Supplementary Information

1. Reagent

Copper chloride dihydrate (\geq 99%, Sigma-Aldrich), dicyandiamide (99%, Sigma-Aldrich), benzyl alcohol (99.5%, ChemPure), benzaldehyde (\geq 99.5%, ChemPure), potassium iodide (\geq 99.5%, ChemPure), potassium hydrogen phthalate (>99.8%, ChemSolute), 5,5-dimethyl-1-pyrroline Noxide, DMPO (\geq 99%, Sigma-Aldrich), 2,2,6,6-tetramethylpiperidine- 1-oxyl, TEMPO (99%, Sigma-Aldrich), 2,2,6,6-Tetramethylpiperidine, TEMP (\geq 99%, Sigma-Aldrich), 1,4-benzoquinone (\geq 98%, Sigma-Aldrich), silver nitrate (99.8%, Stanlab), *tert*-Butanol (\geq 99%, Carl Roth), Cu₂O (99.5%, FUJIFILM Wako), and CuO (99.9%, FUJIFILM Wako) were used as received. Ultrapure water the Milli-Q® system was used throughout all the experiments.

2. Determination of Photocatalytic Performance

The photocatalytic performance, i.e., BA conversion, BAL yield, and BAL selectivity, was calculated using the following equations.

$$Conversion (\%) = \left(\frac{C_0 - C_r}{C_0}\right) \times 100 \tag{1}$$

Yield (%) =
$$\left(\frac{C_p}{C_0}\right) \times 100$$
 (2)

Selectivity (%) =
$$\left(\frac{C_p}{C_0 - C_r}\right) \times 100$$
 (3)

Aromatic balance (%) =
$$\left(\frac{C_r + C_p}{C_0}\right) \times 100$$
 (4)

where C_0 is the initial BA concentration (mmol L⁻¹). C_r and C_p are the concentration of reactant (BA) and product (BAL) when sampling, respectively.

3. Determination of Apparent Quantum Yield

The apparent quantum yield (AQY) was calculated using the following equation.

$$AQY(\%) = \left(\frac{2\nu N_A hc}{IA\lambda}\right) \times 100$$
(5)

where v is the rate of BAL production (mol s⁻¹), N_A is the Avogadro's number (6.02 × 10²³ mol⁻¹), *h* is Planck's constant (6.62 × 10⁻³⁴ J s), *c* is the speed of light (3.0 × 10⁸ m s⁻¹), *I* is the light intensity (1513 W m⁻²), *A* is the irradiation area (1.25×10⁻⁵ m²), and λ is the light wavelength (455 nm).

Figure S1. XANES spectra showing (A) the overall features, (B) the feature corresponding to Cu 1s \rightarrow 4p transitions, and (C) a weak feature just after the absorption edge (white line). (D) FT-EXAFS spectra for the Cu-N coordination in R space.

Figure S2. HR-TEM images of 4Cu-gCN taken from different regions of the sample.

Figure S3. (A) DRS spectra and (B) Tauc's plots of the prepared samples.

Figure S4. Schematic of spatially separated redox sites in the Cu-gCN cluster, enabling excited electrons to be spatially separated from holes, thereby retarding recombination.

Figure S5. Schematic of the different photophysical phenomena that can be probed by TRMC.

Figure S6. UPS spectra of gCN and 4Cu-gCN. The left figure shows photoelectron signal plotted with respect to the Fermi level at 0 eV and showing determination of the secondary electron cut-off (SECO). The right figure shows the region near the Fermi level, showing the determination of the VB edge.

Figure S7. Band structures of gCN and 4Cu-gCN constructed based on UPS and DRS data.

Figure S8. Band structures of gCN and 4Cu-gCN determined from UPS and DRS data. The standard redox potentials (E^0) are taken from Ref. ¹⁻⁴. Redox couples written in red, blue, and black indicate that the corresponding redox reactions tend to proceed at acidic, basic, and neutral conditions, respectively.

Cu loading	BA conv.	BAL yield	BAL sel.	Arom. Bal.	AQY	YPR
(wt.%)	(%)	(%)	(%)	(%)	(%)	(mmol g ⁻¹ h ¹ W ⁻¹)
0	56	18	32	64	0.16	0.20
	51	17	33	66	0.15	0.19
	53	15	28	62	0.13	0.17
	44	12	27	68	0.10	0.14
4	97	97	100	100	0.84	1.07
	92	92	100	100	0.79	1.02
	85	76	89	91	0.66	0.84
	87	82	94	95	0.71	0.91

Table S1. Recycling tests for gCN and 4Cu-gCN.

Conditions: BA (1 mmol L⁻¹, 0.01 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), time (4 h), and irradiance (0.45 W, 455 nm).

Catalyst	Precursor ^a	SBET	Con.	Light source	<i>t</i> (h)	BA con. (mmol L ⁻¹)	BA co	nv. BAL se	l. YPR°	Ref.
		$(m^2 g^{-1})$	(g L ⁻¹)				(%)	(%) ^b		
P-gC ₃ N ₄	Melamine	4	0.33	Fluorescent lamps (3 ×15 W, 340-420 nm)	4	500 (acetonitrile)	5	52	0.21	5
P-gC ₃ N ₄	Urea	16					4	45	0.15	
P-gC ₃ N ₄	Thiourea	28					3	36	0.09	
Pt@gC ₃ N ₄	Melamine	6	0.625	Xe lamp (200 W, ≥420 nm,	5	10 (water)	27	90	< 0.01	6
P/gC_3N_4	Urea	n.a.	2	LED lamp (64 W, 465 nm)	10	50 (acetonitrile, O_2)	96	>99	0.04	7
gC_3N_4	Melamine	n.a.	0.67	Fluorescent lamps (6×15 W, $315-400$ nm)	4	0.5 (water)	29	88	< 0.01	8
gC_3N_4	Cyanamide	130	2.5	Xe lamp (300 W, >420 nm)	3	40 (water, 0.8 MPa O ₂)	10	96	< 0.01	9
CdS/gC ₃ N ₄	Melamine	7	6.67	Xe lamp (300 W, >420 nm)	4	25.5 (benzotrifluoride, 0.5 MPa N ₂)	48	93	< 0.01	10
S-gC ₃ N ₄	Dicyandiamide	66	5	Xe lamp (300 W, >420 nm)	4	100 (trifluorotoluene, 0.1 MPa O ₂)	19	>99	< 0.01	11
gC_3N_4	Cyanamide	200	5	Xe lamp (300 W, >420 nm)	3	100 (acetonitrile, 0.8 MPa O ₂)	70	68	0.01	12
NHPI/gC ₃ N ₄ *	Cyanamide	<i>n.a</i> .	10	W-filament bulb (250 W, >420 nm)	22	500 (toluene, 5 mL min ⁻¹ O_2)	89	94	< 0.01	13
gC_3N_4	Melamine	<i>n.a.</i>	3.75	Hg lamp (100 W, >400 nm)	3	25 (water, O ₂)	96	82	0.02	14
gC_3N_4	Melamine	43	1.67	LED lamps (18 × 1 W, 395 nm)	5	2 (acetonitrile)	77	87	< 0.01	15
gC_3N_4	Urea	53					85	85	< 0.01	
Fe@gC ₃ N ₄	Melamine	<i>n.a</i> .	2.5	LED lamp (18 W, >400 nm)	3	200 (acetonitrile, 3 mL H_2O_2)	93	>99	1.36	16
MIL/Ag/gC ₃ N ₄	Melamine	101	0.83	Xe lamp (500 W, >400 nm)	6	33.4 (water, O ₂)	47	97	< 0.01	17
TiO ₂ /gC ₃ N ₄	Urea	68	2.5	Xe lamp (400 W, >400 nm)	4	100 (acetonitrile, O ₂)	42	>99	0.01	18
Ru@B-gC ₃ N ₄	Melamine	2.5	0.5	UVA lamp (2×18 W, 365 nm)	3	0.5 (water)	83	57	< 0.01	19
Fe ₂ O ₃ /gC ₃ N ₄	Melamine	27	1	Hg lamp (125 W, 365 nm)	4	100 (acetonitrile, 25 mL min ⁻¹ O ₂)	20	34	0.01	20
ZnO/gC ₃ N ₄	Melamine	10					9	26	< 0.01	
S-gC ₃ N ₄	Melamine	9	0.5	UVA lamps (9W, 365 nm)	5	0.5 (water)	22	63	< 0.01	21
BiOBr/gC ₃ N ₄	Melamine	11	0.4	Xe lamp (275 W, >400 nm)	5	0.1 (water)	95	18	< 0.01	22
Cu-gC ₃ N ₄	Dicyandiamide	13	0.5	LED lamp (0.45 W, 455 nm)	4	1 (water)	96	>99	1.07	This work

Table S2. Partial oxidation of BA over g-C₃N₄-based photocatalysts

*N-hydroxyphthalimide (NHPI). ^aPrecursor for the gC₃N₄. ^bSelectivity to BAL. ^cmmol BAL g⁻¹ h⁻¹ W⁻¹.

Scavenger or additive	Scavenged	Cu loading	BA conv.	BAL yield	BAL sel.	Arom. Bal.
-	species	(wt.%)	(%)	(%)	(%)	(%)
None		0	53	19	36	66
		4	96	96	100	100
O ₂		4	100	100	100	100
Ar		4	91	91	100	100
AgNO ₃ (2 equiv.)	e	0	37	11	30	74
		4	88	87	99	99
KI (2 equiv.)	\mathbf{h}^+	0	41	17	41	76
		4	54	47	87	93
BQ (1 equiv.)	$\bullet O_2^-$	0	32	13	40	81
		4	79	73	92	94
<i>t</i> -BuOH (1 equiv.)	•OH	0	51	13	25	62
		4	92	86	94	94
DMPO (2 equiv.)	•OH, •O ₂ ⁻	0	28	11	39	83
		4	85	75	88	90
TEMP (2 equiv.)	$^{1}O_{2}$	0	50	16	32	66
		4	96	93	97	97
TEMPO (3 equiv.)	Organic	0	48	24	50	76
	radicals	4	91	82	90	91

Table 55. Fattal Oxidation of DA in the presence of scavengers of additives.	Fable S3. Partia	l oxidation of BA ir	the presence o	f scavengers or	additives.
---	-------------------------	----------------------	----------------	-----------------	------------

Conditions: BA (1 mmol L⁻¹, 0.01 mmol), photocatalyst (0.5 g L⁻¹, 5 mg), and reaction time (4 h).

1	8	
Cu loading (wt.%)	BAL yield (mmol L ⁻¹)	H_2O_2 yield (mmol L ⁻¹)
0	0.21	0.19
2	0.89	0.53
4	0.94	0.40
6	0.70	0.36
	Calibration curve	Results
	4 H 1.5 mM 1.6 m $1.6 $	1 J J J J J J J J J J J J J J J J J J J
	320 420 52 Wavelength / nm	20 300 400 500 Wavelength / pm
		wavelengur / IIII

Table S4. H₂O₂ production determined using the iodometric method.²³⁻²⁵

References

- 1. J. Choi, B. H. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. Ferrero Vallana, D. R. MacFarlane and A. N. Simonov, *Nature communications*, 2020, **11**, 5546.
- 2. G. Liao, C. Li, X. Li and B. Fang, Cell Reports Physical Science, 2021, 2, 100355.
- 3. S. Wu and X. Quan, ACS ES&T Engineering, 2022, 2, 1068-1079.
- 4. X. Xiao, J. Jiang and L. Zhang, Applied Catalysis B: Environmental, 2013, 142, 487-493.
- 5. M. Bellardita, E. I. García-López, G. Marcì, I. Krivtsov, J. R. García and L. Palmisano, *Applied Catalysis B: Environmental*, 2018, **220**, 222-233.
- 6. T. Huo, Q. Deng, F. Yu, G. Wang, Y. Xia, H. Li and W. Hou, ACS Applied Materials & Interfaces, 2022, 14, 13419-13430.
- 7. S. K. Pahari and R.-A. Doong, ACS Sustainable Chemistry & Engineering, 2020, 8, 13342-13351.
- 8. I. Krivtsov, M. Ilkaeva, E. I. García-López, G. Marcì, L. Palmisano, E. Bartashevich, E. Grigoreva, K. Matveeva, E. Díaz and S. Ordóñez, *ChemCatChem*, 2019, **11**, 2713-2724.
- 9. B. Long, Z. Ding and X. Wang, ChemSusChem, 2013, 6, 2074-2078.
- 10. X. Dai, M. Xie, S. Meng, X. Fu and S. Chen, Applied Catalysis B: Environmental, 2014, 158, 382-390.
- 11. L. Zhang, D. Liu, J. Guan, X. Chen, X. Guo, F. Zhao, T. Hou and X. Mu, *Materials Research Bulletin*, 2014, **59**, 84-92.
- 12. F. Su, S. C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert and X. Wang, *Journal of the American Chemical Society*, 2010, **132**, 16299-16301.
- 13. P. Zhang, J. Deng, J. Mao, H. Li and Y. Wang, Chinese Journal of Catalysis, 2015, 36, 1580-1586.
- 14. V. Shvalagin, M. Kompanets, O. Kutsenko, S. Y. Kuchmy and M. Skoryk, *Theoretical and Experimental Chemistry*, 2020, **56**, 111-116.
- 15. R. Morozov, M. Golovin, D. Uchaev, A. Fakhrutdinov, M. Gavrilyak, I. Arkhipushkin, V. Boronin, V. Korshunov, F. Podgornov and I. Taydakov, *Journal of Chemical Sciences*, 2021, **133**, 1-17.
- 16. M. Devi, S. Ganguly, B. Bhuyan, S. S. Dhar and S. Vadivel, *European Journal of Inorganic Chemistry*, 2018, **2018**, 4819-4825.
- 17. Z. Yang, X. Xu, X. Liang, C. Lei, Y. Cui, W. Wu, Y. Yang, Z. Zhang and Z. Lei, *Applied catalysis B:* environmental, 2017, 205, 42-54.
- 18. M. Mohammadi, H. Hadadzadeh, M. Kaikhosravi, H. Farrokhpour and J. Shakeri, *Molecular Catalysis*, 2020, **490**, 110927.
- 19. R. R. Solís, M. A. Quintana, G. Blázquez, M. Calero and M. J. Muñoz-Batista, *Catalysis Today*, 2023, **423**, 114266.
- 20. K. Cerdan, W. Ouyang, J. C. Colmenares, M. J. Munoz-Batista, R. Luque and A. M. Balu, *Chemical Engineering Science*, 2019, **194**, 78-84.
- 21. M. A. Quintana, R. R. Solís, G. Blázquez, M. Calero and M. J. Munoz-Batista, *Applied Surface Science*, 2024, **656**, 159717.
- 22. W. Wang, X. Cong, X. Zhang, W. Xu, J. Diao, Y. Bao and F. Guo, *Journal of Environmental Chemical Engineering*, 2025, 115552.
- 23. X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng and J. Hou, *Nature Communications*, 2023, **14**, 7115.
- 24. X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. Wang and X. Zhou, *Energy & Environmental Science*, 2022, **15**, 830-842.
- 25. Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan and Y. Zhu, *Energy & Environmental Science*, 2018, **11**, 2581-2589.