## **Supporting Information**

## From NiCo-Glycerate to Tri-Metallic Selenide: Engineering Yolk-Shell MnNiCoSe spheres with Nanosheet Arrays for Hybrid Supercapacitors

Majid Shirvani <sup>a,\*</sup>, Davoud Nasr Esfahani <sup>a,b,\*</sup>

<sup>a</sup> Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 19916-33361, Iran

<sup>b</sup> Department of converging technologies, Khatam University, Tehran, 19916-33357, Iran

\*Corresponding author E-mail: majid.shirvani@piais.ir, davoud.nasr@piais.ir



**Figure S1.** (a) CVs of the NiF@MnNiCo-LDH electrode from 10 to 80 mV/s (b) The relative contributions of the capacitive and diffusion-controlled charge storage in the prepared NiF@MnNiCo-LDH electrode at different scan rates (c) GCD curves of the NiF@MnNiCo-LDH electrode from 1 to 20 A/g (d) Specific capacities vs. current densities of the NiF@MnNiCo-LDH electrode.



**Figure S2.** (a) CVs of the NiF@NiCo-Gly electrode from 10 to 100 mV/s (b) The relative contributions of the capacitive and diffusion-controlled charge storage in the prepared NiF@NiCo-Gly electrode at different scan rates (c) GCD curves of the NiF@NiCo-Gly electrode from 1 to 20 A/g (d) Specific capacities vs. current densities of the NiF@NiCo-Gly electrode.



Figure S3. FE-SEM images of the MnNiCoSe electrode material after 10,000 GCD cycles.



Figure S4. XRD pattern of the MnNiCoSe electrode material after 10,000 GCD cycle.



**Figure S5.** (a) CVs of the activated carbon-based electrode at various scan rates of 10-100 mV/s (b) GCD curves of the activated carbon-based electrode at various current densities of 1-20 A/g (c) Specific capacitance (F/g) vs. current density (A/g) of the activated carbon-based electrode.



**Figure S6.** Schematic illustration of the NiF@MnNiCoSe (+)//NiF@AC (-) fabricated of NiF@MnNiCoSe (positive electrode) and NiF@AC (negative electrode).

| Table S  | <b>S1</b> . | Comparison | of the | performance | of | the | MnNiCoSe | electrode | material | with | other | previously | 1 |
|----------|-------------|------------|--------|-------------|----|-----|----------|-----------|----------|------|-------|------------|---|
| reported | 1 ma        | aterials.  |        |             |    |     |          |           |          |      |       |            |   |

| Composition                                       | Capacity(mAhg <sup>-1</sup> ) | Cycles,<br>retention       | Rate capability               | ED(Wkg <sup>-1</sup> ) | Reference |
|---------------------------------------------------|-------------------------------|----------------------------|-------------------------------|------------------------|-----------|
| Ni-Co-Mn-S                                        | 182.69                        | 1100, 97.8%<br>At 7 A/g    | 51.62% at 50 Ag <sup>-1</sup> | 36.3                   | 1         |
| Ni <sub>x</sub> Co <sub>1-x</sub> Se <sub>2</sub> | 197.5                         | 20000, 90%<br>At 10 A/g    | 76.26% at 20 Ag <sup>-1</sup> | 44.1                   | 2         |
| NiCoMn-S                                          | 183.61                        | 1000, 86.45%               | 66.56% at 50 Ag <sup>-1</sup> | 42.1                   | 3         |
| MnCoSe <sub>2</sub>                               | 227.77                        | 10000, 95%<br>At 5 A/g     | 39.63% at 5 Ag <sup>-1</sup>  | 32                     | 4         |
| NiCoSe <sub>2</sub> /C                            | 232.6                         | 5000, 88.3%<br>At 10 A/g   | 72.60% at 10 Ag <sup>-1</sup> | -                      | 5         |
| CoSe <sub>2</sub> /NiSe <sub>2</sub>              | 179.25                        | 20000, 87.59%<br>At 10 A/g | 83.68% at 10 Ag <sup>-1</sup> | 20.4                   | 6         |
| MnSe <sub>2</sub> /CoSe <sub>2</sub>              | 202.33                        | 5000, 88%<br>At 10 A/g     | -                             | 28.6                   | 7         |
| MnNiCoSe                                          | 263.67                        | 10000, 84.28%<br>At 10 A/g | 76.63% at 20 Ag <sup>-1</sup> | 53.32                  | This work |

## References

- 1. J. Zhang, C. Li, M. Fan, T. Ma, H. Chen and H. Wang, Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors, *Appl. Surf. Sci.*, 2021, **565**, 150482.
- 2. S. Xie, J. Gou, B. Liu and C. Liu, Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor, *J. Colloid Interface Sci.*, 2019, **540**, 306-314.
- 3. J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He and H. C. Chen, Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors, *Chem. Eng. J.*, 2021, **405**, 126928.
- 4. P. Anjana, S. S. Kumar and R. Rakhi, Direct growth of MnCoSe<sub>2</sub> nanoneedles on 3D nickel foam for supercapacitor application, *Surf. Interfac.*, 2023, **42**, 103358.
- 5. C. Wang, Z. Wang, D. Wu, W. Cai, Y. Qin and Y. Kong, Hollow NiCoSe<sub>2</sub>/C prepared through a step-by-step derivatization method for high performance supercapacitors, *J. Electroanal. Chem.*, 2022, **905**, 115976.
- 6. J. Wang, S. Sarwar, J. Song, L. Du, T. Li, Y. Zhang, B. Li, Q. Guo, J. Luo and X. Zhang, One-step microwave synthesis of self-supported CoSe<sub>2</sub>@NiSe<sub>2</sub> nanoflowers on 3D nickel foam for high performance supercapacitors, *J. Alloys Compd.*, 2022, **892**, 162079.
- 7. T. S. Krishnan, P. S. Babu, M. Praveen and V. Janakiraman, Fabrication of Ultrathin rGO Sheet-Wrapped Mixed-Phase MnSe<sub>2</sub>/CoSe<sub>2</sub> Nanocomposite for High-Performance Supercapacitor Electrodes with Long-Term Stability, *J. Electron. Mater.*, 2024, **53**, 5273-5285.