Supporting Information

Rational Design of Lead-Free CsCu₂I₃@g-C₃N₄ Composite for Efficient Energy Storage and Sustainable Catalysis

Montu Gogoi^a, Deepshikha Roy^a, Jita Morang^a, Nilakshi Dutta^a, Tarun Kumar Sahu^b, Diganta Sarma^a and Kalyanjyoti Deori^a*

^aKD's 'NAME' (NanoMat&Energy) Lab, Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India

^bIndian Institute of Technology Indore, Department of Chemistry, Madhya Pradesh-453552, India

Sl. No.	Contents	Page No.
1	Additional experimental details	S2
2	Calculation of kinetic parameters (Table S1)	S3
3	Optimization of reaction conditions for photocatalytic hydration of benzonitrile (Table S2)	S4
4	Optimization of reaction conditions for synthesis of quinazolin-4(<i>3H</i>)- one derivative (Table S3)	S5
5	Comparison of our work with previously reported studies on hydration of benzonitrile (Table S4)	S6
6	Comparison of our work with previously reported studies on synthesis of quinazolin-4(<i>3H</i>)-one derivative (Table S5)	S6
7	Evaluation of the electrochemical performance of CCI-CN with previously reported perovskite materials (Table S6)	S7
8	EDX spectra of CCI (Fig. S1)	S7
9	Absorption, emission, and time-resolved PL spectra of CN (Fig. S2)	S 8
10	Time dependent optical absorption spectra for <i>para</i> -nitroaniline reduction (Fig. S3)	S8
11	Recyclability test of CCI-CN (Fig. S4a)	S9
12	Hot-injection test for synthesis of quinazolin-4(3H)-one (Fig. S4b)	S9
13	GCD curves for CCI and CN (Fig. S5)	S9
14	¹ H and ¹³ C NMR spectra (Fig. S6-S17)	S10-S17
15	References	S18-S19

Email: kalchemdu@gmail.com; kalchemdu@dibru.ac.in

Additional Experimental Details:

The specific capacitance from the CV curve was calculated by using equation S1:

$$C = \frac{1}{m \times s \times \Delta V} \int I(V) dV$$
(S1)

Where, $\int I(V) dV =$ integral area of CV curve, m = mass of the active material, s = scan rate (mV/s), and $\Delta V =$ potential difference.

The specific capacitance was calculated from the galvanostatic charge-discharge (GCD) curve using the following **equation S2**:

$$C = \frac{I\Delta t}{m\Delta V} \tag{S2}$$

Where, C= specific capacitance (F/g), I = applied current (A), Δt = discharge time (s), m = mass of the active material, and ΔV = potential difference.

The energy density was evaluated using the equation S3:

$$E = \frac{1}{2 \times 3.6} CV_2 \tag{S3}$$

Where, E= energy density (Wh/Kg), C = specific capacitance (F/g), and V = operating voltage (V).

The power density was determined by using equation S4:

$$P = \frac{3600 \times E}{\Delta t} \tag{S4}$$

Where, P = power density (W/Kg), E = energy density (Wh/Kg), and Δt = discharge time (s).

Table S1 Kinetic parameters derived from the analysis of emission decay of the as-synthesized samples.

Sample	A ₁	$ au_1$	A ₂	$ au_2$	A_3	$ au_3$	$ au_{\mathrm{avg}}(\mathrm{ns})$
CCI	656.076	114.52	259.129	244.35	-	-	151.2798
CCI-CN	299.778	36.91	485.7	171.01	-	-	119.8307
CN	5704.766	0.8	3800.438	3.17	608.752	11.90	2.36

The average lifetime was calculated using the following equation S5:

$$\tau a v g = \frac{\tau 1 A 1}{A 1 + A 2 + A 3} + \frac{\tau 2 A 2}{A 1 + A 2 + A 3} + \frac{\tau 3 A 3}{A 1 + A 2 + A 3}$$

(S5)

Where, A_1 , A_2 , and A_3 are pre-exponential values for luminescence lifetimes τ_1 , τ_2 , and τ_3 , respectively.

Table S2 Screening of optimized conditions for the photo-hydration of benzonitriles tocorresponding benzamide derivatives. a

Entry	Deviation from the standard	Yield (%)
	conditions	2a
1	2 h	80
2	Without light	NR
3	Without CCI-CN	NR
4	CCI (Instead of CCI-CN)	70
5	CN (Instead of CCI-CN)	40
6	MeOH (Instead of <i>i</i> -PrOH)	65
7	EtOH (Instead of <i>i</i> -PrOH)	70
8	H_2O (Instead of <i>i</i> -PrOH)	40
9	20 W Visible light	40
10	NaOH (Instead of KOH)	85
11	Na ₂ CO ₃ (Instead of KOH)	45
12	K ₂ CO ₃ (Instead of KOH)	NR
13	CCI-CN (5 mg)	81
14	CuI (Instead of CCI-CN)	40
15	Without light (5 h)	NR
16	None*	97

"Reaction conditions: Benzonitrile (0.5 mmol), KOH (1 mmol), and CCI-CN (10 mg) were stirred in *i*-PrOH (2.5 ml) for 3 h under 250 W visible-light irradiation. N.R.=no reaction. *None= the standard reaction condition with no change.

Table S3 Screening of optimized conditions for the synthesis of quinazolin-4(3H)-ones.^b

Entry	Deviation from the standard	Yield (%)
	conditions	5ab
1	2 h	70
2	Without Solvent	NR
3	Without CCI-CN	NR
4	H ₂ O (Instead of DMSO), 6 h	50
5	Methanol (Instead of DMSO), 6 h	60
6	Ethyl Acetate (Instead of DMSO), 6 h	40
7	DMSO, 6 h	98
8	RT, 6 h	NR
9	RT, 12 h	NR
10	RT, 18 h	NR
11	40 °C, 6 h	50
12	50 °C, 6 h	50
13	60 °C, 6 h	50
14	CCI (Instead of CCI-CN)	75
15	CN (Instead of CCI-CN)	Trace
16	CuI (Instead of CCI-CN)	40
17	None*	98

^{*b*}**Reaction conditions:** 2-aminobenzamide (0.1 mmol, 1 equivalent), 4-methylbenzaldehyde (0.12 mmol, 1.2 equivalent), and CCI-CN (10 mg) were stirred in DMSO (1 ml) at 80 °C for 4 h. N.R.=no reaction. *None= the standard reaction condition with no change.

Entry	Catalyst	hv	Temperature	Time (h)	Yield (%)	Reference
1	Ni-Complex	-	70 °C	6	91	1
2	Mn-Complex	-	100 °C	18	90	2
3	Os-Complex	-	120 °C	4	91	3
4	PdCl ₂ +As ₂ O ₃	-	60 °C	12	54	4
5	Mn-PNP Complex	-	92 °C	24	85	5
6	$Ru@MnO_2$	-	60 °C	6	94	6
7	CCI-CN	250 W Visible light	RT	3	97	This work

Table S4 Comparison study of a few reported works on benzonitrile hydration with this work.

Table S5 Comparison study of a few reported works on quinazoline-4(*3H*)-one synthesis with this work.

Entry	Catalyst	Solvent	Additives	Temperature	Time (h)	Yield (%)	Reference
1	Mo(VI)- Complex	EtOH	H_2O_2	80 °C	6	82	7
2	$\mathrm{H_{3}PW_{12}O_{40}}$	EtOH:H ₂ O	-	100 °C	4.5	75	8
3	Cu(OAc) ₂	PhMe	Oxone	100 °C	10	78	9
4	Fe ₃ O ₄ -CND	H ₂ O	TBHP	90 °C	14	82	10
5	Ni(II)- Complex	EtOH	-	78 °C	6	81	11
6	MSPHS ionic liquid@SiO ₂	EtOH:H ₂ O	TBHP	120 °C	24	83.2	12
7	CCI-CN	DMSO	-	80 °C	4	98	This work

Entry	Supercapacitor	Specific Capacitance, C _{sp}	Power Density	Reference
1	CsPbBr ₃	121 F/g at 1 A/g	625 W/Kg	13
2	La ₂ FeMnO ₆	10.58 mF/g at 0.9 mA/g	435.33 W/Kg	14
3	Y ₂ NiMnO ₆	77.76 F/g at 30 mA/g	4.32 W/Kg	15
4	CH ₃ NH ₃ PbBr ₃	54.36 F/g at 5 mV/s	225 W/Kg	16
5	$\begin{array}{c} (\text{4-FBA})_2\text{MA}_{n-1}\text{Pb}_n\text{I}_{3n+1}\\ (\text{Quasi-2D}) \end{array}$	8.67 F/g at 5 mV/s	109 W/Kg	17
6	$La_{1-x}Sr_xMnO_3$	102 F/g at 1 A/g	120 W/Kg	18
7	CCI-CN	149.4 F/g at 1.16 A/g	992 W/Kg	This work

 Table S6 Evaluation of the electrochemical performance of few previously reported

 perovskite-based electrodes.

Fig. S1 EDX spectra and elemental mapping of CCI.

Fig. S2 (a) Absorption spectra of CN. The inset shows the corresponding bandgap energy of the sample using Tauc's plot, (b) PL emission spectra of CN, and (c) Time-resolved PL decay curves of CN.

Fig. S3 Time-dependent optical absorption spectra after stirring without photocatalyst (blank) and in dark with photocatalyst for *para*-nitroaniline reduction.

Fig. S4 (a) Recyclability test of CCI-CN, (b) hot-injection test for synthesis of quinazolin-4(3H)-one.

Fig. S5 Galvanostatic charge-discharge (GCD) curves at different current densities for (a) CCI, and (b) CN.

Analytical data of representative compound

Benzamide (2a)

¹H NMR (500 MHz, DMSO) δ 7.97 (s, 2H), 7.88 (d, *J* = 7.3 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H).

¹³C NMR (126 MHz, DMSO) δ 168.25 (s), 134.61 (s), 131.55 (s), 128.54 (s), 127.79 (s).

4-methylbenzamide (2d)

¹H NMR (500 MHz, DMSO) δ 7.89 (s, 2H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.7 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (126 MHz, DMSO) δ 168.36 (s), 141.62 (s), 132.07 (s), 129.31 (s), 128.08 (s), 21.52 (s).

2-(p-tolyl)quinazolin-4(*3H*)-one (5ab)

¹H NMR (500 MHz, DMSO) δ 12.43 (s, 1H), 8.12 (d, *J* = 6.9 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 2H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 2H), 2.35 (s, 3H).

¹³C NMR (125 MHz, DMSO) δ 162.62, 152.59, 149.02, 141.67, 134.77, 130.18, 129.42, 127.94, 126.61, 126.10, 121.11, 21.21.

MS (ESI) m/z: $[M+H]^+$ calcd. for $C_{15}H_{12}N_2OH$ 237.09; Found 237.13.

2-(4-fluorophenyl)quinazolin-4(3H)-one (5ac)

¹H NMR (500 MHz, DMSO) δ 12.70 (s, 1H), 8.39 (d, J = 15.0 Hz, 2H), 8.30 (d, J = 5 Hz, 1H), 7.97 (t, J = 10.0 Hz, 1H), 7.87 (d, J = 10.0 Hz, 1H), 7.66 (t, J = 5.0 Hz, 1H), 7.53 (t, J = 5.0 Hz, 2H).

¹³C NMR (125 MHz, DMSO) δ 164.38 (d, J = 249.5 Hz), 162.55 (s), 151.70 (s), 149.00 (s), 134.96 (s), 130.70 (d, J = 30 Hz), 127.80 (s), 126.94 (s), 126.19 (s), 121.23 (s), 115.96 (d, J = 3.9 Hz).

MS (ESI) m/z: $[M+H]^+$ calcd. for $C_{14}H_9FN_2OH$ 241.06; Found 241.09.

2-(4-chlorophenyl)quinazolin-4(*3H*)-one (5ad)

¹H NMR (500 MHz, DMSO) δ 12.67 (s, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.91 (t, J = 7.6 Hz, 1H), 7.81 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H).

¹³C NMR (125 MHz, DMSO) δ 162.9, 152.15, 149.21, 136.95, 135.33, 132.25, 130.30, 129.34, 126.56, 121.66.

MS (ESI) m/z: [M+H]⁺ calcd. for C₁₄H₉ClN₂OH 257.06; Found 257.03.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (5ag)

¹H NMR (500 MHz, DMSO) δ 12.33 (s, 1H), 8.12 (d, *J* = 8.9 Hz, 2H), 8.06 (d, *J* = 7.9 Hz, 1H), 7.73 (t, *J* = 6.9 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 2H), 3.77 (s, 3H).

¹³C NMR (125 MHz, DMSO) δ 162.75, 162.27, 152.29, 149.33, 134.91, 131.74, 129.89, 127.67, 126.50, 126.24, 125.21, 121.11, 114.25, 55.91.

MS (ESI) m/z: $[M+H]^+$ calcd. for $C_{15}H_{12}N_2O_2H$ 253.08; Found 253.11.

Fig. S6 ¹H NMR spectrum of Benzamide (2a)

Fig. S7 ¹³C NMR spectrum of Benzamide (2a)

Fig. S8 ¹H NMR spectrum of 4-methylbenzamide (2d)

Fig. S9 ¹³C NMR spectrum of 4-methylbenzamide (2d)

Fig. S10 ¹H NMR spectrum of 2-(p-tolyl)quinazolin-4(*3H*)-one (5ab)

Fig. S11 ¹³C NMR spectrum of 2-(p-tolyl)quinazolin-4(*3H*)-one (5ab)

Fig. S12 ¹H NMR spectrum 2-(4-fluorophenyl)quinazolin-4(3H)-one (5ac)

Fig. S13 ¹³C NMR spectrum 2-(4-fluorophenyl)quinazolin-4(*3H*)-one (5ac)

Fig. S14 ¹H NMR spectrum 2-(4-chlorophenyl)quinazolin-4(*3H*)-one (5ad)

Fig. S15 ¹³C NMR spectrum 2-(4-chlorophenyl)quinazolin-4(3H)-one (5ad)

Fig. S16 ¹H spectrum 2-(4-methoxyphenyl)quinazolin-4(3H)-one (5ag)

Fig. S17 ¹³C NMR spectrum 2-(4-methoxyphenyl)quinazolin-4(3H)-one (5ag)

References

- K. Singh, A. Sarbajna, I. Dutta, P. Pandey and J. K. Bera, Hemilability-Driven Water Activation: A Ni^{II} Catalyst for Base-Free Hydration of Nitriles to Amides, *Chem. Eur. J.*, 2017, 23, 7761–7771.
- 2 J. A. Garduño, A. Arévalo, M. Flores-Alamo and J. J. García, Mn(i) Organometallics Containing the ⁱPr₂P(CH₂)₂PⁱPr₂ Ligand for the Catalytic Hydration of Aromatic Nitriles, *Catal. Sci. Technol.*, 2018, 8, 2606–2616.
- 3 M. L. Buil, V. Cadierno, M. A. Esteruelas, J. Gimeno, J. Herrero, S. Izquierdo and E. Oñate, Selective Hydration of Nitriles to Amides Promoted by an Os–NHC Catalyst: Formation and X-Ray Characterization of K₂-Amidate Intermediates, *Organometallics*, 2012, **31**, 6861–6867.
- 4 D. Cirri, T. Marzo and A. Pratesi, An Unprecedented Palladium-Arsenic Catalytic Cycle for Nitriles Hydration, *Front. Chem.*, 2023, **11**.
- 5 Q.-Q. Zhou, Y.-Q. Zou, S. Kar, Y. Diskin-Posner, Y. Ben-David and D. Milstein, Manganese-Pincer-Catalyzed Nitrile Hydration, α-Deuteration, and α-Deuterated Amide Formation via Metal Ligand Cooperation, ACS Catal., 2021, 11, 10239–10245.
- M. A. Hussain, E. J. Choi, A. Maqbool, M. Atif, H. Zeb, J. Yeo, J.-A. Yu, Y.-H. Cho, M. Noh and J. W. Kim, An Efficient Hydration of Nitriles with Ruthenium-Supported Heterogeneous Catalyst in Water under Moderate Conditions, *J. Ind. Eng. Chem.*, 2021, 99, 187–195.
- M. Feng, Q. Yan, L. Yang, Y. Ye, G. Liu and W. Wang, Selective Synthesis of 2-Substituted 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-Ones Catalyzed by Schiff Base Dioxomolybdenum(VI) Complex, *Int. J. Chem. Kinet.*, 2023, 55, 119– 128.
- M. Tajbakhsh, R. Hosseinzadeh, P. Rezaee and M. Tajbakhsh, H₃PW₁₂O₄₀ Catalyzed Synthesis of Benzoxazine and Quinazoline in Aqueous Media, *Chin. J. Catal.*, 2014, 35, 58–65.
- 9 S. K. Bera, M. Irfan and A. Porcheddu, An Efficient Strategy for Quinazolinone and Benzimidazole Synthesis Using Microwave-Assisted Copper-Catalyzed Aerobic Oxidation of Amines, *ChemCatChem*, 2025, 17, 202401813.

- 10 R. Varala, V. Seema, M. Amanullah and M. M. Alam, Recent Advances in TBHP-Promoted Heterocyclic Ring Construction via Annulation/Cyclization, *J. Heterocycl. Chem.*, 2024, 61, 1269–1298.
- U. P. Singh, S. Sharma and A. Malik, Nickel(II) Complex Anchored on MCM-41, a Reusable Catalyst for the Synthesis of Benzimidazole and Quinazolinone, *J. Coord. Chem.*, 2022, **75**, 2111–2123.
- T. T. T. Huynh, T. T. Nguyen and P. H. Tran, An Efficient and Green Synthesis of 2-Phenylquinazolin-4(3)-Ones Using Brønsted Acidic Ionic Liquid Grafted onto Silica, *J. Chem. Technol. Biotechnol.*, 2023, 98, 555–565.
- 13 S. Thakur, T. Paul, S. Maiti and K. K. Chattopadhyay, All-Inorganic CsPbBr₃ Perovskite as Potential Electrode Material for Symmetric Supercapacitor, *Solid State Sci.*, 2021, **122**, 106769.
- A. Shereef, A. K. Jose, J. Kunjumon, P. A. Aleena, M. A. Anu, W. Akram, R. P. Jebin, T. S. Xavier, T. Maity and D. Sajan, Study on Preparation, Magnetic Properties and Performance of Electrochemical Supercapacitor Based on La₂FeMnO₆ Double Perovskite for Energy Storage Applications and Their Charge Storage Mechanism, *Adv. Powder Technol.*, 2024, **35**, 104618.
- 15 M. Alam, K. Karmakar, M. Pal and K. Mandal, Electrochemical Supercapacitor Based on Double Perovskite Y₂NiMnO₆ Nanowires, *RSC Adv.*, 2016, 6, 114722–114726.
- 16 R. Kumar, P. S. Shukla, G. D. Varma and M. Bag, Synthesis of Porous Electrode from CH₃NH₃PbBr₃ Single Crystal for Efficient Supercapacitor Application: Role of Morphology on the Charge Storage and Stability, *Electrochim. Acta*, 2021, **398**, 139344.
- M. K. Rao, M. Saquib, M. Selvakumar, M. M.G., S. Paramasivam, N. S. Prabhu, S. Senthilkumar and S. D. Kamath, Quasi 2D Ruddlesden–Popper Perovskite Thin Film Electrode for Supercapacitor Application: Role of Diffusion and Capacitive Process in Charge Storage Mechanism, *FlatChem*, 2023, 41, 100527.
- 18 X. Lang, H. Mo, X. Hu and H. Tian, Supercapacitor Performance of Perovskite La_{1-x}Sr_xMnO₃, *Dalton Trans.*, 2017, 46, 13720–13730.