (a) (L)-Tyr-ME and (b) (D)-Tyr-ME, ranging
from 0 µM to 182 µM of analyte
Figure S50. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Val-MES29
Figure S51. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Phe-ME
Figure S52. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Tyr-MES30
Figure S53. The fluorescence spectra of (S)-1 (0.2 g·L ⁻¹) with various (a) (S)-amino and hydroxy
substituted ethylbenzene, (b) (R)-amino and hydroxy substituted ethylbenzene (667 µM) with an excitation
wavelength (λ_{ex}) of 270 nm
Figure S54. Fluorescence titration spectra of (S)-1 with (a) (S)-Phenylethanol and (b) (R)-Phenylethanol,
ranging from 0 µM to 667 µM of analyteS31
Figure S55. Fluorescence titration spectra of (S)-1 with (a) (S)-Phenylethylamine and (b) (R)-
Phenylethylamine, ranging from 0 µM to 667 µM of analyteS31
Figure S56. Fluorescence titration spectra of (S)-1 with (a) (S)-Phenylglycinol and (b) (R)- Phenylglycinol,
ranging from 0 µM to 667 µM of analyteS32
Figure S57. Fluorescence titration spectra of (S)-1 with (a) (S)-Phenylethanediol and (b) (R)-
Phenylethanediol, ranging from 0 μ M to 667 μ M of analyteS32
Figure S58. Fluorescence titration spectra of (R)-1 with (a) (S)-Phenylethanol and (b) (R)- Phenylethanol,
ranging from 0 µM to 667 µM of analyteS33
Figure S59. Fluorescence titration spectra of (R)-1 with (a) (S)-Phenylethylamine and (b) (R)-
Phenylethylamine, ranging from 0 µM to 667 µM of analyte
Figure S60. Fluorescence titration spectra of (R)-1 with (a) (S)-Phenylglycinol and (b) (R)- Phenylglycinol,
ranging from 0 µM to 667 µM of analyteS34
Figure S61. Fluorescence titration spectra of (R)-1 with (a) (S)-Phenylethanediol and (b) (R)-
Phenylethanediol, ranging from 0 μ M to 667 μ M of analyteS34
Figure S62. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethanolS35
Figure S63. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethylamineS35
Figure S64. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylglycinolS36
Figure S65. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethanediolS36
Figure S66: Optimised geometries and interaction energies (E _{int}) of (S)-1 interacting with (L)-aspartic acid
dimethyl ester ((L)-Asp-diME). Panels (a) and (b) depicts the (L)-Asp-diME within the smaller channel,
while (c) and (d) show the (L)-Asp-diME positioned in the larger channel. The carbon, oxygen, nitrogen,
and hydrogen atoms are represented in black, red, blue and white, respectively. Green dashed lines represent
attractive interactions while orange dashed lines represent repulsive interaction
Figure S67: Optimised geometries and relative energies of (a) (D)-aspartic acid dimethyl ester (Asp-
diME). (b) (L)-Asp-diME. The carbon, oxygen, nitrogen, and hydrogen atoms are represented in black,
red, blue and white, respectively

Experimental

Synthesis of 3,3'-dibromo-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2,2'-diol (Br-H₈-BINOL)

The synthesis was conducted following a literature procedure.¹ (*S*) or (*R*)-5,5',6,6',7,7',8,8'-Cctahydro-1,1'-binaphthol (H₈- **BINOL**) (1.00 g, 3.40 mmol) was dissolved in CH₂Cl₂ (35 mL) before being cooled in an ice bath to 0 °C. Bromine (0.37 mL, 7.22 mmol) was added dropwise and the reaction stirred for 30 minutes prior to quenching with a saturated solution of Na₂SO₃ (35 mL). The product was extracted with H₂O (2 × 35 mL) and brine (35 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent evaporated under reduced pressure. The brown sticky crude oil purified using flash column chromatography with CH₂Cl₂ yielding a yellow-brown solid (74%, 0.905 g). ¹H NMR (400MHz, CDCl₃) δ (ppm): 7.28 (s, 2H), 5.11 (s, 2H), 2.76-2.73 (m, 4H), 2.33-2.25 (m, 2H), 2.13-2.06 (m, 2H), 1.77-1.61 (m, 8H).

Figure S1. ¹H-NMR spectra of (*S*)-Br-H₈-BINOL.

Figure S2. ¹H-NMR spectra of (*R*)-Br-H₈-BINOL.

Figure S3. ¹H-NMR spectra of (S)-Br-OEt-H₈-BINOL.

Figure S4. ¹H-NMR spectra of (*R*)-Br-OEt-H₈-BINOL.

Figure S5. ¹H-NMR spectra of (*S*)-L.

Figure S6. ¹H-NMR spectra of (*R*)-L.

	<i>(S)</i> -1	(<i>R</i>)-1
Empirical formula	$C_{121}H_{125}Cd_2N_7O_{17}$	$C_{62}H_{67}CdN_4O_{10}$
Formula weight	2174.07	1140.59
Temperature/K	99.98(10)	100.00(10)
Crystal system	orthorhombic	orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2	P2 ₁ 2 ₁ 2
a/Å	20.82810(10)	20.87686(8)
b/Å	18.67620(10)	18.70172(6)
c/Å	15.42900(10)	15.50573(5)
α/°	90	90
$eta /^{\circ}$	90	90
γ/°	90	90
Volume/Å ³	6001.72(6)	6053.95(3)
Ζ	2	4
$ ho_{calc}g/cm^3$	1.203	1.251
µ/mm ⁻¹	3.344	3.360
F(000)	2264.0	2380.0
Crystal size/mm ³	0.3 imes 0.15 imes 0.1	$0.3 \times 0.2 \times 0.2$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Kα (λ = 1.54184)
2θ range for data collection/°	6.356 to 152.986	6.346 to 152.696
Index ranges	$-26 \le h \le 24, -23 \le k \le 22, -19 \le l \le 18$	$-26 \le h \le 23, -22 \le k \le 22, -19 \le l \le 19$
Reflections collected	204803	230369
Independent reflections	12291 [$R_{int} = 0.0588, R_{sigma} = 0.0180$]	12321 [$R_{\text{int}} = 0.0725, R_{\text{sigma}} = 0.0218$]
Data/restraints/parameters	12291/59/686	12321/0/689
Goodness-of-fit on F ²	1.088	1.040
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0435, wR_2 = 0.1324$	$R_1 = 0.0476, wR_2 = 0.1346$
Final R indexes [all data]	$R_1 = 0.0442, wR_2 = 0.1332$	$R_1 = 0.0479, wR_2 = 0.1349$
Largest diff. peak/hole / e $Å^{-3}$	1.39/-0.67	1.55/-1.20
Flack parameter	-0.018(2)	-0.0060(19)

 Table S1. Crystallographic parameters for 1.

Figure S7. The coordination environments of (a) (S)-1 and (b) (R)-1.

Figure S8. The bond angles in a Cd(II) complex of (*R*)-1. (a) axial-equatorial bond angles and (b) equatorial bond angles.

Figure S9. The torsional angle between the naphthyl rings of (S)-1 and R-(1)

Figure S10. The intermolecular interactions found in (*R*)-1.

Figure S11. The intermolecular interactions between (S)-1 and (R)-1 and the DMF solvent molecule.

Figure S12. PXRD of (a) (S)-1 and (b) (R)-1 with calculated (red) and experimental (black) patterns.

Figure S13. Thermal Gravimetric Analysis (TGA) of (a) (S)-1 and (b) (R)-1.

Figure S14. ATR-FTIR spectra of (a) (S)-1 and (b) (R)-1.

Figure S15. Absorption spectra of (S)-1 (blue) and (R)-1 (red) in ethanol (0.2 g·L⁻¹).

Figure S16. Emission spectra of (a) (S)-1 and (b) (R)-1 in ethanol ($\lambda_{ex} = 270$ nm).

Figure S17. The fluorescence spectra of **(S)-1** (0.2 g·L⁻¹) with various (a) (*L*)-amino acids, (b) (*D*)-amino acids (520 μ M) with an excitation wavelength (λ_{ex}) of 270 nm in ethanol. The color bars indicate quenching affinity of the amino acids' series (Green: slight quenching, Blue: moderated quenching, Red: strong quenching).

Figure S18. Fluorescence titration spectra of (*S*)-1 with (a) (*L*)-Val and (b) (*D*)-Val, ranging from 0 μ M to 667 μ M of analyte.

Figure S19. Fluorescence titration spectra of (*S*)-1 with (a) (*L*)-Ser and (b) (*D*)-Ser, ranging from 0 μ M to 667 μ M of analyte.

Figure S20. Fluorescence titration spectra of (*S*)-1 with (a) (*L*)-Leu and (b) (*D*)-Leu, ranging from 0 μ M to 667 μ M of analyte.

Figure S21. Fluorescence titration spectra of (*S*)-1 with (a) (*L*)-Asp and (b) (*D*)-Asp, ranging from 0 μ M to 667 μ M of analyte.

Figure S22. Fluorescence titration spectra of (*S*)-1 with (a) (*L*)-Phe and (b) (*D*)-Phe, ranging from 0 μ M to 667 μ M of analyte.

Figure S23. Fluorescence titration spectra of (S)-1 with (a) (L)-Cystine and (b) (D)-Cystine, ranging from 0 μ M to 667 μ M of analyte.

Figure S24. Fluorescence titration spectra of (S)-1 with (a) (L)-Cystine and (b) (D)-Cystine, ranging from 0 μ M to 667 μ M of analyte.

Figure S25. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Val and (b) (*D*)-Val, ranging from 0 μ M to 620 μ M of analyte.

Figure S26. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Ser and (b) (*D*)-Ser, ranging from 0 μ M to 620 μ M of analyte.

Figure S27. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Leu and (b) (*D*)-Leu, ranging from 0 μ M to 620 μ M of analyte.

Figure S28. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Asp and (b) (*D*)-Asp, ranging from 0 μ M to 620 μ M of analyte.

Figure S29. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Phe and (b) (*D*)-Phe, ranging from 0 μ M to 620 μ M of analyte.

Figure S30. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Cystine and (b) (*D*)-Cystine, ranging from 0 μ M to 620 μ M of analyte.

Figure S31. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Tyr and (b) (*D*)-Tyr, ranging from 0 μ M to 620 μ M of analyte.

Figure S32. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of aspartic acid (Asp).

Figure S33. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylalanine (Phe).

Figure S34. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of valine (Val)

Figure S35. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of tyrosine (Tyr).

Figure S36. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of leucine (Leu).

Figure S37. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of serine (Ser).

Figure S38. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of cystine.

Figure S39. The fluorescence spectra of (*S*)-1 (0.2 g·L-1) with various (a) (*L*)-amino acid esters hydrochloride and (*S*)-Man, (b) (*D*)-amino acid esters hydrochloride and (*R*)-Man (520 μ M) with an excitation wavelength (λ_{ex}) of 270 nm. Tyrosine methyl ester hydrochloride was an exception, used at a concentration of 182 μ M.

Figure S40. Fluorescence titration spectra of (S)-1 with (a) (L)-Val-ME and (b) (D)-Val-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S41. Fluorescence titration spectra of (S)-1 with (a) (L)-Phe-ME and (b) (D)-Phe-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S42. Fluorescence titration spectra of (S)-1 with (a) (L)-Asp-ME and (b) (D)-Asp-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S43. Fluorescence titration spectra of (*S*)-1 with (a) (*S*)-Man and (b) (*R*)-Man, ranging from 0 μ M to 667 μ M of analyte.

Figure S44. Fluorescence titration spectra of (S)-1 with (a) (L)-Tyr-ME and (b) (D)-Tyr-ME, ranging from 0 μ M to 182 μ M of analyte.

Figure S45. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Val-ME and (b) (*D*)-Val-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S46. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Phe-ME and (b) (*D*)-Phe-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S47. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Asp-ME and (b) (*D*)-Asp-ME, ranging from 0 μ M to 667 μ M of analyte.

Figure S48. Fluorescence titration spectra of (*R*)-1 with (a) (*S*)-Man and (b) (*R*)-Man, ranging from 0 μ M to 667 μ M of analyte.

Figure S49. Fluorescence titration spectra of (*R*)-1 with (a) (*L*)-Tyr-ME and (b) (*D*)-Tyr-ME, ranging from 0 μ M to 182 μ M of analyte.

Figure S50. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Val-ME.

Figure S51. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Phe-ME.

Figure S52. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of Tyr-ME.

Figure S53. The fluorescence spectra of **(S)-1** (0.2 g·L⁻¹) with various (a) (*S*)-amino and hydroxy substituted ethylbenzene, (b) (*R*)-amino and hydroxy substituted ethylbenzene (667 μ M) with an excitation wavelength (λ_{ex}) of 270 nm.

Figure S54. Fluorescence titration spectra of (*S*)-1 with (a) (*S*)-Phenylethanol and (b) (*R*)-Phenylethanol, ranging from 0 μ M to 667 μ M of analyte.

Figure S55. Fluorescence titration spectra of (*S*)-1 with (a) (*S*)-Phenylethylamine and (b) (*R*)-Phenylethylamine, ranging from 0 μ M to 667 μ M of analyte.

Figure S56. Fluorescence titration spectra of (*S*)-1 with (a) (*S*)-Phenylglycinol and (b) (*R*)-Phenylglycinol, ranging from 0 μ M to 667 μ M of analyte.

Figure S57. Fluorescence titration spectra of **(S)-1** with (a) (S)-Phenylethanediol and (b) (R)-Phenylethanediol, ranging from 0 μ M to 667 μ M of analyte.

Figure S58. Fluorescence titration spectra of (*R*)-1 with (a) (*S*)-Phenylethanol and (b) (*R*)-Phenylethanol, ranging from 0 μ M to 667 μ M of analyte.

Figure S59. Fluorescence titration spectra of (*R*)-1 with (a) (*S*)-Phenylethylamine and (b) (*R*)-Phenylethylamine, ranging from 0 μ M to 667 μ M of analyte.

Figure S60. Fluorescence titration spectra of (*R*)-1 with (a) (*S*)-Phenylglycinol and (b) (*R*)-Phenylglycinol, ranging from 0 μ M to 667 μ M of analyte.

Figure S61. Fluorescence titration spectra of (*R*)-1 with (a) (*S*)-Phenylethanediol and (b) (*R*)-Phenylethanediol, ranging from 0 μ M to 667 μ M of analyte.

Figure S62. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethanol.

Figure S63. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethylamine.

Figure S64. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylglycinol.

Figure S65. Stern-Volmer plots of (a) (S)-1 and (b) (R)-1 with the enantiomers of phenylethanediol.

Figure S66: Optimised geometries and interaction energies (E_{int}) of (S)-1 interacting with (L)-aspartic acid dimethyl ester ((L)-Asp-diME). Panels (a) and (b) depicts the (L)-Asp-diME within the smaller channel, while (c) and (d) show the (L)-Asp-diME positioned in the larger channel. The carbon, oxygen, nitrogen, and hydrogen atoms are represented in black, red, blue and white, respectively. Green dashed lines represent attractive interactions while orange dashed lines represent repulsive interaction.

Figure S67: Optimised geometries and relative energies of (a) (*D*)-aspartic acid dimethyl ester (Asp-diME). (b) (*L*)-Asp-diME. The carbon, oxygen, nitrogen, and hydrogen atoms are represented in black, red, blue and white, respectively.

References

(1) Turlington, M.; DeBerardinis, A. M.; Pu, L. Highly Enantioselective Catalytic Alkyl Propiolate Addition to Aliphatic Aldehydes. *Org. Lett.* **2009**, *11* (11), 2441-2444. DOI: 10.1021/ol900667g.